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ABSTRACT: Aims: To investigate the diagnostic value of oviduct
glycoprotein 1 (OVGP1) levels for polycystic ovary syndrome
(PCOS). Materials and Methods: Serum OVGP1 concentrations
were measured by enzyme-linked immunosorbent assay (ELISA).
Associations between OVGP1 and endocrine parameters were
evaluated by Spearman’s correlation analysis. Diagnostic capacity
was assessed by utilizing machine learning algorithms and receiver
operating characteristic (ROC) curves. Results: OVGP1 levels were
significantly decreased in PCOS patients and correlated with the
serum follicle-stimulating hormone (FSH) concentration and the
luteinizing hormone/follicle-stimulating hormone (LH/FSH)
ratio, which are predictors of PCOS occurrence. The diagnostic
value of OVGP1 combined with six signatures (LH/FSH,
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progesterone, total cholesterol, triglyceride, high-density lipoprotein cholesterol, and anti-Miillerian hormone) or three clinical
indicators has the potential to significantly improve the accuracy of diagnosing PCOS patients. Conclusion: OVGP1 enhances the

ability to diagnose when combined with clinical indicators.

1. INTRODUCTION

Polycystic ovary syndrome (PCOS) is the most common
endocrine disease in patients with ovaries of reproductive age
and seriously affects women’s reproductive health. The
prevalence of PCOS is approximately 6—12% according to the
diagnostic criteria.”” PCOS is clinically heterogeneous, there is
no single diagnostic test, and the Rotterdam criteria are usually
used to diagnose PCOS.”* At present, the biochemical
indicators for the diagnosis of PCOS include mainly anti-
Miillerian hormone (AMH), the luteinizing hormone/follicle-
stimulating hormone (LH/FSH) ratio, and progesterone
(Prog). Serum levels of AMH are significantly higher in PCOS
patients than in controls, reflecting functional ovarian reserve
and serving as a biomarker of female reproductive potential.®
The serum LH level is elevated in PCOS patients, and the LH/
FSH ratio reflects ovarian reserve function to a certain extent.’
In women with PCOS, the endometrium is often characterized
by Prog resistance.” Therefore, the clinical diagnosis of PCOS
relies mainly on these biochemical indicators, and a single
diagnostic gold standard is lacking.

The etiology of PCOS is complex, encompassing dysfunctions
in the metabolic, reproductive, and psychological domains, and
these dysfunctions are frequently accompanied by abdominal
obesity, insulin resistance (IR), obesity, metabohc irregularities,
inflammation, and cardiovascular risk factors.* '° IR can induce
dyslipidemia and lipid triads in routine clinical operations for
diagnosing IR according to the Homeostasis Model Assessment-
Insulin Resistance (HOMA-IR) (fasting plasma glucose (FPG,
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mmol/L) X fasting insulin (FINS, mIU/L)/22.5). OVGP1 is an
estrogen-induced secretory protein that plays a key role in sperm
capacitation, fertilization, and early embryonic development.''
Our previous studies confirmed that OVGP1 is a hypertensive
factor that directly promotes vascular remodeling and is involved
in regulating oxidative stress and metabolism-related path-
ways.'” Since PCOS is associated with oxidative stress and some
metabolic complications,"”'* OVGP1 levels may be related to
PCOS. However, the OVGP1 expression level and its clinical
implications in patients with PCOS have never been reported.

Therefore, in this study, we aimed to explore the value of the
serum OVGP1 level in females with PCOS and healthy controls.
Spearman’s correlation analysis and multivariate linear regres-
sion analysis were used to investigate the associations between
OVGP1 and endocrine—metabolic parameters, and logistic
regression analysis was further employed to identify the risk
factors associated with PCOS. In addition, recursive feature
elimination based on cross-validation (RFE-CV) algorithm was
used to screen existing diagnostic markers for PCOS. Six
machine learning algorithms and receiver operating character-
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Table 1. Demographics and Clinical Characteristics of Women with PCOS and Controls”?

Variable Control (n = 60) PCOS (n = 70) p-value
Age,y 27.783 £ 5.970 26.786 + 4.259 0.286
BMI, kg/m* 21.484 (19.628, 23.438) 22.547 (19.721, 27.344) 0.191
FSH, mIU/L 5.750 (4.390, 6.950) 5.530 (4.260, 6.360) 0.552
LH, mIU/L 5.500 (3.660, 9.250) 13.030 (8.060, 20.070) <0.001
LH/FSH 0.986 (0.612, 1.406) 2.446 (1708, 3.458) <0.001
PRL, ng/mL 15.450 (10.510, 19.700) 15.370 (10.990, 21.730) 0.613
E2, pg/mL 49.160 (30.870, 101.400) 47.100 (36.760, 83.360) 0.899
Prog, ng/mL 0.250 (0.140, 1.810) 0.240 (0.120, 0.480) 0.424
T, ng/mL 0.450 (0.220, 19.680) 0.510 (0.350, 0.690) 0.539
DHEAS, mol/L 8.220 + 2.689 8.377 £ 3.592 0.948
AMH, ng/mL 3260 (1.620, 4.810) 6.940 (5.050, 9.390) <0.001
Hcy, mol/L 10.970 (9.300, 12.480) 9.240 (7.150, 9.950) 0.103
HOMA-IR 1.460 (0.936, 2.392) 2316 (1.582, 3.335) <0.001
FPG, mmol/L 4.560 (3.790, 4.910) 4.800 (4.410, 5.240) 0.019
1 h PG, mmol/L 6.659 + 3.169 9.185 + 2.469 0.014
2 h PG, mmol/L 6.950 (6.760, 9.650) 6.900 (6200, 8.480) 0.506
3 h PG, mmol/L 5.163 +2.294 5.848 + 1.639 0.315
FINS, mIU/L 7.940 (6.520, 10.600) 11.090 (7.780, 15.260) <0.001
1 h INS, mIU/L 67.000 (47.900, 116.200) 105.000 (80.520, 181.700) 0.036
2 h INS, mIU/L 57.800 (51.600, 73.140) 101.700 (67.500, 164.200) 0.049
3 h INS, mIU/L 45250 (24.200, 88.950) 42440 (25.370, 81.880) 0.822
FCP, ng/mL 2.020 (1.610, 2.600) 2.400 (1.940, 3.310) 0.016
1h CP, ng/mL 9.943 + 1.845 12.619 + 3.854 0.105
2h CP, ng/mL 9.807 + 2.750 12.536 + 3.594 0.083
3 h CP, ng/mL 7.703 + 2.632 9.010 + 3.858 0.431
FT3, pmol/L 4.883 + 0.788 5.056 + 0.602 0.251
FT4, pmol/L 15.710 (14.270, 17.200) 16.690 (15.200, 18.700) 0.091
T3, nmol/L 1.760 (1.580, 1.990) 1.900 (1.690, 2.040) 0.130
T4, nmol/L 103.000 (89.900, 111.000) 104.000 (91.800, 122.700) 0.396
TSH, uIU/mL 2.190 (1.400, 3.380) 2400 (1.870, 3.420) 0.512
anti-TPO Ab, IU/mL 10.080 (6.530, 15.280) 10.900 (8.200, 11.900) 0.848
TgAb, IU/mL 16.400 (13.060, 23.200) 17.660 (16.030, 20.410) 0.538
Tg, ng/mL 13.200 (4.650,16.300) 6.980 (3.690, 10.810) 0.035
25(OH)VD, nmol/L 21.316 + 12.747 23.906 + 12.431 0.638
TC, mmol/L 4430 (3.940, 4.990) 4.380 (3.980, 5.070) 0.878
TG, mmol/L 1.085 (0.690, 1.440) 1.080 (0.680, 1.790) 0.599
HDL-C, mmol/L 1.420 (1.180, 1.680) 1.270 (1.050, 1.520) 0.009
LDL-C, mmol/L 2.680 (2.220, 3.260) 2.520 (2.240, 3.300) 0.953
TC/HDL-C 3.036 (2.658, 3.708) 3.414 (2.940, 4.188) 0.012
TG/HDL-C 0.750 (0.493, 1.073) 0.805 (0.482, 1.683) 0.336
LDL-C/HDL-C 1.826 (1.570, 2.489) 2.097 (1.709, 2.625) 0.133

“The data are expressed as the means + standard deviations or medians and quartiles. BMI: body mass index; FSH: follicle-stimulating hormone;
LH: luteinizing hormone; LH/FSH: luteinizing hormone/follicle-stimulating hormone; PRL: prolactin; E2: estradiol; Prog: progesterone; T:
testosterone; DHEAS: dehydroepiandrosterone sulfate; AMH: anti-Miillerian hormone; Hcy: homocysteine; HOMA-IR: Homeostasis Model
Assessment-Insulin Resistance index; FPG: fasting plasma glucose; 1 h PG: 1 h plasma glucose; 2 h PG: 2 h plasma glucose; 3 h PG: 3 h plasma
glucose; FINS: fasting insulin; 1 h INS: 1 h insulin; 2 h INS: 2 h insulin; 3 h INS: 3 h insulin; FCP: fasting C-peptide; 1 h CP: 1 h postprandial C-
peptide; 2 h CP: 2 h postprandial C-peptide; 3 h CP: 3 h postprandial C-peptide; FT3: free triiodothyronine; FT4: free thyroxine; T3:
triiodothyronine; T4: thyroxine; TSH: thyroid-stimulating hormone; anti-TPO Ab: antithyroperoxidase antibody; TgAb: antithyroglobulin
antibody; Tg: thyroglobulin; 25(OH)VD: 25-hydroxyvitamin D; TC: total cholesterol; TG: triglyceride; HDL-C: high-density lipoprotein
cholesterol; LDL-C: low-density lipoprotein; TC/HDL-C: total cholesterol/high-density lipoprotein cholesterol; TG/HDL-C: triglyceride/high-
density lipoprotein cholesterol; LDL-C/HDL-C: low-density lipoprotein/high-density lipoprotein cholesterol. The data were compared with
normal distribution using Student’s t test. The Mann—Whitney U test is used for non-normal distributions. A p-value < 0.05 was considered
significant.

istic (ROC) curves were used to evaluate the diagnostic value of 2. MATERIALS AND METHODS

2.1. Study Design and Participants. In this cross-
sectional study, serum was collected from 70 women with
PCOS who met the inclusion criteria and 60 age-matched

OVGP1 for PCOS, and an optimal classifier was ultimately

determined for the discovery of novel clinical diagnostic controls at the Xijing Hospital from April 2022 to June 2023.
The inclusion criteria were as follows: age 18—40 years"> and

biomarkers. meeting the international evidence-based guideline for the
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assessment and management of PCOS 2023, which revises the
2003 Rotterdam diagnostic criteria.'® Excluding other causes, a
diagnosis of PCOS can be made if one of the following criteria is
met: (1) irregular menstrual cycles and clinical manifestations of
hyperandrogenism; (2) irregular menstrual cycles and no
clinical manifestations of hyperandrogenism or were not
obvious, and the biochemical examination showed hyper-
androgenemia; (3) only irregular menstrual cycles or hyper-
androgenemia, adult women need further ultrasound examina-
tion, if the presence of polycystic ovary monography, the
diagnosis of PCOS; adolescents were included in the high-risk
management of PCOS and were followed up regularly. Other
causes to be excluded mainly include thyroid-stimulating
hormone, prolactin (PRL), 17a-hydroxyprogesterone, follicle-
stimulating hormone, or related causes that need to be excluded
if there are clinical characteristics (such as Cushing’s syndrome,
adrenal tumor, etc.). Hypogonadotropin-induced hypogonad-
ism (usually caused by low fat or prolonged vigorous exercise)
can be ruled out in combination with clinical and LH and FSH
levels.'” All participants underwent an analysis of sex hormones
(Roche Cobas 6000 CE Line E601 Lab Chemistry Analyzer,
Germany), an evaluation of thyroid function (Roche Cobas
6000 CE Line E801 Lab Chemistry Analyzer, Germany), an
analysis of a four-item panel of blood lipids (Hitachi 7060
Automatic Biochemical Analyzer, Japan), glucose tolerance tests
(BIOELAB ES-480 Automatic Biochemical Analyzer, China),
and 25(OH)-vitamin D tests (Roche Cobas 6000 CE Line E601
Lab Chemistry Analyzer, Germany) to establish the baseline
characteristics. The study was approved by the ethics committee
of the First Affiliated Hospital of the Fourth Military Medical
University, and informed consent was obtained from all
participants.

2.2. Enzyme-Linked Immunosorbent Assay (ELISA).
Serum OVGP1 was measured using an ELISA kit (LifeSpan,
Seattle, WA, USA). All procedures were performed in
accordance with the manufacturer’s instructions. Standard
substances of different concentrations were prepared. Then,
100 pL of standard substances and 100 yL of serum samples
were added to 96-well plates coated with the OVGP1 protein
antibody and incubated at 37 °C for 2 h. The mixture was
subsequently discarded, 100 uL of the biotin OVGP1 antibody
conjugate was added, the mixture was incubated at 37 °C for 1 h,
and the unbound antibodies were removed by washing three
times. Next, 100 L of HRP-conjugated reagent was added, and
the mixture was incubated at 37 °C for 0.5 h and washed five
times with washing solution. Subsequently, 90 uL of TMB
substrate was added, the sample was shielded from light at 37 °C
for 10 min, 50 L of stop solution was added, the absorbance was
read at 450 nm with a multifunctional enzyme marker (TECAN
Infinite200 PRO), and the OVGP1 concentration was
calculated. All of the assays were carried out in duplicate at
minimum, and average absorbance data were obtained from
three independently repeated experiments.

2.3. Performance Evaluation of Candidate Signatures
via Machine Learning Algorithms. To evaluate the
application of the biomarkers, we used RFE-CV algorithms to
screen candidate signatures according to clinical indicators in
PCOS patients and controls.'® To accurately predict the
performance of the diagnostic model, we used six machine
learning classification algorithms in Python, i.e., adaptive
boosting (AdaBoost), extreme gradient boosting (XGBoost),
decision tree (DT), K-nearest neighbors (KNN), logistic
regression (LR), and random forest (RF), to discriminate

PCOS patients from controls.'”~>' Furthermore, we used 5-fold
cross-validation to ensure the stability and accuracy of the
classifiers and calculated five measurements, namely, sensitivity,
specificity, accuracy, positive predictive value (PPV), and
negative predictive value (NPV). The ROC curve was used to
evaluate the discriminant ability of the prediction model, and
decision curve analysis (DCA) was used to estimate the clinical
usefulness and net benefit of the model.””

2.4, Statistical Analysis. SPSS 21.0 (IBM Corp., NY, USA)
was used for the data analysis. The Kolmogorov—Smirnov test
was used to determine whether the data fit a normal distribution.
For parametric data, Student’s t test was used, and for
nonparametric data, the Mann—Whitney U test was used to
determine the difference between the two groups. The
measurement data are expressed as means =+ standard deviations
and medians (interquartile distances). The difference in the
OVGP1 expression between the two groups is represented by a
violin diagram. Spearman’s correlation analysis and multiple
linear regression models were used to assess the associations
between OVGP1 and other diagnostic indicators. Logistic
regression analysis was performed to predict the exposure risk in
PCOS patients. The net reclassification improvement (NRI)**
and integrated discrimination improvement (IDI)** were used
to assess the impact of adding OVGP1 detection on the
reclassification of a predictive model. p < 0.05 was considered to
indicate statistical significance.

3. RESULTS

3.1. Demographics and Clinical Characteristics of the
Participants Enrolled in the Study. A total of 130
participants were recruited for this study. The baseline
characteristics and clinical outcomes of patients with PCOS
and controls are listed in Table 1. There were no significant
differences in age or body mass index (BMI) between patients
with PCOS and controls. The levels of LH (13.030 (8.060,
20.070) vs 5.500 (3.660, 9.250) mIU/L, p < 0.001), LH/FSH
(2.446 (1.708, 3.458) vs 0.986 (0.612, 1.406), p < 0.001), and
AMH (6.940 (5.050, 9.390) vs 3.260 (1.620, 4.810) ng/mL, p <
0.001) were significantly higher in the PCOS group than those
in the control group, which was consistent with the biochemical
performance of PCOS,** while the levels of other hormones
were not different from those in the control group. IR and
metabolic disorders are common symptoms in patients with
PCOS.”° Subsequently, comparisons were made between the
two groups regarding endocrine and metabolic parameters. The
results showed that the HOMA-IR (2.316 (1.582, 3.335) vs
1.460 (0.936, 2.392), p < 0.001), FPG (4.800 (4.410, 5.240) vs
4.560 (3.790, 4.910) mmol/L, p = 0.019), the levels of FINS
(11.090 (7.780, 15.260) vs 7.940 (6.520, 10.600) mIU/L, p <
0.001), and the levels of fasting C-peptide (FCP, 2.400 (1.940,
3.310) vs 2.020 (1.610, 2.600) ng/mL, p = 0.016) were
significantly increased in PCOS patients compared with the
control groups. Likewise, the levels of thyroglobulin (Tg, 6.980
(3.690, 10.810) vs 13.200 (4.650, 16.300) ng/mL, p = 0.035),
high-density lipoprotein cholesterol (HDL-C, 1.270 (1.050,
1.520) vs 1.420 (1.180, 1.680) mmol/L, p = 0.009), and the total
cholesterol/HDL-C ratio (TC/HDL-C, 3.414 (2.940, 4.188) vs
3.036 (2.658, 3.708), p = 0.012) were also significantly different
between the PCOS and control groups. These changes were
associated with the clinical phenotypes of PCOS and were
consistent with the results of the metabolic parameter analysis.

3.2. The OVGP1 Serum Level Is Significantly De-
creased in Patients with PCOS. To evaluate the level of

https://doi.org/10.1021/acsomega.4c03111
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OVGP1 in patients with PCOS, we measured differences in the
serum OVGP1 concentration between patients with PCOS and
controls by using ELISA. As shown in Figure la, the serum
expression level of OVGP1 was significantly lower in patients
with PCOS than in those in the control group (120 % 39.67 vs
180 + 93.19 pg/mL, p < 0.001), which indicates that OVGP1
may be a diagnostic biomarker for PCOS.

3.3. Correlations between OVGP1 Expression Levels
and Clinical Characteristics in PCOS Patients. To explore
the correlations between OVGP1 expression and clinical
characteristics in patients with PCOS, Pearson and Spearman’s
correlation analyses were performed to assess the associations
between the levels of OVGP1 and clinical indicators of PCOS.
The results revealed that the OVGP1 level was positively
correlated with the FSH level (rho = 0.39, p < 0.01) and
negatively correlated with the LH/FSH ratio (rho = —0.25, p <
0.01) (Figure 1b,c). However, the OVGP1 level did not
significantly correlate with any other diagnostic indicator (p >
0.05), as shown in Table S1. Multivariate joint distribution
revealed differences in the OVGP1, LH, LH/FSH, AMH, and
FSH data distributions between the PCOS and control groups
(Figure 2). Furthermore, we performed multivariate linear
regression to analyze the associations between OVGP1 and
endocrine and metabolic parameters. The results also revealed
that the OVGP1 level was significantly positively correlated with
the baseline serum FSH concentration (8 = 0.444, p < 0.001)
(Table 2).

3.4. Investigation of OVGP1 and Hormones as
Independent Risk Factors for PCOS Occurrence. To
investigate whether OVGP1 is an independent risk factor for
PCOS occurrence and whether OVGP1 and hormones could be
predictors of PCOS occurrence, logistic regression analysis was
performed. We found that with a one-unit increase in LH and
AMH, the odds ratios (ORs) for PCOS occurrence were 1.228
(95% CI: 1.105—1.366, p < 0.001) and 1.276 (95% CI: 1.068—
1.526, p = 0.007), respectively. Additionally, the ORs for PCOS
occurrence were 0.454 (95% CI: 0.263—0.782, p = 0.004) and
0.983 (95% CI: 0.972—0.995, p = 0.006), with one-unit
increases in FSH and OVGP], respectively (Table 3). These
results suggest that an increase in LH and AMH levels or a
decrease in FSH and OVGP1 levels could increase the risk of
PCOS in females.

3.5. OVGP1 Combined with Six Signatures Improves
the Diagnostic Performance of PCOS. To evaluate
applicable biomarkers for PCOS, we used the RFE-CV method
to screen potential diagnostic markers from all clinical features.
Six signatures, including LH/FSH, Prog, TC, TG, HDL-C, and
AMH, were constructed (Figure 3a). Next, we used six machine
learning algorithms to further evaluate the optimal diagnostic
models for these indices. Among these classifiers, the perform-
ance of XGBoost was superior to that of each of the other five
algorithms (Figure 3b,c); the area under the curve (AUC) for
the model was 0.953 (95% CI = 0.916—0.990) in the training set
and 0.907 (95% CI = 0.855—0.959) in the testing set (Table 4).
‘When OVGP1 was combined with the six signatures, the AUCs
of the XGBoost and LR models increased to 0.963 (95% CI =
0.931—0.995) and 0.833 (95% CI = 0.764—0.902), respectively,
indicating that the addition of OVGP1 detection can be used to
improve diagnostic performance in patients suspected of having
PCOS (Figure 3d). The DCA curve calculates the clinical net
benefit of each predictive model within the risk threshold
probability range. The results showed that the net benefit of
Model 2 (six signatures and OVGP1) was superior to that of
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Figure 1. The level of OVGPI1 is decreased in patients with
polycystic ovary syndrome (PCOS) and is correlated with sex
hormones. (a) Violin plot showing the difference in the serum level of
OVGP1 between patients with PCOS and controls; one dot represents
one sample. (b, c) Representative heatmap showing Spearman’s
correlation coefficient (b) and p-values (c) between OVGP1 and sex
hormones. Spearman’s correlation coeflicients and p-values are
illustrated by the pie area and corresponding number, indicating a
positive (red) or negative significant correlation (blue) (p < 0.05). The
area and color intensity of the round cake indicate the strength of the
correlation.
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represents the density estimate of the univariate distribution. The density plot shows the probability density of each variable in the dataset. The off-
diagonal points are the scatter plots between the pairwise variables.

Table 2. Multivariate Linear Regression Analysis between OVGP1 and Endocrine—Metabolic Parameters”

Variable B SE p t p-value 95% CI
FSH, mIU/L 2.999 0.774 0.444 2.999 0.000 1.464—4.534
LH, mIU/L —0.715 0.894 —0.098 —0.715 0.426 —2.489—1.058
LH/FSH 0.059 0.650 0.009 0.059 0.927 —1.230—1.349
Prog, ng/mL —0.066 0.469 —0.013 —0.142 0.888 —0.996—0.864
AMH, ng/mL —1.041 1.790 —0.055 —0.582 0.562 —4.591-2.509
HOMA-IR -3.536 11.602 —0.138 —0.305 0.761 —26.541—-19.469
FPG, mmol/L 1.652 4.251 0.05S 0.389 0.698 —6.778—10.082
FINS, mIU/L 3.234 3.646 0.455 0.887 0.377 —3.996—10.464
FCP, ng/mL —20.217 12.129 —0.355 —1.667 0.099 —44.266—3.832

“Dependent variable: OVGP1; R = 0.189; adjusted R = 0.119; F = 2.718; p<0.007, CI: confidence interval.

Model 1 (six signatures), which met the practical requirements 3.81% and the IDI was 7.4% (1.1%—13.7%, p = 0.021), which

of clinical diagnosis (Figure 3e). In addition, when the two suggested that the combination of OVGP1 with the other six
models were compared, as shown in Figure 3f, the NRI was signatures improved the diagnostic performance of PCOS.
49058 https://doi.org/10.1021/acsomega.4c03111
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Table 3. Logistic Regression Analysis to Investigate OVGP1 and Hormones as Independent Predictive Factors for PCOS

ACS Omega
Occurrence
Biomarkers B SE

FSH, mIU/L —0.791 0.278
LH, mIU/L 0.206 0.054
LH/FSH —0.098 0.078
AMH, ng/mL 0.244 0.091
HOMA-IR 3.096 1.810
FPG, mmol/L —-0.974 0.818
FINS, mIU/L —0.631 0.382
FCP, ng/mL 0.768 0.632
TC, mmol/L 0.209 0.361
TG, mmol/L —0.184 0.322
Prog, ng/mL —0.083 0.071
OVGP1, pg/mL —-0.017 0.006

Wals p-value OR (95% CI)
8.104 0.004 0.454 (0.263—0.782)
14.519 0.000 1.228 (1.105—1.366)
1.575 0.210 0.907 (0.778—1.057)
7.182 0.007 1276 (1.068—1.526)
2.925 0.087 22.112 (0.636—768.600)
1417 0.234 0.378 (0.076—1.876)
2722 0.099 0.532 (0.252—1.126)
1477 0224 2.156 (0.625—7.446)
0336 0.562 1.233(0.608—2.501)
0.328 0.567 0.832 (0.443—1.563)
1364 0243 0.921 (0.801—1.058)
7.469 0.006 0.983 (0.972—0.995)

3.6. Diagnostic Value of the Combination of OVGP1
and Other Clinical Indicators in Patients with PCOS.
Considering the practical clinical application of these methods,
the cost of seven detection indicators is too high and sex
hormones are commonly used in the clinical diagnosis of PCOS.
LH, LH/FSH, and AMH serum levels are the most frequently
used criteria for assessing ovarian reserve.”” Consequently, we
compared the diagnostic efficacy of individual hormones, such
as LH, LH/FSH, and AMH, as well as their combination. The
AUCs of the ROC curves were 0.789 for LH, 0.846 for LH/FSH,
and 0.778 for AMH. We found that all the ROC curves had high
accuracy, with an AUC > 0.7, which reveals the predictive
efficacy of all four indicators (Figure 4a). The combined
diagnosis had an AUC of 0.930 (95% CI: 0.885—0.975), with a
sensitivity of 90.00%, a specificity of 81.67%, and an accuracy of
86.15%, surpassing that of a single diagnostic index. Moreover,
when OVGP1 was included, the AUC increased to 0.932 (95%
CI: 0.888—0.976), the specificity increased to 86.67%, and the
accuracy increased to 88.46% for differentiating between
patients with PCOS and controls (Figure 4b,d). The DCA
showed that the two diagnostic models are suitable for clinical
application (Figure 4c). Similarly, the IDI and NRI were also
used to compare the advantages and disadvantages of the two
prediction models, and the results showed an NRI of 5% and an
IDI of 8.5% (95% CI: 2.2%—14.8%, p = 0.008). These results
indicate that the reclassification ability of OVGP1 was
significantly improved after its inclusion.

4. DISCUSSION

In this study, we are the first to report the level of OVGPI in
patients with PCOS and report that OVGPL1 is significantly
decreased in patients with PCOS, is positively associated with
FSH, and is negatively associated with the LH/FSH ratio. We
also screened the ability of six signatures (LH/FSH, Prog, TC,
TG, HDL-C, and AMH) to discriminate PCOS patients from
controls via machine learning algorithms and found that the
diagnostic value of OVGP1 alone and in combination with the
six signatures or clinically applied markers for distinguishing
PCOS patients from controls is high. Moreover, our study shows
that a decrease in the level of OVGP1 expression can increase
the risk of PCOS.

Anovulation is a major cause of infertility in 90% of women
with PCOS, and OVGP1 is a major tubal glycoprotein in many
species that is essential for sperm motility, fertilization, and
embryonic development, and it may also be involved in female
ovulation function.'””®*” Genetic mechanisms play an

important role in the etiology of PCOS. The ERK-1 and ERK-
2 pathways are among the most important of these mechanisms.
In some studies, it has been stated that OVGP1 levels may be
related to ERK gene pathways.’*** The MEK/ERK pathway is
closely related to androgen secretion;'* therefore, OVGP1 may
also be involved in androgen secretion. Hyperlipidemia, insulin
resistance, and chronic inflammation are associated with
PCOS.* In this study, we also found that HDL-C levels were
decreased and HOMA-IR was increased in women with PCOS.
Our previous study revealed that OVGPI1 induced vascular
oxidative stress and inflammation,'” which suggested that
OVGP1 is associated with the pathophysiology of PCOS. The
exact mechanism of OVGP1 in PCOS patients should be
explored in future studies.

In addition, reproductive function is closely related to the
endocrine system, and PCOS is characterized by a series of
interrelated changes in reproductive hormones,” and the
relationship between OVGP1 and PCOS has not been evaluated
at either the clinical or basic level. Therefore, we conducted this
first clinical study to analyze the correlation between OVGP1
and diagnostic indicators of PCOS.

Reproduction occurs through the hypothalamus—pituitary—
ovary axis, which coordinates reproductive behavior with
ovulation. Gonadotropin-releasing hormone (GnRH) release
from the hypothalamus regulates the secretion of FSH and LH,
and E2 levels increase as follicles develop.”®*” An increase in E2
in turn stimulates the release of GnRH, and the release of
OVGP1 is dependent on estrogen.‘gg"i’9 In our study, a significant
positive correlation between OVGP1 and FSH was evident,
which suggested that OVGP1 may play an important role in
promoting follicle development and ovulation. Studies have
reported that in women, LH and FSH are positively correlated
from the beginning of the reproductive stage up to menopause,*’
which is consistent with our findings. We next used multiple
linear regression to determine how OVGP1 and FSH are
correlated, and the results confirmed our findings and
highlighted how complex and close the regulatory relationships
between sex hormones are. Subsequent logistic regression
analysis revealed that a decrease in the level of OVGP1 was an
independent risk factor for PCOS and may indirectly influence
the development of PCOS by regulating hormone levels.

We also evaluated biochemical indicators as predictors of
PCOS via machine learning algorithms. In particular, we
observed that the XGBoost model had the best predictive
performance for PCOS diagnosis and that the analysis of the six
signatures through the XGBoost model was able to predict
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Figure 3. Identification of six signatures by the RFE-CV algorithm and evaluation of their diagnostic values in patients with PCOS. (a) Six
diagnostic indicators were screened from among all the clinical features based on the RFE-CV algorithm. (b, c¢) ROC plot of the performance of the six
classification algorithms based on the AUC for discriminating PCOS patients from controls in the training (b) and test (c) sets. (d) ROC curves for six
candidate diagnostic indicators with or without OVGP1 based on the XGBoost and LR models. (e) Decision curve and (f) the net reclassification index
for diagnostic efficacy verification. Model 1 represents the combination of six candidate signatures, and Model 2 represents the combination of six
candidate signatures with OVGP1. The black circles represent controls, and the red circles represent PCOS patients.

PCOS with an accuracy of 88.46%; however, combining
OVGP1 with the six signatures resulted in an increased accuracy
of 89.23%. In the context of routine PCOS diagnosis, the
primary focus is on sex hormone levels. We developed a
diagnostic model encompassing sex hormones, and the AUC
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was 0.932 (95% CI = 0.888—0.976), with an accuracy of 88.46%.
Silva used a machine learning algorithm to incorporate 14
variables with an accuracy of 86% and an AUC of 97%."" These
results indicate that our model (four indicators) is well suited for
clinical implementation, while reducing the cost of examination.
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Table 4. Classification Performance for the Six Signatures between PCOS Patients and Controls

Sensitivity (%) Specificity (%) ACC (%) PPV (%) NPV (%) AUC (95% CI)
AdaBoost Training set 100.00 100.00 100.00 100.00 100.00 0.995 (0.983—1.000)
Test set 80.72 74.67 79.23 77.85 78.11 0.872 (0.811—0.933)
XGBoost Training set 89.24 89.15 89.23 90.51 87.70 0.953 (0.916—0.990)
Test set 83.54 83.08 83.85 84.88 83.22 0.907 (0.855—0.959)
DT Training set 96.09 99.21 97.50 99.23 95.55 0.992 (0.977—1.000)
Test set 66.34 75.11 71.54 74.06 66.42 0.724 (0.638—0.81)
KNN Training set 83.18 74.19 79.23 79.44 78.98 0.891 (0.835—0.947)
Test set 72.76 68.67 72.31 72.66 68.95 0.790 (0.713—0.867)
LR Training set 78.26 70.21 74.81 75.47 74.06 0.828 (0.758—0.898)
Test set 72.09 70.86 71.54 71.39 71.37 0.791 (0.714—0.868)
RF Training set 100.00 100.00 100.00 100.00 100.00 0.995 (0.983—1.000)
Test set 81.12 77.33 79.23 79.42 78.18 0.895 (0.840—0.950)
a L b
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Figure 4. Evaluation of the diagnostic value of combining OVGP1 with clinical applicative indicators in patients with PCOS. (a) ROC plot of LH,
LH/FSH ratio, and AMH levels individually or in combination for differentiating patients with PCOS from controls. (b) ROC plot of LH, the LH/
FSH ratio, and AMH levels combined with OVGP1 for differentiating patients with PCOS from controls. (c) DCA curves for diagnostic efficacy
verification. (d) Classification performance for OVGP1 combined with clinical indicators between PCOS patients and controls. Model 1 represents the
combination of LH, the LH/FSH ratio, and AMH; Model 2 represents the combination of LH, the LH/FSH ratio, AMH, and OVGP1.

This finding implies that well-designed machine learning has the
potential to significantly enhance our ability to diagnose PCOS
early, with associated cost savings and a reduced burden of
PCOS on patients and the health system.*>*’

The main objective of our study was to provide a new
diagnostic index for PCOS. Feature selection methods were
applied to select the optimal subset of features to combine with
OVGP1, and the results showed that XGBoost with RFE feature
selection achieved the highest performance compared to that of

49061

a single index. The application of a machine learning algorithm
can be useful for guiding more personalized and effective
approaches for diagnosing PCOS and preventing its comorbid-
ities. However, this study has several limitations. First, the
sample in this study was limited, and a larger multicenter study
with more participants is needed to externally validate the
diagnostic value of OVGPI. Second, the lack of multilayer
distribution analysis and the presence of some patients with
irregular menstruation in the control group may lead to the
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underestimation of the diagnostic efficacy of OVGP1 for PCOS;
in the future, additional clinical samples need to be collected for
clinical verification. Finally, the potential functions of OVGP1 in
patients with PCOS should be explored via cell and animal
experiments.

5. CONCLUSION

In this study, we report OVGP1 levels in PCOS patients for the
first time. The level of OVGP1 is significantly decreased in
PCOS patients and is associated with FSH and the LH/FSH
ratio, and the OVGP1 level may be an independent predictor of
PCOS occurrence. Furthermore, we identified six signatures
(LH/FSH, Prog, TC, TG, HDL-C, and AMH) by machine
learning that perform well in the diagnosis of PCOS patients
with a diagnostic accuracy of 88.46%. Considering the cost and
benefit, the accuracy of the combination of three clinical
indicators (LH, LH/FSH, and AMH) was 86.15%. With the
addition of the OVGP1 index, the accuracy rate increased to
89.23% and 88.46%, respectively, which improved the diagnostic
ability and emphasized that OVGP1 helps to diagnose PCOS.
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