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Abstract

High-throughput single-cell assays increasingly require
special consideration in experimental design, sample
multiplexing, batch effect removal, and data
interpretation. Here, we describe a lentiviral barcode-
based multiplexing approach, CellTag Indexing, which
uses predefined genetic barcodes that are heritable,
enabling cell populations to be tagged, pooled, and
tracked over time in the same experimental replicate.
We demonstrate the utility of CellTag Indexing by
sequencing transcriptomes using a variety of cell
types, including long-term tracking of cell
engraftment and differentiation in vivo. Together, this
presents CellTag Indexing as a broadly applicable
genetic multiplexing tool that is complementary with
existing single-cell technologies.

Introduction
Single-cell technology is advancing at a rapid pace, pro-
viding unique opportunities to investigate biological sys-
tems and processes with unparalleled resolution. As an
increasing variety of assays are being deployed at
single-cell resolution, this has presented new challenges
for experimental design and data analysis. Recently,
batch effects were shown to drive aberrant clustering of
the same biological sample processed via two different
methodologies [1], demonstrating how the accuracy of
single-cell data analysis can be confounded by measure-
ment errors. Several algorithms currently exist to
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support the computational correction of batch effects
[2–5]. These methods aim to minimize technical arti-
facts by regressing out known factors of variation during
single-cell data processing. However, this requires prior
knowledge of the specific factors contributing to batch
effects, limiting these approaches. In an alternative strat-
egy, samples are pooled together and subsequently
demultiplexed, based on their natural genetic variation
[6], a powerful approach that supports the multiplexing
of up to ~ 20 samples. However, if the samples are not
genetically distinct or are not accompanied by detailed
genotypic knowledge, demultiplexing by genetic vari-
ation does not represent a feasible approach. For in-
stance, this strategy would not be suitable for comparing
different experimental groups from the same individual
or animal model where genetic background stays
constant.
Recently, several “label-and-pool” approaches have

been developed to mark individual cells of the same
sample with a distinct barcode prior to pooling and pro-
cessing in the same single-cell RNA-sequencing
(scRNA-seq) run [7–12]. For example, cells can be
tagged with barcoded antibodies [9, 12], chemically la-
beled with DNA oligonucleotides [8, 10], or transiently
transfected with DNA oligonucleotides [11], such that
sample identifiers for each cell can be read, in parallel
with their transcriptomes. Similarly, several other
methods exist to couple genetic perturbations with bar-
codes [13–17], although these have not been demon-
strated to support reliable, large-scale sample
multiplexing. Here, we introduce a methodology to
multiplex biological samples via long-term genetic label-
ing with heritable virally delivered barcodes, “CellTags.”
In this approach, defined 8-nucleotide (nt) CellTag bar-
codes are expressed as polyadenylated transcripts, cap-
tured in standard single-cell processing protocols. This
design permits the indelible labeling and subsequent
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identification of cells by sample, in parallel with the
measurement of their identity and state. In contrast to
labeling approaches based on transient physical interac-
tions at the cell or nuclear surface, CellTag Indexed cells
retain their heritable barcodes for an extended period in
vitro and in vivo, supporting long-term cell tracking ex-
periments. This also distinguishes CellTag Indexing as a
unique multiplexing tool in that cell samples can be
tagged, mixed and tracked within the same biological
replicate, and processed together to mitigate unwanted
biological and technical variation.
Here, we validate CellTag Index-based multiplexing via

the labeling and mixing of genetically distinct populations,
demonstrating accurate and efficient demultiplexing of
sample identity. Furthermore, we demonstrate the efficacy
of CellTag Indexing for long-term live cell multiplexing,
via the establishment of a unique competitive transplant
model. In this context, we showcase how CellTag Indexing
can be used for in vivo multiplexing to precisely quantify
engraftment and differentiation potential of distinct, com-
peting cell populations. Together, this positions CellTag
Indexing as a broadly applicable tool, easily deployed in
cell culture- and transplantation-based assays, that is com-
patible across different single-cell modalities.

Results
Genetic labeling of biological samples via CellTag
Indexing
Here, we describe our lentiviral CellTag toolbox for la-
beling cells with transcribed DNA barcodes, acting as
cell/sample identifiers that can be easily recovered from
single transcriptomes. CellTag Indexing is based on the
integration of defined 8-nt barcodes (CellTags), delivered
via lentivirus. In this design, CellTags are positioned in
the 3′ UTR of the green fluorescent protein (GFP) gene,
followed by an SV40 polyadenylation signal sequence
(Fig. 1a). Lentivirus carrying a defined CellTag is used to
transduce and genetically label a sample, where GFP is
included in this design to enable straightforward quanti-
fication of transduction efficiency. This results in the
high expression of heritable, polyadenylated CellTag
transcripts that are efficiently captured in standard
single-cell library preparation pipelines, allowing for the
demultiplexing of original sample identity in down-
stream analysis. We previously demonstrated the efficacy
of this approach to label cells with combinations of ran-
dom CellTags to support lineage tracing in cell fate re-
programming [18]. While this is a powerful approach to
track clonally related cells, it requires more complex ex-
perimental design and significant computational analysis.
Furthermore, only ~ 50% of labeled cells can be tracked
via this method; while this supports high-confidence
lineage reconstruction, it is not suited to high-efficiency
cell labeling for the purpose of sample multiplexing. Our

goal here was to expand the utility of CellTagging to
support sample multiplexing.
First, to ensure that CellTag Indexing does not perturb

cell physiology, we tested the impact of labeling on a
well-characterized lineage reprogramming system, B cell
to induced macrophage reprogramming [19]. We cul-
tured HAFTL pre-B cells and induced reprogramming
to macrophage fate with β-estradiol, as previously de-
scribed [19]. One biological replicate was transduced
with CellTag lentivirus, while an independent control
replicate, cultured in parallel, was not transduced (Add-
itional file 1: Figure S1A). After 72 h of reprogramming,
the two induced macrophage samples were independ-
ently processed for sequencing, along with a sample of
the original, untransduced B cells. This yielded 1310
CellTagged transcriptomes, 2849 control transcriptomes,
and 972 B cell transcriptomes. We detected a median of
6 CellTag transcripts per cell in CellTagged transcrip-
tomes (CellTags were detected in every cell of this sam-
ple) and 0 in control transcriptomes (Additional file 1:
Figure S1B). Clustering and visualization [5, 20] of Cell-
Tagged and control macrophage transcriptomes are in-
terspersed with no independent clustering observed,
with both clustering separately from B cells (Add-
itional file 1: Figure S1C&D). Additionally, CellTagged
and control induced macrophages exhibit comparable
upregulation of macrophage marker expression, accom-
panied by similar levels of B cell marker downregulation
(Additional file 1: Figure S1E). Genome-wide compari-
son of gene expression of the two samples shows a
strong linear association with an R2 value of 0.98 (Add-
itional file 1: Figure S1F), confirming that CellTag Index-
ing does not perturb cell identity or physiology. This is
in agreement with our previous study showing that
transduction with a random CellTag library does not in-
fluence cell behavior [18].

Species mixing of genetically distinct cells validates
CellTag-based multiplexing
To assess the efficacy of CellTag-based multiplexing, we
applied it to “species mixing,” an experiment commonly
performed to estimate cell co-encapsulation rates in
droplet-based scRNA-seq [21]. In this experiment, one
sample of human HEK293T cells was labeled with Cell-
Tag Index A (CellTagA), and one sample of mouse em-
bryonic fibroblasts (MEFs) was labeled with CellTag
Index B (CellTagB), for 24–48 h. Transduction efficiency
was visualized by measuring the percentage of
GFP-positive cells (~ 90%, Additional file 1: Figure S2A).
Labeled cells were pooled, in equal proportions, and
processed together for single-cell library preparation and
sequencing, yielding a total of 18,159 transcriptomes,
with 9357 single human cells (aligning predominantly to
the hg19 genome), 7456 single mouse cells (aligning
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predominantly to the mm10 genome), and 1346 multi-
plets as classified by 10x Genomics’ Cell Ranger pipeline,
based on alignment to the custom hg19-mm10 reference
genome (Fig. 1b and Additional file 1: Figure S2B). For
the purpose of validation, we take this classification re-
sult as a benchmark for comparison. To assign sample
identity based on CellTag Index expression, we devel-
oped a novel demultiplexing algorithm (https://github.
com/morris-lab/CellTag-Classifier) [22] that examines

the expression distribution of each CellTag Index,
followed by a dynamic binarization step to assess each
CellTag Index signal on an individual cell basis (Fig. 1a
and Additional file 1: Figure S2C; see the “Methods” sec-
tion). With this method, we demultiplexed the pooled
transcriptomes into 7510 human cells (CellTagA), 6397
mouse cells (CellTagB), 1040 multiplets, and 3212
non-determined cells (Fig. 1c and Additional file 1: Fig-
ure S2D). Overall, our algorithm successfully classified,
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Fig. 1 Validation of CellTag Indexing for genetic labeling of biological samples. a Schematic of CellTag Indexing. CellTag barcodes are positioned
in the 3′ UTR of a lentiviral GFP construct with a SV40 polyadenylation signal. Barcoded viruses produced from CellTag constructs are used to
transduce the cells to be “tagged.” Tagged cells can then be pooled for single-cell profiling. Prior to analysis, cell identity is demultiplexed by our
classifier pipeline: A CellTag digital gene expression (DGE) matrix is generated by extracting and counting CellTag sequences for each cell; the
DGE is then collapsed by consensus clustering of the detected CellTags; after filtering and log normalization, the DGE is processed by dynamic
binarization and classification. Classification results can be visualized as metadata overlaying single transcriptomes projected onto reduced
dimensions. b Scatter plot of 18,159 transcriptomes from the 2-tag species mixing experiment, classified by 10x Genomics Cell Ranger pipeline
into 9357 single human cells, 7456 single mouse cells, and 1346 multiplets based on alignment to the custom hg19-mm10 reference genome. c
Scatter plot of 18,159 transcriptomes from the 2-tag species mixing experiment, demultiplexed by CellTag Indexing into 7510 human cells
(CellTagA), 6397 mouse cells (CellTagB), 1040 multiplets, and 3212 non-determined cells. d Log-normalized CellTag expression of the 4673
transcriptomes from the 5-tag species mixing experiment, demultiplexed into their respective sample identity on the x-axis; CellTag barcodes, y-
axis. e Transcriptomes from the 5-tag species mixing experiment projected onto reduced dimensions by t-SNE, visualized with CellTag
classification. CellTagC, CellTagD, CellTagE, and CellTagA label HEK293Ts; CellTagB labels MEFs
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or demultiplexed, 82.3% of all transcriptomes. The pres-
ence of non-determined cells is likely due to cells that
did not receive sufficient dosage of virus during CellTag
Index transduction. This can be enhanced by increasing
virus multiplicity of infection (MOI) and visualizing the
percentage of GFP-expressing cells prior to sequencing,
as demonstrated below. For the purpose of benchmark-
ing, we removed the 3212 non-determined cells for com-
parison with the 10x-based classification
(Additional file 1: Figure S2E&F). Using Cohen’s kappa
as a measure of agreement between independent obser-
vations, we calculated a kappa of 0.814 (Additional file 1:
Figure S2G), suggesting that our demultiplexing is in
strong agreement with the orthogonal 10x-based classifi-
cation. Furthermore, cells designated as multiplets by
both 10x and CellTagging demonstrate a clear increase
in the mean numbers of transcripts per cell (Add-
itional file 1: Figure S2H&I), suggesting they do indeed
represent multiplets.
To demonstrate the efficacy of CellTag Indexing for

multiplexing several biological samples in one experi-
ment, we conducted additional validation where four
samples of HEK293Ts and one sample of MEFs were
transduced with five different predefined CellTag In-
dexes (HEK293Ts: CellTags C, D, E, and A; MEFs: Cell-
Tag B). A total of 4673 cells were sequenced, with an
inferred doublet rate of 3.6% (see the “Methods” sec-
tion). Overall, CellTag expression is detected in 99.2% of
all cells, reflecting the improved tagging efficiency from
an increased MOI. We demultiplexed the transcriptomes
as above, including an additional step to resolve misclas-
sified multiplets (Additional file 1: Figure S2C; see the
“Methods” section). Overall, 4558 out of 4673 transcrip-
tomes, or 97.5% of all transcriptomes, were successfully
classified (Additional file 2: Figure S3A). Visualization of
the classified transcriptomes by heatmap of CellTag bar-
code expression (Fig. 1d) and by dimension reduction
(Fig. 1e, Additional file 2: Figure S3B&C) demonstrates
clear segregation between species, suggesting that Cell-
Tag Indexing can be used to reliably multiplex numerous
samples.

CellTag multiplexing enables long-term tracking of cell
potential in an in vivo competitive transplant model
Current multiplexing methods are based on transient
transfection or temporary molecular interactions with
the cell or nucleus surface [7–12]. Although relative to
CellTag Indexing, this offers faster labeling of cells, it
does not support long-term labeling. Here, the unique
advantage of CellTag-based multiplexing is that the label
is heritable, as a result of stable integration into the cell
genome, and can persist for many weeks as we have
shown previously [18]. This creates opportunities for the
longitudinal analysis of cell behavior over an extended

period. Moreover, since experimental groups can be
tagged, mixed, and tracked within the same biological
replicate, unwanted biological and technical variation is
minimized. To explore this application of CellTag multi-
plexing, we applied the method to assess rates of cell en-
graftment and intestinal differentiation potential in an in
vivo competitive transplant model.
We previously reported that MEFs can be directly re-

programmed, via forced expression of transcription fac-
tors, into progenitor-like cells that possess both hepatic
and intestinal potential [23, 24]. We demonstrated that
these cells, named induced endoderm progenitors (iEPs),
are able to functionally engraft a mouse model of in-
duced colitis [24]. Prior to transplant, iEPs possess weak
hepatic and intestinal identity, still partially resembling
the fibroblasts they originated from. Twelve days after
transplant into the mouse large intestine, iEPs more
closely resemble differentiated intestine [24]. However,
in this study, cell identity was assessed via bulk expres-
sion analysis that cannot distinguish between different
intestinal cell types. Therefore, the mechanism of en-
graftment and differentiation potential of cells repro-
grammed to iEPs remained to be characterized.
Our recent single-cell lineage tracing of fibroblast to

iEP reprogramming revealed that this lineage conversion
comprises two distinct trajectories: one path successfully
reprogramming to iEPs, and an alternate path character-
ized by progression into a “dead-end” state, where fibro-
blast identity is re-established [18]. The transition along
the successful reprogramming trajectory is accompanied
by upregulation of genes such as Apoa1 and Cdh1
(E-cadherin). We hypothesized that the Apoa1HighEcad-
High iEP cells constitute the subpopulation responsible
for our previously observed colon engraftment [24]. In
this context, CellTag Indexing is well-suited for tracking
and quantifying reprogrammed and dead-end cell differ-
entiation potential as the barcodes are stably integrated
and heritable, making it possible to label cells for
long-term tracing transplantation experiments.
To test our hypothesis that the Apoa1HighEcadHigh iEP

subpopulation harbors intestinal engraftment and differ-
entiation potential, we first enriched EcadHigh and Eca-
dLow iEP populations using fluorescence-activated cell
sorting (FACS). Functional assays confirmed that Ecad-
High iEPs express significantly higher levels of Apoa1 and
Cdh1, form larger colonies of reprogrammed iEPs in cul-
ture, and retain their EcadHigh phenotype, relative to
their EcadLow counterparts (Additional file 2: Figure
S4A-C). We then labeled sorted EcadHigh iEPs with Cell-
TagA and EcadLow iEPs with CellTagB, followed by pool-
ing in equal proportions and transplant into a modified
mouse model of colonic mucosal injury [25] (Fig. 2a).
Seven days following transplantation, mice were eutha-
nized and dissected, and the engrafted colons collected
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for histology and single-nucleus RNA sequencing.
Microscopic examination of the engrafted tissue reveals
iEP engraftment in discrete patches, located by their
GFP expression (Fig. 2b). Histology of the cryosectioned
engrafted colon shows the expected tissue architecture
with evidence of epithelial injury (Fig. 2c), occasional
submucosal iEPs (Fig. 2d), and occasional aggregates of
iEPs sitting atop of the damaged epithelium (Add-
itional file 2: Figure S4D).

Most intestinal cell recovery protocols focus on the
harvest of the epithelium, neglecting many other cell
types that constitute the intestine. Given the range of
engraftment phenotypes observed in our above histology
analyses, we considered that iEPs may also differentiate
towards non-epithelial cell types. Thus, to capture the
full spectrum of intestinal cell identities, we opted to use
whole tissue single-nucleus extraction, over epithelial
isolation and digestion, to process the engrafted colon
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Fig. 2 CellTag Indexing for long-term tracking of cells demonstrated in a competitive transplant experiment. A Schematic of iEP generation and
enriched into EcadHigh and EcadLow populations by FACS, labeled with CellTagA and CellTagB respectively, pooled in equal proportions and
transplanted into a mouse model of colonic injury. Engrafted colon is then processed for single-nucleus RNA-seq. B Fluorescent microscopic
images of the lumen of the engrafted colon, showing patches of GFP+ iEPs. Scale bar, 100 μm. C H&E-stained section of the engrafted colon
showing normal intestinal architecture with evidence of epithelial injury. Scale bar, 100 μm. D DAPI-stained section of the engrafted colon
showing GFP+ iEPs in the mucosa. Scale bar, 100 μm. E Transcriptomes from three post-engraftment colon tissues sequenced and analyzed,
visualized by UMAP, revealing 16 clusters. F Annotation of the 16 clusters into (a) Lgr5− Lrig1+ intestinal stem cells (ISCs), (b) Lgr5+ ISCs, (c) deep
crypt secretory cells, (d) endothelial cells, (e) enteric neurons, (f) enterocytes, (g) enteroendocrine cells, (h) fibroblasts, (i) goblet cells, (j) iEPs, (k)
immune cells, (i) muscle, (m) Nkain2+ Csmd1+ cells, and (n) Reln+ Prox1+ cells. G Marker expression in annotated cell types
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for RNA sequencing. Indeed, single-nucleus RNA se-
quencing (snRNA-seq) from three colon samples,
post-engraftment, followed by Uniform Manifold Ap-
proximation and Projection (UMAP)-based visualization
[20] revealed 16 clusters (Fig. 2e), corresponding to a
range of different intestinal epithelial cell types. This in-
cluded intestinal stem cells (ISCs), enterocytes, deep
crypt secretory cells, goblet cells, enteroendocrine cells,
and non-epithelial cell types (endothelial cells, muscle,
enteric neurons, immune cells, fibroblasts) (Fig. 2f ). To
our knowledge, this is the first dataset of such that pro-
files large intestinal cell types beyond the epithelium.
Known intestinal markers are observed such as Lgr5,
Lrig1, and Smoc2 in ISCs [26–29]; Reg4 in deep crypt
secretory cells [30]; Myt1l, Asic2, and Syt1 in enteric
neurons [31–34]; Vil1, Plac8, and Krt20 in enterocytes
[35–37]; Nkx2-2, Chga, and Tph1 in enteroendocrine
cells [38, 39]; and Fcgbp, Muc2, and Clca1 in goblet cells
[40, 41] (Fig. 2g, Additional file 2: Figure S5C-E).
Upon further analysis and literature review, we anno-

tated the ISCs into two populations, Lgr5+ ISCs (clusters
1 and 6) and Lgr5− Lrig1+ ISCs (cluster 0), based on dis-
tinct patterns of marker expression (Additional file 2:
Figure S5C). Lrig1, a transmembrane negative regulator
of ErbB signaling [42], is purported to mark a class of
ISCs that are phenotypically distinct from Lgr5+ stem
cells in the intestine [27, 28], with additional roles in
stem cells of the gastric epithelium [43] and the epider-
mis [44–46]. Lgr5+ ISCs, located in clusters 1 and 6 in
this dataset, express high levels of established intestinal
stem cell markers Lgr5 and Smoc2, as well as Lrig1
(Fig. 2g, Additional file 2: Figure S5C-E). In contrast to
Lgr5, Lrig1 is more widely expressed, with moderate
levels of expression extending into cluster 0, where Lgr5
expression is absent (Additional file 2: Figure S5C). This
is consistent with two independent studies in the small
intestine and colon, where Lrig1 was expressed in many
crypt cells, while the highest levels of Lrig1 expression
were observed in Lgr5+ stem cells [27, 28]. Loss of Lrig1
caused crypt expansion in Lrig1-knockout animals, and
three-dimensional intestinal spheres derived from
Lrig1-knockout animals matured into budding organoids
in culture without exogenous ErbB ligands in contrast to
wild-type samples [27]. Intriguingly, Lrig1 was shown to
mark a population of ISCs that expand and repopulate
the colonic crypt upon tissue damage [28], although a
distinction was not made regarding whether this could
be due to the subpopulation of Lrig1+ cells that are also
Lgr5+.
Of note, two clusters that remain unannotated (cluster

11, enriched for Reln and Prox1; cluster 14, enriched for
Nkain2 and Csmd1) may represent rare or previously
unidentified cell types (Additional file 2: Figure S5D).
For example, Reln and Prox1 are known for their roles

in neuronal migration [47, 48] and neurogenesis [49,
50]; we, therefore, speculate that they may mark a per-
ipheral neuronal cell type in cluster 11.

Colon engrafted iEPs transition through an intestinal
stem cell state
To identify iEPs within the single-nucleus landscape of
the engrafted colon, we extracted and processed CellTag
Indexes across all single transcriptomes. Both CellTagA
and CellTagB barcodes were detected in all three
post-engraftment samples (Additional file 1: Figure
S6A), with clear expression differences between tags
(Additional file 2: Figure S6B). Projecting CellTagged
iEPs onto the UMAP plot revealed their enrichment in
cluster 4 (Fig. 3a, b), while a moderate number of Cell-
Tagged cells are found in intestinal epithelial clusters
such as cluster 0 (Lgr5− Lrig1+ ISCs) and cluster 1
(Lgr5+ ISCs), expressing ISC markers Lgr5 and Lrig1
(Fig. 3c, d, Additional file 2: Figure S6C).
Engrafted tissue was harvested in early stages of intes-

tinal regeneration, with the epithelium still undergoing
active repair. We chose this time point in an effort to
understand the mechanism of iEP engraftment. Indeed,
in line with this early regeneration period, cluster 4
likely represents cells in the early stages of engraftment
and repair, characterized by expression of both intestinal
and mesenchymal markers (Additional file 2: Figure
S5D&E). Notably, Grip1, an adaptor protein implicated
in maintaining the epidermal-dermal junction via the
Fras1/Frem1 complex [51, 52], is among the list of
marker genes for cluster 4, suggesting that cluster 4
might represent an iEP engraftment mechanism via ad-
hesion to the basement membrane. We next focused on
the proportions of fully reprogrammed EcadHigh iEPs (la-
beled by CellTagA) and dead-end EcadLow iEPs (labeled
by CellTagB) engrafting the intestine. We found that
0.687% ± 0.214% of engrafted cells were derived from re-
programmed iEPs whereas 0.413% ± 0.113% of engrafted
cells were derived from dead-end iEPs (p = 0.06; Add-
itional file 2: Figure S6D). This low percentage was ex-
pected given that we aimed to capture a broad range of
intestinal engraftment to provide an unbiased assess-
ment of engraftment.
In our previous study, we observed that iEPs are cap-

able of long-term (7 weeks post-transplant), functional
engraftment, where entire crypts are repopulated by
iEP-derived cells [24]. At that time, we speculated that
iEPs transition through an intestinal stem cell state to
support long-term engraftment. Here, considering our
hypothesis that fully reprogrammed EcadHigh iEPs are re-
sponsible for this long-term engraftment, we performed
a randomized test that we previously developed to assign
statistical significance in cluster occupancy [18]. Here,
we applied this approach to determine whether
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reprogrammed and dead-end iEPs were more likely to
associate with any particular cluster of intestinal cells.
We did not include cluster 4 in this analysis as the co-
lonic epithelium is in the early stages of regeneration,
where we consider cells in this cluster to be superficially
attached, and not all these cells will eventually integrate
into the recovered epithelium. Our randomized test re-
vealed that reprogrammed EcadHigh/CellTagA cells are
significantly more likely to occupy cluster 0 (Lgr5−

Lrig1+ ISCs, p = 4.03 × 10− 5) and cluster 1 (Lgr5+ ISCs,
p = 9.83 × 10− 3), while CellTagged reprogrammed and
dead-end populations are depleted from non-epithelial
cell clusters (Fig. 3e). Together, this suggests that Ecad-
High/CellTagA cells integrate into the regenerating epi-
thelium via an intestinal stem cell intermediate.
Expression of the ISC markers Lgr5 and Lrig1 in
engrafted iEPs supports this observation (Additional file 2:
Figure S6C). As reported previously, Lrig1+ ISCs expand
and repopulate the colonic crypt upon tissue damage
[28], pointing to a potential mechanism of long-term iEP
engraftment in the mouse colon.
To further investigate engraftment mechanics, we con-

ducted RNA velocity analysis [53] to reveal the transcrip-
tional kinetics of engrafting iEPs. We reasoned that if
these iEPs were differentiating towards intestinal lineages,
then transcript kinetics from early iEP engraftment cluster,
cluster 4, should show velocity vectors towards annotated
intestinal clusters. Indeed, RNA velocities projected onto
the UMAP clusters show cluster 4 velocities towards the
main intestinal clusters (Fig. 3f, Additional file 2: Figure
S6F&G). Specifically, velocity vectors from the subset of
CellTagged cells show vectors originating from cluster 4
towards cluster 0, and from the intestinal stem cell pole of
the main intestinal clusters towards the more differenti-
ated pole of enterocytes (Fig. 3g). Taken together, here, we
have demonstrated the utility of CellTag Indexing to
multiplex EcadHigh and EcadLow iEPs for transplantation
into the mouse large intestine, suggesting that iEPs transi-
tion through a Lgr5+ and/or Lrig1+ stem cell state to en-
graft and repopulate the colonic epithelium, resolving
speculation about their engraftment route. Our findings
are consistent with previous reports of iEP differentiation
potential and position CellTag Indexing as a powerful
long-term tracking and multiplexing tool for scRNA-seq.

Discussion
Here, we present a broadly applicable toolbox, CellTag
Indexing, to label biological samples for single-cell ana-
lysis, where each sample is genetically tagged with a pre-
defined lentiviral GFP barcode to mark its sample
identity. We demonstrate that CellTag Indexing does not
perturb cell physiology, and validate the utility of our
multiplexing approach via species mixing, showing that
it can be used to accurately multiplex samples for
scRNA-seq, with subsequent demultiplexing at high effi-
ciency. We showcase the unique feature of this heritable
labeling approach, by tracking cells in a competitive in
vivo transplant setting, revealing reprogrammed cell po-
tential and mechanisms of engraftment while providing
internal controls to mitigate both biological and tech-
nical batch effects. CellTag multiplexing is complemen-
tary to current strategies based on transient cell surface
interactions for labeling cells immediately prior to
scRNA-seq, yet unique in that CellTag barcodes are sta-
bly integrated and heritable through cell division. The
flexible timing of lentiviral barcode transduction,
coupled with stable barcode expression, makes our sys-
tem uniquely suitable for long-term tracing experiments
and transplant models where temporary tags would not
be retained.
CellTag Indexing offers the advantages of minimized

technical variation by experimental design, the ability to
multiplex biological samples for competitive transplant,
broad compatibility with various cell types and
single-cell technologies, long-term barcode expression,
streamlined workflow and library preparation, reduced
sequencing cost, and straightforward demultiplexing.
CellTag Indexing is designed for broad applications; its
use of lentivirus as a labeling method represents a com-
monly used and accessible biological tool with minimal
setup costs and reagent requirements. As lentivirus can
transduce both dividing and non-dividing cells, CellTag
barcodes can be introduced into a wide variety of cell
types. In terms of estimating labeling efficiency, CellTag
Indexing conveniently utilizes GFP as a barcode carrier,
which can act as a visual readout for transduction effi-
ciency. Generally, CellTag transcripts are abundantly
expressed and can be optionally amplified during library
preparation to further increase the detection rate.

(See figure on previous page.)
Fig. 3 CellTag Indexing revealed iEP engraftment and transition through an intestinal stem cell fate. a CellTags identified engrafted iEPs enriched
in cluster 4 (early engraftment iEPs) and the main intestinal epithelial clusters. b Density heatmap confirms enrichment of CellTagged cells in the
early engraftment iEP cluster and the main intestinal epithelial cell clusters. c, d Stacked bar plots of CellTagged cells show enrichment in clusters
0, 1, and 4. e Permutation test of cluster enrichment or depletion for each CellTag in intestinal clusters show statistically significant enrichment of
EcadHigh/CellTagA cells in cluster 0 (Lgr5− Lrig1+ ISCs, p = 4.03 × 10− 5) and cluster 1 (Lgr5+ ISCs, p = 9.83 × 10− 3). y-axis, negative log10 of p value
for cluster enrichment, log10 of p value for cluster depletion. Dotted lines correspond to a p value of 0.05. f RNA velocity analysis shows velocity
vectors from iEPs towards Lgr5− Lrig1+ ISCs and from the ISC clusters towards the differentiated enterocyte clusters. g Subset of velocity vectors
of CellTagged cells confirm transcriptional kinetics of engrafted iEPs in the direction towards intestinal stem cells
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Importantly, CellTag transcripts can be recovered from
the nucleus, extending this approach to single-nucleus
RNA sequencing. Furthermore, cells labeled with Cell-
Tag Indexes can be cultured and used in experiments
prior to collection for sequencing, for example in the
competitive transplant assay we demonstrated here
where tagged samples act as internal controls for each
other to minimize unwanted biological variation. This is
complementary to existing labeling methods that utilize
cell/nuclear surface chemistry or transient transfection
for temporary tagging [7–12], where the labels would be
progressively lost in vitro and in vivo. Additionally, as a
future application, we expect that CellTag multiplexing
will be compatible with single-genome-based assays such
as single-cell ATAC-seq. In summary, CellTag Indexing
is a broadly applicable tool complementary to existing
methods for cell multiplexing and tracking, providing a
diverse panel of experimental and analytical strategies.

Methods
Cell culture
Mouse embryonic fibroblasts were derived from the
C57BL/6 J strain (The Jackson Laboratory 000664).
HEK293T and mouse embryonic fibroblasts were cul-
tured in Dulbecco’s modified Eagle medium (Gibco) sup-
plemented with 10% fetal bovine serum (Gibco), 1%
penicillin/streptomycin (Gibco), and 55 μM
2-mercaptoethanol (Gibco). HAFTL pre-B cells were
cultured in RPMI1640 without phenol red (Lonza) sup-
plemented with 10% charcoal/dextran-treated FBS
(Hyclone) and 55 μM 2-mercaptoethanol (Gibco) [19].

Generation of iEPs
Mouse embryonic fibroblasts were converted to iEPs as
previously described [23, 24]. Briefly, fibroblasts were pre-
pared from E13.5 embryos, cultured on gelatin, and seri-
ally transduced every 12 h with Hnf4α-t2a-Foxa1
retrovirus for five times over the course of 3 days, followed
by culture on collagen in hepato-medium, which is
DMEM:F-12 (Gibco) supplemented with 10% FBS, 1%
penicillin/streptomycin, 55 μM 2-mercaptoethanol, 10
mM nicotinamide (Sigma-Aldrich), 100 nM dexametha-
sone (Sigma-Aldrich), 1 μg/mL insulin (Sigma-Aldrich),
and 20 ng/ml epidermal growth factor (Sigma-Aldrich).

CellTag barcodes
CellTag lentiviral constructs were generated by introdu-
cing an 8-bp variable region into the 3′ UTR of GFP in
the pSmal plasmid [54] using a gBlock gene fragment
(Integrated DNA Technologies) and megaprimer inser-
tion (https://www.addgene.org/pooled-library/morris-
lab-celltag/). Individual clones were picked and Sanger
sequenced to generate predefined barcodes. The specific
CellTag barcodes used in this manuscript are TGCT

ATAT (CellTagA), GTTGGCTA (CellTagB), AGTT
TAGG (CellTagC), GGTTCACA (CellTagD), and TAGA
AAGC (CellTagE). These constructs are available from
Addgene: https://www.addgene.org/browse/article/
28197603/.

Lenti- and retrovirus production
Lentiviruses were produced by transfecting HEK293T
cells with lentiviral pSMAL vector and packing plasmids
pCMV-dR8.2 dvpr (Addgene plasmid 8455) and
pCMV-VSV-G (Addgene plasmid 8454) using
X-tremeGENE 9 (Sigma-Aldrich). Viruses were collected
48 and 72 h after transfection. Retroviruses were simi-
larly produced, with retroviral pGCDNSam vector and
packaging plasmid pCL-Eco (Imgenex).

CellTag transduction
CellTag virus-containing supernatant collected from
virus-producing HEK293T cells was kept at 4 °C and
used within 1 week. Prior to transduction, protamine
sulfate (Sigma-Aldrich) was added to the viral solution
to a final concentration of 4 μg/ml. Cells were aspirated
of media, and the CellTag virus was added to the cells
for a 24-h transduction period. This transduction was
repeated as needed, for a total of 48 h for HEK293T cells
and 72 h for MEFs in the 5-tag species mixing experi-
ment and 72 h for iEPs.

Immunostaining and quantification
Transduced HEK293T and MEFs were cultured on a
four-chamber culture slide (Falcon) for 24 h prior to fix-
ation in 4% paraformaldehyde and staining in 300 nM
DAPI in PBS. The slide was then mounted in ProLong
Gold Antifade Mountant (Invitrogen). Images were ac-
quired on a Nikon eclipse Ts2 inverted microscope. For
automatic quantification, images of CellTagged HEK
293T and MEF were processed with a custom python
script to count GFP-positive/negative cells. The propor-
tion of GFP-positive cells was calculated from DAPI and
GFP images. First, DAPI images were transformed into
binary images by thresholding fluorescent signal. The
threshold values were determined by the Otsu method.
The binary nucleus image was processed by watershed
segmentation to separate individual cell areas com-
pletely. Inappropriately sized objects were filtered to re-
move noise and doublet cells. The intensity of the GFP
signal per individual cell area was then quantified to dis-
tinguish between GFP-positive cells and GFP-negative
cells. These processes were run with Python 3.6.1 and its
libraries: scikit-image 0.13.0, numpy 1.12.1, matplotlib
2.0.2, seaborn 0.8.1, jupyter 1.0.0.
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Mouse model of colonic mucosal injury
Using a previously described procedure [25], we gener-
ated colonic epithelial injury with modifications as
followed: C57BL/6 mice were anesthetized with inhaled
isoflurane. A custom-made syringe catheter (consisted of
3-ml syringe (BD #309657), Luer lock 26-gauge 1/2″
dispensing needle (GraingerChoice #5FVG9), and poly-
ethylene tubing (Scientific Commodities, #BB31695-PE/
2) cut to approximate 5 cm in length and affixed to the
needle) was used to deliver approximately 1 mL of PBS
enema intraluminally via the anal canal, followed by gen-
tle abdominal massage to promote excretion of excess
fecal matter. The luminal space was then filled with 0.5
mL of 500 mM EDTA/PBS using the custom syringe
catheter over the course of approximately 30 s. Mechan-
ical abrasion was performed with Proxabrush cleaners
(Sunstar #872FC) dipped in 500 mM EDTA/PBS,
inserted approximately 1 cm into the colon, with 30 ro-
tational movements to gently scratch the luminal
surface.

iEP characterization and transplantation
Eight-week iEPs were stained with mouse
E-cadherin-APC antibody (10 μL per one million cells,
R&D Systems, FAB7481A) and sorted on a modified
Beckman Coulter MoFlo into EcadHigh and EcadLow pop-
ulations. Sorted iEPs were plated and cultured as above.
Colony formation assay was performed as previously de-
scribed [18]. For colon engraftment, CellTagged EcadHigh

and EcadLow iEPs were digested into single-cell suspen-
sions. For each mouse, 0.5 million of EcadHigh iEPs (Cell-
TagA) and 0.5 million of EcadLow iEPs (CellTagB) were
pooled and resuspended in 50 μL of 10% Matrigel on ice.
A total of 1 million iEPs was instilled into the colonic
lumen of each mouse by using the custom syringe cath-
eter, after which the mouse was held vertically
head-down for approximately 2 min to prevent immedi-
ate excretion of the infused cell suspension.

Single-nucleus RNA-seq procedure
Single-nucleus extraction from tissue was performed as
previously described [55]. Briefly, engrafted colonic tis-
sues were finely minced with a razor then transferred to
a Dounce tissue homogenizer (Kimble Chase
KT885300-0002) in 2 mL of ice-cold Nuclei EZ Lysis
buffer (Sigma #N-3408) supplemented with protease in-
hibitor (Roche #5892791001) and RNase inhibitors (Pro-
mega #N2615, Thermo Fisher Scientific #AM2696). The
tissue was ground 20–30 times with the loose pestle.
The homogenate was filtered through a 200-μm cell
strainer (pluriSelect #43-50200) then transferred back to
the Dounce homogenizer, ground with the tight pestle
10–15 times. The homogenate was incubated on ice for
5 min with an additional 2 mL of lysis buffer, then

filtered through a 40-μm cell strainer (pluriSelect
#43-50040) and centrifuged at 500g for 5 min at 4 °C.
The incubation and centrifugation steps were repeated
one time, followed by resuspension Nuclei Suspension
Buffer (1× PBS, 1% BSA, 0.1% RNase inhibitor) and fil-
tering through a 5-μm cell strainer (pluriSelect
#43-50005). The nuclei were then loaded onto the 10x
Chromium Single Cell Platform for encapsulation and
barcoding.

scRNA-seq procedure
10x Chromium Single Cell 3′ Library & Gel Bead Kit,
10x Chromium Single Cell 3′ Chip kit, and 10x Chro-
mium i7 Multiplex kit (10x Genomics) were used ac-
cording to the manufacturer’s protocols. Libraries were
quantified on the Agilent 2200 TapeStation and se-
quenced on Illumina HiSeq 2500.

CellTag demultiplexing
Details of the CellTag Classifier can be found on the
GitHub repository (https://github.com/morris-lab/Cell-
Tag-Classifier) [22]. Briefly, the CellTag count matrix is
extracted as previously described [18] (outlined at
https://github.com/morris-lab/CellTagWorkflow). Cell-
Tag sequences are collapsed using Starcode with the
sphere clustering algorithm [56], where CellTags with
similar sequences were collapsed to the centroid Cell-
Tag. The collapsed CellTag count matrix is
log-normalized, from which the most highly expressed
CellTags across cells are selected. Then, a dynamic bina-
rization method is applied to assess the existence of each
CellTag in each cell, where a “0” suggests insignificant/
unobservable signals and a “1” indicates a significant sig-
nal. Specifically, for each CellTag, we compute the dens-
ity function D of its expression across all cells. Then, for
each cell, we draw 1000 samples from the density func-
tions D and calculate the proportion P of samples that
are greater than or equal to the expression value being
tested:

P ¼ II S≥Cij
� �

Length of S

where Cij = expression value of CellTag j in cell i and
S = 1000 sample drawn from the density curve of Cell-
Tag j, Dj. This process is iterated for at least 50 times to
make sure that the samples are representative of the
overall density. The cells are then classified to their cor-
responding CellTag based on the proportions calculated
above by finding the overall minimum in each propor-
tion matrix. The uniqueness of the minimum does not
eliminate the probability for the cell to be a multiplet.
Hence, for cells with a unique minimum, we examine
the pair-wise differences between the minimum tag and
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other tags using a baseline cutoff of 0.238 learned via
benchmarking and training against orthogonal 10x clas-
sification. Finally, the number of multiplets identified
from our pipeline is compared to the expected number
derived from 10x Genomics’ Single Cell 3′ Reagents Kit
v2 User Guide Rev. E (multiplet % = 0.0007589 × number
of cells recovered + 0.0527214). If the number of multi-
plets exceeds the expected number, the optional multi-
plet checkpoint is implemented, where the proportion
matrix is sorted such that the most likely multiplets are
identified using a cutoff at the quantile of (1.5 × ex-
pected num/multiplet). The remaining cells are then
classified to their singlet identities.

scRNA-seq analysis
The Cell Ranger v.3.0.1 pipeline (https://support.10xge-
nomics.com/single-cell-gene-expression/software/down-
loads/latest) was used to process data generated using
the 10x Chromium platform. For alignment of the
single-nucleus RNA-seq data, a modified “pre-mRNA”
mm10 reference was used to include reads aligned to in-
trons. The R package Seurat [5] (version 3) was used for
data processing and visualization. For the iEP dataset,
we removed cells with a low number of genes detected
(< 200), cells with a high number of UMI detected (>
100,000), and cells with a high proportion of UMI
counts attributed to mitochondrial genes (> 20%). The
filtered expression matrix was then normalized and
scaled to remove unwanted sources of variation driven
by the number of detected UMIs and mitochondrial
gene expression. Linear dimension reduction was per-
formed, followed by canonical correlation analysis to in-
tegrate independent biological replicates, then clustering
and visualization via UMAP [20].

Assessing cluster occupancy by randomized testing
A randomized test that we developed previously [18]
was used to identify clusters that are significantly occu-
pied by EcadHigh/EcadLow iEPs. In brief, we calculated
the proportions of CellTagA and CellTagB cells that fall
into each cluster, serving as the null percentages for the
two tags. In particular, let n be the number of cells with
a CellTag. Let s be the number of cells without this tag.
The two were then pooled together from which we drew
n random samples without replacement for at least (n +
s)/n times such that every possible ending group can be
captured. With each sample drawn, the occupancy of n
sampled cells in each cluster was calculated. A back-
ground proportion distribution was then generated
based on this resampling result. We then used the
distributions to compute the likelihood of having the
null percentage or higher. Using a p value of < 0.05,
we identified the clusters that are enriched for each
CellTag. This randomized test was performed using a

python script. We exclude cluster 4 in this test as it
represents the early engraftment stage. Cell number
tested for CellTagA equals 66. Cell number tested for
CellTagB equals 46.

RNA velocity analysis
RNA velocity was analyzed with Velocyto.py (version
0.17.17). The analysis was done according to the web in-
struction; http://velocyto.org/velocyto.py/. For the input
of single-cell RNA-seq data, the output files of 10x Cell
Ranger pipeline were used. The single-cell RNA-seq
reads for each sample were converted into read-counts
after distinguishing a spliced or unspliced transcript.
This process was done with command line velocyto API,
and final products were saved as loom files. Next, the
loom files of each scRNA-seq sample were merged into
a single loom file. The merged loom file was processed
with velocyto python API to create the velocyto object.
Then, the velocyto object was integrated with UMAP di-
mensional reduction data and CellTag data which were
produced in the scRNA-seq analysis with Seurat and
CellTag demultiplexing process. Next, the velocyto ob-
ject was subjected to quality check and filtering process.
Genes were filtered by the mRNA detection level
(min_expr_counts = 40, min_cells_express = 30). After
feature selection by a velocyto function, the data were
normalized by total molecule count. Then, velocyto ob-
ject was subjected to a series of final data processing
process: PCA, k-nn-based imputation, velocity estima-
tion, and shift calculation. Finally, the vectors estimated
by RNA velocity were projected on the UMAP graph.
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