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Abstract: Coronavirus disease (COVID-19) spreads mainly through close contact of infected persons,
but the molecular mechanisms underlying its pathogenesis and transmission remain unknown. Here,
we propose a statistical physics model to coalesce all molecular entities into a cohesive network in
which the roadmap of how each entity mediates the disease can be characterized. We argue that
the process of how a transmitter transforms the virus into a recipient constitutes a triad unit that
propagates COVID-19 along reticulate paths. Intrinsically, person-to-person transmissibility may be
mediated by how genes interact transversely across transmitter, recipient, and viral genomes. We
integrate quantitative genetic theory into hypergraph theory to code the main effects of the three
genomes as nodes, pairwise cross-genome epistasis as edges, and high-order cross-genome epistasis
as hyperedges in a series of mobile hypergraphs. Charting a genome-wide atlas of horizontally
epistatic hypergraphs can facilitate the systematic characterization of the community genetic mecha-
nisms underlying COVID-19 spread. This atlas can typically help design effective containment and
mitigation strategies and screen and triage those more susceptible persons and those asymptomatic
carriers who are incubation virus transmitters.

Keywords: COVID-19; person-to-person transmission; horizontal epistasis; hypergraph; genetic loci

1. Gene Networks as a Driver of Interpersonal Variability and Transmissibility

The atypical pneumonia COVID-19 is caused by a novel coronavirus, namely se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and has been sweeping
the globe [1–4]. An increasing number of studies have begun to unravel the molecular-
and even atomic-level mechanisms for human–virus interactions through sequencing and
structural analysis [5–7]. These studies have been instrumental in identifying the receptors,
such as ACE2, the SARS-CoV2 virus uses to penetrate human cells and the key pathways
through which the viral trimeric spike protein binds to host receptors [7–9]. However, the
development of specific therapeutics to eradicate COVID-19 from these results may be
impaired by two unsolved issues. First, existing approaches can only identify individual
key genes, proteins, or metabolites associated with COVID-19 infection [10–14], but ample
evidence shows that a complex disease involves a web of interactions among different
genes [15,16]. Second, there is great variability in the number of receptors among indi-
vidual hosts, which leads to high interpersonal heterogeneity in COVID-19 infection and
symptoms [17,18]. For example, SARS-CoV-2 affects certain individuals more than others
under the same circumstances [19]. Some individuals are more susceptible to, but not
necessarily more infected by, the viruses than others [20,21]. Many research consortia and
pharmaceutical sectors have begun to sequence both human and SARS-CoV-2 genomes in
a quest to understand the genetic basis of COVID-19 transmission [22–26].

We argue that these two issues can be disentangled by reconstructing interaction net-
works that coalesce all genes, proteins, metabolites, and DNA variants into mathematical
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graphs. There are two types of such networks, one inferred from genomic data (transcrip-
tomic, proteomic, and metabolomic) and the other from genetic data (DNA genotype). The
surge of network reconstruction in the last two decades has attracted the development of
a number of computational models and methods for a wide range of disciplines [27–29].
However, a majority of existing methods can only identify an overall network from a
number of samples but cannot characterize sample-specific variation. Additionally, these
methods can only capture either the strength of interaction or the direction of interaction,
failing to combine these network properties [30,31]. More recently, Wu and Jiang [32] pro-
posed a generic model for reconstructing fully informative networks that code the strength
of interactions, bicausality of links, and the sign of causality, as defined in Chen et al. [33];
one salient advantage of this approach is the recovery of dynamic networks from static
data. All approaches are developed based on omics expression data collected from each
sample, but they are not adjusted to consider DNA variant data in which each sample is
represented by a genotype, associated with a phenotypic value.

In this article, we extend Wu and Jiang’s network model to reconstruct COVID-19-
induced genomic networks from static expression data. Based on the transmission behavior
of epidemics, we integrate quantitative genetic principles into graph theory to reconstruct
mobile networks that trace and monitor the genetic architecture of COVID-19 spread in
human communities. We give examples of how the models described can be applied to
quantify the topological changes of genomic interactions from a healthy state to a diseased
state. Simulation studies are performed to examine the statistical properties of the models.

2. A Physical Model for Contextualizing Genomic Networks

To characterize the molecular mechanisms underlying COVID-19 pathogenesis, Leng
et al. [10] monitored and compared proteomic profiles in SARS-CoV-2-infected lung tissues
and healthy lung tissues. Although key differentially expressed proteins have been identi-
fied in response to SARS-CoV-2 infection, it is likely that the occurrence of the disease is
not only mediated by these individual proteins but also through the complex interactions
of all proteins. We modify Wu and Jiang’s model to accommodate Leng et al.’s sampling
strategy that measured 3220 proteins from three COVID-19-infected (but healthy prior to
infection) patients and eight controls without COVID-19 pneumonia, totaling 11 samples.

2.1. The Integration of Allometric Scaling Law and Evolutionary Game Theory

Let yij denote the abundance of protein j (j = 1, . . . , 3220) on sample i (i = 1, . . . , 11).
The total amount of abundance of all proteins for each sample is calculated and defined
as an expression index, denoted by Ei = ∑3220

j=1 yij. Thus, yij and Ei establish a part–whole
relationship that obeys the allometric scaling law described by a power equation [34,35].
Figure 1 illustrates examples of allometric scaling relationships for four randomly chosen
proteins. We find that some proteins, e.g., PoDOX7 (immune one strand of globulin, served
as receptors that trigger the clonal expansion and differentiation of B lymphocytes into
immunoglobulins-secreting plasma cells) (Figure 1A) and glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH, which catalyzes an important energy-yielding step in carbohydrate
metabolism) (Figure 1B) increase their abundance with expression index, but to different
extents, whereas the abundance of others, such as peptidylprolyl isomerase A (PPIA, which
catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides)
(Figure 1C) and ribosomal protein lateral stalk subunit P2 (RPLP2, which plays an impor-
tant role in the elongation step of protein synthesis) (Figure 1D), decreases with expression
index. It is interesting to note that the total expression level of all proteins–expression index–
is higher in SARS-CoV-2-infected lungs than healthy lungs. Taken together, the abundance
of individual proteins measured once on each sample, in spite of its static nature, can be
expressed as a “dynamic” function of expression index. Tremendous variability in the form
of such a function implies the occurrence of protein–protein interactions across samples.
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Figure 1. Allometric scaling fitting of abundance of individual proteins to expression index across
11 samples (eight healthy lungs, cold-color dots; and three SARS-CoV-2-infected lungs, warm-color
dots). Four representative proteins, P0DOX7 (A), GAPDH (B), PPIA (C), and RPLP2 (D) are chosen.

We integrate evolutionary game theory [36] to interpret how individual proteins
change abundance with expression index through their interactions and interdependence
with other proteins. This theory allows us to assume that all proteins form a system in
which the expression of any one protein is determined by its own “strategy” and the
strategies of other proteins that interact with it. To quantify the dynamic behavior of the
system based on evolutionary game theory, we introduce the allometric scaling law to
develop a system of ordinary differential equations, expressed as

y′j(Ei) = Qj
(
yj(Ei); φj

)
+

p

∑
j′=1,j′ 6=j

Qj←j′
(

yj′(Ei); φj←j′
)

(1)

where Qj
(
yj(Ei); φj

)
describes the (independent) expression level of protein j when it is

assumed to be in isolation, and Qj←j′
(

yj′(Ei); φj←j′
)

describes the (dependent) expression

level of protein j regulated by protein j′. The ODEs of Equation (1) are called quasidy-
namic ODEs (qdODEs) because their time derivative is replaced by the expression index
derivative [33,37].

We fit the independent and dependent expression levels across samples using a
nonparametric approach and estimate the ODE parameters by implementing the fourth-
order Kutta–Runge algorithm. The estimated dependent expression levels of each protein
regulated by other proteins are encapsulated into a mathematical network, filled with
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bidirectional, signed, and weighted interactions. Because dependent expression levels
are a function of the expression index, we can reconstruct sample-specific networks. We
further assemble eight sample-specific networks into a control network and three sample-
specific networks into a SARS-CoV-2-infected network. Key links that determine differences
between these two networks are regarded as the determinants of disease and healthy states.

2.2. Modularity Theory and Dunbar’s Law

It is not possible that all 3220 proteins are fully interconnected, because a full network
is not robust enough to buffer against stochastic perturbations [38–41]. Instead, a large
network should be modular and sparse to maintain the stability and robuestness of the com-
plex system. A system is always heterogeneous, occurring as the consequence of dynamic
interactions between modules. A module is defined as a relatively homogeneous area that
differs from its surroundings in terms of the function of constituent elements [42,43]. This
modularity theory allows us to classify all proteins into distinct modules based on the simi-
larity of expression index-varying expression profiles. Because of this similarity, proteins
in a module are more tightly connected with each other than with those from different
modules. According to network theory, these different modules form network communities
that play a different role in the overall behavior of the system. Functional clustering is
an algorithm that can sort elements into different categories according to how elements
behave as a function of time [44,45]. We implement power equation-based functional
clustering to break down a 3220-node large network into well-delimited network commu-
nities. BIC analysis shows that the optimal number of such network communities is 14,
each displaying a different dynamic pattern of protein expression over samples (Figure 2).
SARS-CoV-2-infected lungs tend to display a higher expression index than healthy lungs,
thus the expression index may roughly serve as a biomarker of COVID-19 infection.
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their allometric scaling relationship with expression index according to BIC. Each thin line represents
a protein within a module whose mean fitting is denoted by a thick line. Bluer lines and redder lines
represent eight healthy lungs and three SARS-CoV-2-infected lungs, respectively [10].
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In a primatological study, Dunbar [46] noted that there is a cognitive limit to the num-
ber of individuals with whom a primate can maintain stable social relationships. Dunbar
explained this limit to be imposed by the neocortical processing capacity of primates. This
so-called Dunbar’s law has been applied in many different fields, including evolutionary
psychology, statistics, and business management [47,48]. If Dunbar’s law occurs in gene
regulatory networks, this implies that the number of other proteins each protein can “recog-
nize” (or sensibly interact with) is limited, causing sparsity in the network structure. Based
on a regression model built from qdODEs of Equation (1), we implement regularization-
based variable selection to choose a small set of proteins that are significantly associated
with each protein [49]. This approach (in particular) can handle the issue of the curse of
dimensionality, i.e., that the number of proteins is much larger than the number of samples.
By incorporating the most significant proteins chosen for a given protein into qdODEs
of Equation (1), we rederive a system of reduced equations from which to reconstruct
sparse networks.

2.3. SARS-CoV-2-Induced Network Change

As described above, a large-scale network composed of 3220 proteins contains 14 net-
work communities. Using the mean expression levels of all proteins within the same
modules, we reconstruct 14-node intermodule networks coalescing network communities,
called coarse-grained networks, for individual samples. We convert sample-specific net-
works into a healthy coarse-grained and a diseased coarse-grained network as a biomarker
of SARS-CoV-2 infection (Figure 3). A link in a network is said to be outgoing or incoming
if one node affects or is affected by the other node. Healthy and diseased networks have
a similar structure of interactions, as revealed by their similar distribution of outgoing
and incoming links over different modules. Yet, the two networks differ dramatically in
topological organization (Figure 3). In general, the healthy network displays stronger inter-
actions than the COVID-19 network, suggesting that protein–protein crosstalk becomes
weak after lungs are infected by SARS-CoV-2.
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Figure 3. Multilayer protein–protein interaction networks for healthy (control) and SARS-CoV-2-
infected lungs. Coarse-grained networks where nodes are modules (with the size of circles propor-
tional to the total abundance of proteins in the modules) and edges are interactions between pairs of
proteins (warm-color and cold-color line arrows indicate the promotion and inhibition, respectively,
with link thickness proportional to the strength of interaction). Plots in the middle are the distribution
of outgoing links and incoming links over different modules.
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Module M3 is a key module whose links well distinguish the healthy network from
the disease network (Figure 3). GO enrichment analysis shows that proteins involved
in this module have a major function related to the activation of neutrophil, myeloid,
leukocytic, and granulocytic cells that affects immune response (Figure 4). Based on
the coarse-grained networks (Figure 3), we postulate that the immune system of healthy
individuals (determined by M3) is inhibited by the proteins with functions in cell and
biological adhesion (Module M8) and wound healing (Module M7), but during SARS-CoV-
2 infection, the immune system is jointly activated by various types of proteins.
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Figure 4. GO enrichment analysis of proteins from each module in terms of biological proteins.
The color metric of each rectangle represents the p value of corresponding GO terms, with red
approximately 0 (significant) and blue approximately 1 (not significant). The map was made using R
package pheatmap.

To further explore how COVID-19 induces the abundance change of proteins as a
whole, we reconstruct fine-grained networks filled with interactions expressed at the protein
level. As an example, we choose module M3 that was identified to mediate the immunity
system of humans. This module contains 463 proteins that form a web of interactions
among its proteins, and from this web, a clear roadmap of how each protein interacts
with every other protein can be characterized (Figure S1). In general, the interaction
networks of these proteins are sparse, displaying a similar structure for both healthy and
diseased individuals. The difference between the healthy and COVID-19 networks lies in
the strength of protein–protein interactions. For example, DDX39B inhibits the expression
of PSMB9 for healthy individuals, but the extent of this inhibition is dramatically reduced
for SARS-CoV-2-infected individuals. On the other hand, the promotion of FBLN6 by CD9
is reduced when healthy individuals become infected. The differences in these interactions
and other interactions may be a determinant of COVID-19 infection and noninfection. It
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should be pointed out that our conclusion is based on a modest sample size (N = 11), whose
more convincing interpretation relies on a larger sample size (say 50 or more) [32]. Yet,
our study provides a starting point to more precisely explore the genomic signature of
COVID-19 from informative gene regulatory networks.

3. Statistical Genetic Physics of COVID-19 Spread

As an infectious disease, COVID-19 shows strong person-to-person transmissibility,
whose basic estimated reproductive number is as high as about 2.68 (95% CrI 2.47 to
2.86) [3]. Because of this, the efficient and effective control of this disease requires a de-
tailed understanding of the community machinery that mediates transmission and spread.
Interpersonal variability has been observed in the pattern and speed at which COVID-19
transmits from person to person in communities. Despite a high number of contacts (372),
the first known person-to-person transmission cases did not result in transmission of the
virus [50,51]. In another case, an asymptomatic carrier has been shown to transmit the virus
to five family members [21]. These findings show that viruses from some carriers are more
transmissible than those from others. Indeed, well-controlled epidemiological studies using
animal models also documented this phenomenon [51,52], regarded as being universal in
infectious disease contagions. Like the effects they exert on disease severity, genes can
also play a critical role in determining interpersonal transmissibility. Conventional genetic
analyses can dissect the interpersonal variability of a disease, but they have no power to
characterize the genetic mechanisms underlying the interpersonal transmissibility of the
disease as a dynamic process.

We argue that the COVID-19 pandemic is determined by a genetic system composed
of genes from a transmitter, recipient, and viruses. Genes from the transmitter interact with
those from the recipient to affect the COVID-19 severity of the recipient, and, meanwhile,
the sign and strength of these interactions are mediated by SARS-CoV-2 genes. We propose
a computational framework for quantitatively coalescing transmitter–recipient–virus inter-
actions, pertaining to the genetic system into a hypergraph. Subsequent transmissions of
the virus to other individuals lead to the formation of a new genetic system. Our mobile
hypergraphs can capture such dynamic changes, equipped with a capacity to decipher how
COVID-19 spreads from person to person through close contacts.

3.1. Horizontal Epistasis: An Emerging Concept

Darwin’s evolutionary theory suggests that the phenotype of an individual affects the
phenotypes of other individuals in the same community to an extent that drives phenotypic
variation and evolution [53–55]. Quantitative genetic studies of this phenomenon indicate
that the phenotype of one individual is not only determined directly by their own genes
but also indirectly by the genes of individuals with whom it co-exists, in an epistatic
fashion [56–58]. In an association study, Biscarini et al. [59] identified a number of loci
that exert indirect genetic effects on plumage conditions in laying hens. Genes with
indirect genetic effects were also identified to affect size, development, and fitness traits
in Arabidopsis [60]. Relative to vertical epistasis, described as the effect of the interactions
between genes from different genomic locations within the same individual [61], we define
the interaction effects of genes across different individuals as horizontal epistasis. Faced
with a viral invasion, a recipient will activate innate and adaptive immune responses
through certain genes, e.g., those within the major histocompatibility complex (MHC)
locus, to produce specific antibodies that coat viruses and reduce their infection [62,63],
during which the virus will evolve specific strategies, including mutations or methylations,
to evade these responses or adapt to the new environment of the recipient [64–66]. The
pattern and degree of the mutation or the epigenetic alteration of viral genes depend on
how they interact with the physiological environment of the recipient. Thus, when this
recipient becomes a transmitter, their “personalized” viruses will preferentially attack the
next recipient who can provide the essential environment for the viruses to survive. In
the case of person-to-person transmission, the viruses serve as a genetic “messenger” that
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links the transmitter to the recipient unidirectionally and, thus, are regarded as a stimulus
that elicits horizontal epistasis. This pattern of interpersonal transmission is essentially the
consequence of the joint influences of genes from the transmitters, recipients, and viruses.
To systematically characterize the genetic mechanisms underlying the rate and intensity of
SARS-CoV-2 spread, we need to chart the network of gene interactions among these three
parties. In some situations, viruses spread from natural hosts (e.g., animals) to alternative
hosts (humans) to form a more complex pandemic network [67]. Revealing the mechanisms
that lie behind this network includes the characterization of horizontal epistasis among
genes from humans, animals, and viruses.

Graph theory has been widely used as a tool to reconstruct gene networks [68,69].
This approach can only characterize pairwise interactions coded as edges of the graph,
with each edge adjacent (connecting) to two nodes. However, the process of person-to-
person or animal-to-person transmissions includes genes from more than two genomes and,
thus, high-order horizontal interactions are likely to trigger their effects. Next, we show
that a hypergraph, the generalization of a graph to allow an edge to join more than two
nodes [70,71], can precisely capture how genes from different genomes interact globally
with each other to determine the spread of COVID-19.

3.2. Genetic Hypergraphs

SARS-CoV-2 spreads mainly through person-to-person contacts [1–4], where routes
of interpersonal transmission can be retroactively tracked by recording and monitoring
contact history [72]. A recipient is assumed to be connected to only one transmitter, but
a transmitter may have multiple recipients. Let us imagine a spread path as illustrated
in Figure 5A, where the first transmitter transforms the virus to Recipients 2, 3, 4, and 5,
who then become transmitters for subsequent recipients. Now, let us take a step further
and assume that we can sequence the genomes of these affected individuals, measure their
pneumonia-related clinical outcomes, and also screen the genome-wide haploid (epi)genetic
alterations of the viruses inhabiting each recipient.
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Figure 5. Transmission path of SARS-CoV-2 through contacts. (A) A strategy for sampling trans-
mitters and recipients, the direction of whose transmission is denoted by arrows. (B) A strategy for
sampling transmitters and recipients, the direction of whose transmission is denoted by arrows, as
well as individuals who are not infected (labeled by letters) even after contact with the transmitters.
Numbers in yellow refer to those that transmit the virus to multiple recipients. In a graph, these
transmitters are likely to be regarded as hub nodes.
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Hypergraphs have been increasingly recognized as a powerful tool to model complex
systems, such as cell–cell interactions [71] and epidemic propagation [73]. Here, we develop
a genetic version of hypergraphs to model genome–genome interactions. During the SARS-
CoV-2 spread, a transmitter passes on the virus to a recipient, forming a small functional
triad unit composed of three entities. We argue that such a unit forms a hypergraph in which
genes from three genomes represent nodes, pairwise cross-genome interactions define
edges, and three-order cross-genome interactions define hyperedges. This interactive unit
propagates COVID-19 along reticulate paths to spread into communities. In this sense, the
scope of COVID-19 spread can be dissected into a series of dynamically interconnected units.
We integrate quantitative genetic theory and hypergraph theory to quantify the pattern
and strength of various cross-genome interactions, i.e., horizontal epistasis, displayed in
each unit.

Consider a sample of infected individuals from a human population. There are three
diploid genotypes at a human single-nucleotide polymorphism (SNP) locus with two
alleles and two haploid genotypes at a virus locus. Three transmitter genotypes, three
recipient genotypes, and two virus genotypes are randomly combined to form 18 three-way
genotype combinations. There is variability in the clinical outcomes of recipients among
these combinations. We can partition the genotypic value of a combination for a disease
outcome/phenotype, e.g., pneumonia severity, into the following components:

• Direct main effects of the gene of the recipient on its own phenotype;
• Indirect main effects of the gene of the transmitter on the phenotype of the recipient;
• Indirect genetic effect of the virus gene on the phenotype of the recipient;
• Horizontal two-way epistatic effects between the transmitter gene and recipient gene

on the phenotype of the recipient;
• Horizontal two-way epistatic effects between the virus gene and transmitter gene on

the phenotype of the recipient;
• Horizontal two-way epistatic effects between the virus gene and recipient gene on the

phenotype of the recipient;
• Horizontal three-way epistatic effects among the virus gene, transmitter gene, and

recipient gene on the phenotype of the recipient.

Box 1 shows the parameterization of these effects. Li et al. [74] derived a statistical
algorithm for estimating and testing each of these effects. Through extensive computer
simulation, they further examined the statistical properties of each estimation, which helps
researchers design sampling strategies. We model the main effects as nodes, horizontal
two-way epistasis effects as edges, and horizontal three-way epistasis effect as a hyperedge
into a weighted hypergraph (Figure 6). The difference between such a hypergraph model
and the more commonly used graph model lies in its capacity to characterize high-order
interactions, i.e., interactions among three or more entities [71]. In particular, in our genetic
hypergraph, we can identify how transmitter–recipient interactions are mediated by SARS-
CoV-2.

If we collect the data for the individuals who contacted a transmitter but were not
infected (Figure 5B), we can develop a binary model to test how genes play a role through
hypergraphs in determining whether the recipients are infected. Results from this model
would in turn allow us to identify specific genes that would determine the possibility of
infection. A hypergraph representation can reflect both the importance of genes triggering
such effects and the context dependency, in terms of how this is affected by genes from other
entities. From this hypergraph, we can also characterize genetic effects, direct or indirect,
horizontal two-way or horizontal three-way epistasis, as major determinants of infection.
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Figure 6. A genome-wide atlas of mobile genetic hypergraphs for COVID-19 spread in human
communities. Left panel: Mobile hypergraphs (denoted as 1, 2, 3, . . . ) showing the effects of
pairwise and high-order genetic interactions among transmitters (T), recipients (R), and viruses
(V). A hypergraph comprises a T-V-R functional triad unit (circled in light blue) that propagates
COVID-19 to form an outbreak community. A red cycled arrow from R to R shows the direct genetic
effect of R on its own phenotype, a black arrow from V to R shows the indirect genetic effect of
the virus on the phenotype of R, and a black arrow from T to R shows the indirect genetic effect
of T on the phenotype of R with the aid of the virus as a messenger. The effects of three types of
horizontal pairwise epistasis, T × R, R × V, and V × T, on the phenotype of R, are shown by dot
curves. Horizontal high-order epistasis is shown by a blue arrow. A unit is linked to the next through
an infected person (circled in light red), who serves as a T for the former and an R for the latter. Right
Panel: By scanning SNP 1, 2, . . . , (denoted by open blue circles) throughout the host genome, we can
identify significant loci (e.g., SNP 2, 6, . . . ) that affect COVID-19 spread and chart a genome-wide
atlas of mobile hypergraphs. The model can discern different functions of SNPs, e.g., SNP 2 affects
fever, whereas SNP 6 is responsible for the shortness of breath.

Box 1. Quantitative parameters that define genetic effects.

According to Figure 5A’s sampling strategy, we would obtain genome-wide SNP data for both
humans and viruses and disease outcome/phenotype data for recipients (Table S1). It is possible
for mutation or methylation of viruses during their spread. Without loss of generality, we consider
an SNP (with alleles A and a) at the human genome and an SNP (with two alleles A and a) at the
virus genome. Each of the 18 possible tri-genome combinations among the transmitters, recipients,
and viruses has a genotypic value expressed in the disease outcome (phenotype) of the recipients
(Table S2). Let µjkl denote such a genotypic value due to genotype j of transmitters, genotype k of
recipients, and genotype l of viruses (j, k = 1 for AA, 0 for Aa, −1 for aa; l = 1 for B, −1 for b), which
can be partitioned into the following components:
µjkl = µ + jaT + (1− |j|)dT + kaR + (1− |k|)dR + laV Main effects
+jkiaaTR + j(1− |k|)iadTR + (1− |j|)kidaTR + (1− |j|)(1− |k|)iddTR
+jliaaTV + (1− |j|)lidaTV + kliaaRV + (1− |k|)lidaRV Pairwise interactions
+jkliaaaTRV + j(1− |k|)liadaTRV + (1− |j|)klidaaTRV + (1− |j|)(1− |k|)liddaTRV High-order interac-
tions
where µ is the overall mean, aT and dT are the main additive and dominant effects of transmitters,
aR and dR are the main additive and dominant effects of recipients, aV is the main effect of viruses;
iaaTR, iadTR, idaTR, and iddTR are the additive x additive, additive x dominant, dominant x additive,
and dominant x dominant pairwise interaction effects between transmitters and recipients, iaaTV and
idaTV are the additive x virus and dominant x virus pairwise interaction effects between transmitters
and viruses, iaaRV and idaRV are the additive x virus and dominant x virus pairwise interaction
effects between recipients and viruses; and iaaaTRV , iadaTRV , idaaTRV , and iddaTRV are the additive
x additive x virus, additive x dominant x virus, dominant x additive x virus, and dominant x
dominant x virus high-order interactions among transmitters, recipients, and viruses.
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The estimates of the magnitudes of each of these types of genetic effects may help to
design more efficient drugs to control the spread of SARS-CoV-2. If direct genetic effects
are significant, a drug should be designed with the capacity to directly target the genes
of the recipients. If indirect genetic effects from the transmitters are significant, a drug
that targets the transmitters’ genes can decrease or prevent the spread of the virus to other
recipients. If indirect genetic effects from SARS-CoV-2 are significant, the viruses should
be targeted. If two-way horizontal epistasis between the transmitters and recipients is
significant, we need to design a drug that can decouple the transmitter–recipient genetic
interaction expressed at specific loci. The existence of any three-way horizontal epistasis
implies the importance of designing a drug that can destroy transmitter–recipient–virus
interactions as a whole. Taken together, while conventional strategies to design vaccines
aim at reducing the likelihood and degree of infection, hypergraphs will help gain new
insight into the design of vaccines that control not only the infection of coronaviruses but
also their spread from transmitters.

3.3. Mobile Hypergraphs Encapsulated in a Genome-Wide Atlas

We view a transmitter, a recipient, and the viruses that connect them as a functional
triad unit. Our model proposed above can encode main genetic effects, pairwise epistatic
effects, and high-order epistatic interactions among these three entities into a weighted
hypergraph. The recipient of this unit may serve as a transmitter to infect another recipient,
forming a new unit along with the viruses, and this process repeats until the contagion
is controlled. It is expected that the behavior changes from unit to unit because the re-
cipients and viruses vary in their genotypes. We reconstruct a hypergraph for each unit
and, therefore, provide a series of dynamically changing hypergraphs, called mobile hyper-
graphs, in communities (Figure 6). Mobile hypergraphs can trace the topological changes
in gene–gene interactions and characterize key players that determine the transmissibility
of SARS-CoV-2 from person to person.

By scanning for all SNPs throughout the whole genomes of humans and viruses, we
can chart a genome-wide atlas of mobile hypergraphs. From the atlas, we can identify the
hotspots of genetic variants that mediates the rate and extent of coronavirus spread. As
shown in Box 1, a system constituted by a transmitter, recipient, and the virus is mediated
by 17 types of genetic effects each representing a different aspect of the respective genetic
machinery. Thus, this atlas will be illustrated for each type of genetic effect in order to
portray a comprehensive picture of the genetic mechanisms underlying COVID-19 spread.

4. Conclusions and Outlook

There exist great interpersonal variabilities in how humans respond to SARS-CoV-2
and how this virus transmits from person to person. Mapping the genetic components of
COVID-19 contagion can not only reveal the underlying molecular mechanisms but also
provide useful information for vaccine design. Existing approaches for genomic studies
mainly focus on the identification of individual genes, proteins, or metabolites that are asso-
ciated with the severity of COVID-19, but they do not attempt to characterize how all these
entities affect the disease as a cohesive whole through reconstructing interaction networks.
We propose a new computational framework for inferring maximally informative, dynamic,
omnidirectional, and personalized networks (idopNetworks) from expression data [33,75].
By implementing high-dimensional statistical theory and methods, this framework can
reconstruct idopNetworks at any dimension from any high or even ultrahigh dimension of
data. More importantly, idopNetworks can be recovered from commonly available static
data, without the need to collect more expensive but less accessible dynamic or perturbed
data, making these networks a widespread tool.

We further integrate classic quantitative genetic theory and hypergraph theory to
characterize how genes mediate COVID-19 transmission in human communities. This
integration can systematically portray how genes from transmitters, recipients, and viruses
together influence the severity and spread of COVID-19. We can further reconstruct



Cells 2022, 11, 80 12 of 16

mobile genetic hypergraphs by integrating the community structure of disease spread. By
tracing the path of COVID-19 spread within and across communities, our hypergraphs can
disentangle the genetic causes and consequences of each infection. Monitored results from
this procedure can help the design of medications that can not only treat this disease but also
block its transmission. Studies show that transmission of SARS-CoV-2 may occur during
the prodromal period when those infected were mildly ill [9,10]. Thus, to impede its spread,
it is of utmost importance and urgency to identify potential transmitters. Hypernetworks
reconstructed from omics data may help to identify super-spreaders hidden in a population.

Several surveys have found that some individuals can more rapidly spread larger
amounts of their viral load to the general population when compared to the average in-
fected individual [76]. These individuals, known as super-spreaders, play a leading role
in the epidemic network of SARS-CoV-2. Although the occurrence of super-spreaders
depends on many extrinsic factors, such as frequent contacts, intrinsic factors such as
coinfection with another pathogen, immune suppression, heavy viral loads, and strong vir-
ulence are thought to be crucial [76]. Previous studies have identified considerable cellular
heterogeneity between super-spreaders and general transmitters [77], which suggests the
possibility of distinguishing them by mapping transcriptomic, proteomic, and metabolomic
variation [78,79]. Based on these omics data, our idopNetwork model can be modified
to reconstruct a directed person–person network in which super-spreaders act like hub
nodes. By building a system of qdODEs for characterizing how the gene expression of an
individual changes over different genes, we can reconstruct gene-driven social idopNet-
works that code all possible person-to-person transmissions. Thus, idopNetworks can serve
as a predictor for the incoming epidemic hypernetwork from which to identify potential
super-spreaders. A more stringent containment should be adopted for the super-spreaders
to better control the rate and intensity of COVID-19 spread.

Our genomic and genetic physics models represent the first attempt of its kind to
enhance the genetic dissection of epidemic disease. The limitations of their practical
application may be overcome by equipping the statistical procedure of estimating genetic
effects with the capacity to both (i) incorporate environmental components of disease
outcome and (ii) allow the recipients to receive the virus from multiple transmitters. It
is known that SARS-CoV-2 evolves its ability to infect humans through recombination
with viruses from other host species [80], which should be incorporated for better use of
the models. The incorporation of evolutionary recombination into the hypergraph model
can make it biologically more meaningful and applicable. Taken together, our mobile
hypergraphs, with further modifications from different perspectives, provide a conceptual
lens to further our mechanistic understanding of the genetic complexities that lie behind
COVID-19 and other infectious diseases.

Li et al.’s [74] model allows us to formulate a likelihood for the genotype and pheno-
type data collected from Figure 1A’s strategy. From this likelihood, we obtain the maximum
likelihood estimates (MLEs) of µjkl . By solving Equation (1) (expanded in Table S2), we
estimate the MLEs of the overall mean and 17 main effects and pairwise and high-order
epistatic effects. To test if these effects are collectively significant, we formulate a null hy-
pothesis (assuming the absence of collective effects), which is compared with the alternative
hypothesis (assuming the presence of collective effects) through the log-likelihood ratio
(LR). The significance of collective effects can be tested by the genome-wide critical thresh-
old determined from permutation tests. Each of these effects can be tested individually
through a log-likelihood approach.

The procedure described above is used to scan all SNPs throughout the entire genomes
of humans and viruses. This procedure will allow us to characterize the chromosomal
distribution of significant SNPs on the human and virus genomes. Through the significance
test of each effect that contributes to the genotypic value of a tri-genome combination,
we can chart a genome-wide atlas of how genes govern COVID-19 infection and trans-
missibility. Because these effects act in different ways, representing distinct biological
means, their classification is crucial for predicting and treating the disease. For example,
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if dT is significant, this implies that a transmitter carrying the heterozygous genotype Aa
performs differently in transmissibility from those carrying homozygous genotypes AA
and aa. If dR is significant, this implies that heterozygous recipients perform differently in
disease infection from homozygous recipients. If iddTR is significant, this means that the
transmission of heterozygous transmitters to heterozygous recipients impacts COVID-19
infection and differs from the transmission between other genotype combinations of trans-
mitters and recipients. The significance of high-order epistasis implies that the influence of
transmitter–recipient interaction is determined by viral genes.

Our statistical mechanistic models will have immediate implications. For example,
increasing studies have focused on expression changes of genes, proteins, and metabolites
in COVID-19-infected individuals [10]. By applying our models to these studies, we will
not only characterize key individual entities but also unveil how each entity interacts
with every other entity to determine COVID-19 symptoms. From these interactions, we
can enhance the efficiency of drug design by targeting interactive genes, proteins, and
metabolites. Additionally, when COVID-19 studies are expanded to the population level,
our genetic model can detect and map important DNA variants and their interactions that
take place among recipients, transmitters, and viruses. All this information can help build
a predictive model for COVID-19 risk and spread.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11010080/s1, Table S1: Data structure of SNPs and disease
outcomes/phenotypes for transmitters, recipients, and the virus from the sampling strategy as shown
in Figure 1A. Table S2: Quantitative genetic effects of genes from transmitters (T), recipients (R),
and the virus (V), which can be estimated from Table S1. Figure S1: Fine-grained networks (for
module M3 composed of 463 proteins), with a comparison between control and COVID-19 patients,
visualized by Voronoi treemaps where each polygon area (node) is represented by a protein (with
its name shown). The color metric is proportional to the overall expression level of this protein.
Activation and inhibition are denoted by arrowed red-color and blue-color lines, respectively, with
the thickness of lines being proportional to the strength of protein interactions.
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