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Abstract

Group formation is a quite ubiquitous phenomenon across different animal species, whose

individuals cluster together forming communities of diverse size. Previous investigations

suggest that, in general, this phenomenon might have similar underlying reasons across the

interested species, despite genetic and behavioral differences. For instance improving the

individual safety (e.g. from predators), and increasing the probability to get food resources.

Remarkably, the group size might strongly vary from species to species, e.g. shoals of

fishes and herds of lions, and sometimes even within the same species, e.g. tribes and fami-

lies in human societies. Here we build on previous theories stating that the dynamics of

group formation may have evolutionary roots, and we explore this fascinating hypothesis

from a purely theoretical perspective, with a model using the framework of Evolutionary

Game Theory. In our model we hypothesize that homogeneity constitutes a fundamental

ingredient in these dynamics. Accordingly, we study a population that tries to form homoge-

neous groups, i.e. composed of similar agents. The formation of a group can be interpreted

as a strategy. Notably, agents can form a group (receiving a ‘group payoff’), or can act indi-

vidually (receiving an ‘individual payoff’). The phase diagram of the modeled population

shows a sharp transition between the ‘group phase’ and the ‘individual phase’, characterized

by a critical ‘individual payoff’. Our results then support the hypothesis that the phenomenon

of group formation has evolutionary roots.

Introduction

The dynamics of group formation constitutes a topic of interest for a wide number of scien-

tists, spanning from anthropologists to zoologists [1–7], and from social psychologists to

economists [8–15]. In general, the formation of a group can be viewed as an emergent phe-

nomenon [10, 16] where a number of individuals cluster together for performing one or more

actions. Accordingly, the lifespan (as well as other characteristics) of a group can vary from

case to case, and individuals can change group over time [17–19]. In an ecological system,

being part of a group may allow to receive benefits [18], both as predator and as prey. For

instance, the former can be advantaged during a hunt, e.g. surrounding a prey, while the latter
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can improve her/his safety staying inside a group [20]. In the case of humans, the previous

example can be considered outdated. However, we should remind ourselves that millions of

years ago, and maybe even in more recent times, humans have played both roles (i.e. predators

and preys) in their ecosystem. Different studies suggest that the formation of social groups

has evolutionary roots [1, 21–26], shared among animals belonging to different species. For

instance, we can observe groups of fishes (generally named as shoals), of mammalians (named

herds or families/tribes in the case of humans), and of birds (named flocks) [22].

What differs, from species to species, is the average size of a group [27–31], e.g. shoals are

usually much bigger than herds, herds are bigger than families, and so on and so forth. In addi-

tion, even within the same species, groups can be of different size. The dynamics underlying

their formation are of interest also beyond the domain of evolutionary biology, e.g. we can

mention sport teams, business organizations [11], and scientific communities. Even if the

motivations that lead to the formation of this kind of groups can be quite different from those

that trigger the emergence of groups in nature, in both cases the individuals cluster together

driven by a rational mindset, i.e. aimed to increase their wellness (or wealth). Therefore we

believe that the framework of Evolutionary Game Theory (EGT hereinafter) [32–45] can be a

suitable choice for studying this phenomenon, since it embodies both the rationality and the

evolutionary aspects of group formation [46, 47]. In addition, we consider important to evalu-

ate the role of similarity. In particular, the heterogeneity of a group can in principle constitute

an advantage, or a disadvantage, depending on the context of reference (see for instance [48,

49]). Indeed, heterogeneity might refer to different aspects, as physical traits, genetic makeup,

or skills. Previous studies (e.g. [50]) reported that social networks show a positive value of

assortativity [51], i.e. individuals are more likely to connect with their own similar whereas,

according to an entropic principle [50], other kinds of complex networks [52] are more likely

to be disassortative. Thus, in the proposed model, we analyze an agent population that forms

and breaks groups over time, according to the gain agents receive when act in group or indi-

vidually. In particular, the gain comes from the difference between benefits and costs, in taking

a particular action (i.e. staying in group, or acting individually). The gain achieved for being

part of a group is defined ‘group payoff’, while that achieved by acting singularly is defined

‘individual payoff’. In addition, following the insights reported in [50], the ‘group payoff’ is

maximized for homogeneous groups. Numerical simulations indicate that for each group size

G, there is a critical ‘individual payoff’, that separates the ‘group phase’ from the ‘individual

phase’ of a population, i.e. the clustering in groups and the retention of independent members.

Moreover, results show that forming big groups is more difficult than forming small groups.

To conclude, in our view, the achieved outcomes support the hypothesis of an evolutionary

mechanism underlying the formation of groups in nature. Notably, we speculate that each ani-

mal species has its ‘individual payoff’, i.e. a kind of gain its individuals receive when they act as

single members, and that this parameter might depend also on the considered environment.

In addition, in the case of human beings, we suppose that the ‘individual payoff’ might be

related also to socio-cultural conditions, leading to the formation of very small groups in the

modern civilization, and to the formation of bigger groups (e.g. tribes) in more archaic systems

(see [53–55]). Notably, two important differences between the modern civilization and the

archaic ones are the living environment and the cultural structure (e.g. relations, laws, etc) of a

society, both making a city more suitable than a forest for individual life styles.

1 Mathematical model

In the proposed model, we consider a population with N agents that can form groups of size G.

Each agent is represented by a spin vector S, of length L, e.g. for L = 6 the i-th agent can be
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represented as Si = [+1, −1, −1, −1, +1, +1]. Here, each entry of the spin vector can be viewed

as a feature, so the homogeneity of a group is measured considering the distance between the

spin vectors of its members. We remark that, in this context, we use the concept of feature

with its more general meaning, since it may vary from species to species. For instance, for

many animals (including humans) a feature can be a physical trait, and in the case of humans

it may represent also a hobby, or a specific skill, and so on (i.e. not only physical features). The

dynamics of the proposed model is very simple. At each time step a number G of agents, not

belonging to any group, is randomly selected. So, selected agents compute the potential payoff

they could gain acting together (depending on the homogeneity of the potential group). In par-

ticular, the ‘group payoff’ πg decreases when members have different spin vectors. Then, the

value of πg is compared to that of πi, i.e. the payoff that the same agents would gain acting indi-

vidually. In doing so, the probability of forming a group (of size G), composed of the selected

agents, depends on πi and πg, and reads

WG ¼ 1þ exp
pi � pg

K

h i� �� 1

ð1Þ

where the constant K parametrizes the uncertainty in taking a decision (e.g. forming a group).

By using K = 0.5, we implement a rational approach [35, 56]. After processing a new potential

group, the model evaluates if a previous one, randomly selected among those formed at previ-

ous time steps, might be broken. The breaking process is performed according to the same

equation adopted to generate a group (i.e. Eq 1). Fig 1 provides the illustration of Eq 1 for

some fixed values of πg. Notably, we observe two different phases that can be reached by the

population, i.e. ‘group phase’ and ‘individual phase’. The former implies that agents are able to

form and to conserve groups of size G, while the latter implies that agents prefer to act as single

individuals (i.e. breaking the groups after a while). It is now worth to clarify how to compute

the group payoff in the proposed model. As mentioned before, the homogeneity of a group is

computed according to the spin vectors of its members. Accordingly, the group payoff πg is

defined as the length of the normalized average sum of each spin vector (composing the con-

sidered group). In particular, since each entry can be positive (i.e. +1) or negative (i.e. −1), the

absolute value of the average of a single spin is considered. The ‘group payoff’ for a group of

size G and spin vectors of length L reads:

pg ¼
1

L
1

G

XL

j¼1

j
XG

i¼1

vijj ð2Þ

with vi elements of the spin vector of each agent. Additionally, it is worth noting that the range

of πg is [0, +1], while that of the ‘individual payoff’ πi spans the interval [−1, +1]. The latter

allows to represent scenarios where acting individually can be both very risky (i.e. πi = −1),

and very convenient (i.e. πi = +1). At the same time, we assume that acting in group never

leads to a negative payoff. Finally, we remind that during each simulation, the value of πi

remains constant. Summarizing, the proposed model can be described as follows:

1. At t = 0 generate a population providing each agent with a random spin vector;

2. While the number of time steps is smaller than T:

3. __ Randomly select G free agents (i.e. not belonging to other groups);

4. __ Compute the probability WG (see Eq 1), i.e. selected agents form a new group;

5. __ Randomly select a group among those previously formed, and compute the probability

to break it (by Eq 1);
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Since we consider an asynchronous dynamics, i.e. only a subset of agents plays at a given time

step, the value of T must be big enough in relation to the population size N.

Now we show results of numerical simulations (the source code for reproducing our results

is available at [57].), performed in a population with N = 1000 agents, and considering differ-

ent conditions related to the ‘group payoff’ and to the ‘individual payoff’ (i.e. πi in the range

[−1, +1] and πg in the range [0, +1]). Moreover, we study the dynamics of the population for

different lengths of the spin vector characterizing our agents. Due to the value of N, we ana-

lyzed the emergence of groups of the following size: [2, 4, 5, 10, 25, 50, 100]. Fig 2 illustrates

the phase diagram of our population. Fig 3 indicates the density of the groups in function of

the ‘individual payoff’, on varying the length of the spin vectors L. It is then possible to identify

the critical thresholds p̂i , on varying the group size G. For instance, in the case L = 3, we

observe p̂i ¼ 0:55 for G = 2, p̂i ¼ 0:15 for G = 10, and p̂i ¼ 0:05 for G = 25. Then, we evaluate

if the length L (i.e. the length of the spin vectors) affects the outcomes of the model. As

reported in Fig 4, it is interesting to observe that the density of groups (at equilibrium) is not

affected by L. Eventually, we analyze the average number of breaking groups in the considered

time interval ΔT —see Fig 5. In particular, we consider different group sizes G, and lengths L,

on varying the individual payoff.

Fig 1. Probability distribution WG in function of the individual payoffπi, as defined in Eq 1, considering four different values ofπg

(see the legend). The black dotted line separates the ‘group phase’ from the ‘individual phase’, i.e. the values of WG supporting the

conservation of groups and those that lead to the emergence of individual behaviors.

https://doi.org/10.1371/journal.pone.0187960.g001
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2 Discussion

In this work we studied the phenomenon of group formation using the framework of EGT. It

is worth emphasizing that that one of the purposes of this investigation is to show that an

abstract physical model can be used as a framework to study the interplay between evolution

and group formation in nature. Notably, here we focus on the dynamics rather than on the

correspondence between modeled agents and their real world counterpart, in the same way in

which Ising spins are used to model large scale brain dynamics. In particular, we introduce a

simple model where agents evaluate whether clustering together or acting individually, accord-

ing to the payoff they receive taking one of these two actions. Under the assumption that the

‘group payoff’ (i.e. the gain received by forming a group) increases while increasing the homo-

geneity of a group, we study both the emergence and the breaking of groups. Even if further

investigations would be required in order to evaluate the outcomes on varying the definition

of the ‘group payoff’, as well as considering the group heterogeneity as dominant factor, we

suppose that the achieved results can be considered general enough for envisioning some

interesting speculations, related to the evolutionary aspects of group formation in nature.

Notably, observing that groups form in species ranging from ants to birds, and from lions to

Fig 2. Phase diagram of the population, with groups of size G versus the ‘individual payoff’πi, on varying the length of the spin

vectors L. Yellow indicates the ‘group phase’, while Blue the ‘individual phase’. a L = 3 and b L = 10. The pictorial representation on the left

aims to show groups of different size G, that we can observe in nature. Results have been averaged over different simulation runs.

https://doi.org/10.1371/journal.pone.0187960.g002

Fig 3. Density of groups ρg in function of the ‘individual payoff’ πi, on varying the length of the spin vectors L. a) L = 3. b) L = 10. c)

L = 25. Results have been averaged over different simulation runs.

https://doi.org/10.1371/journal.pone.0187960.g003
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human beings, we agree with the hypothesis that this process has evolutionary roots [6, 22]. In

addition, we suggest that the ‘individual payoff’ is a relevant parameter representing the

ensemble of genetic traits, skills, living environments, and even socio-cultural conditions one

can observe in real systems. For instance, we hypothesize that being part of a group is more

advantageous in a hostile environment than in a relaxed one, as suggested by some theories

related to the formation of shoals of fishes. So, even considering the same species, some indi-

viduals act in very small groups, while others in bigger ones. For example, in the modern civili-

zation [53, 55], small groups named families are, nowadays, composed of very few members,

while tribes living in wilder environments are more copious. We emphasize that the proposed

model suggests the existence of a critical threshold in the ‘individual payoff’, leading to a sharp

transition in the phase diagram (see Fig 2), from a ‘group phase’ achieved for low values of πi

to an ‘individual phase’ achieved for high values of πi. Notably, for high values of the critical πi,

group formation is scarcely observed. Here, ‘group phase’ and ‘individual phase’ correspond to

the two states that the population can achieve at equilibrium, i.e. with agents forming groups

or acting individually. In addition, it is worth clarifying that the critical threshold of πi, as

shown in Fig 2, seems to depend on the size of the groups G. Notably, the smaller the value of

Fig 4. Density of groups ρg in function of the ‘individual payoff’πi, for different spin vectors of length L, on varying the group

size G. a) G = 2. b) G = 10. c) G = 25. d) G = 50. Results have been averaged over different simulation runs.

https://doi.org/10.1371/journal.pone.0187960.g004
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G, the higher the critical πi. Eventually, results reported in Fig 5 confirm previous findings,

and provide a further detail. In particular, analyzing the average number of breaking groups

< B(Δt)> in the considered time interval, we observe that small groups are more robust than

big ones, and the maximum number of breaking groups is in correspondence with the critical

threshold p̂i. Furthermore, for very high ‘individual payoffs’, big groups are more robust than

small ones (i.e. the opposite of the case with low πi). Therefore, in agreement with previous

investigations (e.g. [58, 59]), our results confirm the existence of a relation between the size of

groups and the critical ‘individual payoff’. Before concluding, we deem of interest to provide

some observations on the proposed model and on the achieved results, from the point of view

of statistical physics. Our agents are characterized by a spin vector, and interact forming and

breaking groups. Since the process of formation (and breaking) is faster than a thermalization

process, the spin variables can be considered as quenched. In a real scenario, after a while,

members belonging to the same group can learn from each other, thus a kind of ‘thermaliza-

tion’ may be observed (i.e. agents belonging to the same group can become similar). On the

other hand, allowing transitions from a disordered phase to an ordered one within one group,

Fig 5. Average number of breaking groups < B(ΔT) > in the time intervalΔT. The legend indicates, for each line, the considered group

size G. a) Results achieved with L = 3. b) Results achieved with L = 25. c) Comparison between results achieved with L = 3 and L = 25.

Results have been averaged over different simulation runs.

https://doi.org/10.1371/journal.pone.0187960.g005
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might prevent breaking processes. Further investigations might address this point, e.g. for

studying a trade-off between converging time (i.e. thermalization) and number of breaking

groups. Furthermore, we wish to focus on the role of the ‘individual-payoff’. In our view, the

latter plays a role comparable to that of the temperature in the Ising model. Notably, for low

temperatures the correlation length increases (i.e. spins converge to the same value), while for

high temperatures the correlation length becomes very small. In our model, even if we cannot

refer to the concept of correlation length due to the quenched state of spins, low values of πi

allow the emergence of groups (even big), while high values of πi entail the agents tend to

remain independent. Hence, even if for the reasons above reported, πi is not properly a tem-

perature and we cannot formally speak of a correlation length, we deem that the model speaks

to an interpretation of the present also in the light of statistical physics. To conclude, we high-

light that the proposed model represents an application of EGT besides its classical topics, as

the emergence of cooperation, providing results that remarkably corroborate the hypothesis

that the emergence of groups in animal species has evolutionary roots.
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