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ABSTRACT

IRESite is an exhaustive, manually annotated non-
redundant relational database focused on the IRES

15 elements (Internal Ribosome Entry Site) and contain-
ing information not available in the primary public
databases. IRES elements were originally found in
eukaryotic viruses hijacking initiation of translation
of their host. Later on, they were also discovered in

20 50-untranslated regions of some eukaryotic mRNA
molecules. Currently, IRESite presents up to 92
biologically relevant aspects of every experiment,
e.g. the nature of an IRES element, its functionality/
defectivity, origin, size, sequence, structure, its relat-

25 ive position with respect to surrounding protein cod-
ing regions, positive/negative controls used in the
experiment, the reporter genes used to monitor
IRES activity, the measured reporter protein yields/
activities, and references to original publications as

30 well as cross-references to other databases, and
also comments from submitters and our curators.
Furthermore, the site presents the known similarities
to rRNA sequences as well as RNA–protein interac-
tions. Special care is given to the annotation of

35 promoter-like regions. The annotated data in IRESite
are bound tomostly complete, full-length mRNA, and
whenever possible, accompanied by original plasmid
vector sequences. New data can be submitted
through the publicly available web-based interface

40 at http://www.iresite.org and are curated by a team
of lab-experienced biologists.

INTRODUCTION

The post-transcriptional control of gene expression is attract-
ing more and more attention at the present time, being seen as a

45part of the whole process of protein synthesis where both fast
and fine tuning of the expression of particular mRNA and
control of the overall level of protein synthesis are possible.
The initiation of translation is a rate-limiting step of the ribo-
somal phase of protein synthesis, and thus it is not surprising

50that both the overall and the targeted control of translation
initiation have been found to play an important role in many
processes ranging from the embryonic development and
control of malignancy, to cellular response to stress and dif-
ferent external or internal stimuli. Generally, translation of all

55eukaryotic mRNAs is initiated at their 50-untranslated region
(50-UTR) by binding the initiation complex, comprising of a
small ribosomal subunit, other protein factors and the initiator
Met-tRNAi. All the eukaryotic cellular mRNAs contain a
cap—a methylated guanosine moiety attached to their 50

60terminus, which ensures mRNA stability, and which is recog-
nized by the ribosomal translation initiation complex. Once
attached to the cap, the translation initiation complex scans
50-UTR to the first initiation codon, the complete ribosome is
assembled and starts the nascent polypeptide synthesis. This

65mode of initiation is called the cap-dependent translation
initiation.

Some viruses, including several important pathogens of
human and livestock, do not bear the methylguanosine cap
moiety attached to the 50 terminus of their RNAs and have

70evolved a different strategy which allows them to initiate the
synthesis of viral proteins by the cap-independent pathway.
The alternative strategies of protein synthesis even allow some
viruses—e.g. poliovirus, human rhinovirus, foot-and-mouth
disease virus—to shut off the host-cell protein synthesis
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and hence usurp the cellular translational machinery for the
efficient synthesis of their own proteins. A common feature of
cap-independently translated viral RNAs is the long and
highly structured 50-UTR which mediates the translation ini-

5 tiation complex binding and catalyses the formation of a func-
tional ribosome. The RNA region mediating cap-independent
internal binding of the ribosome to viral RNA within the 50-
UTR—and thus internal initiation of protein synthesis—is
called Internal Ribosome Entry Site (IRES). From the func-

10 tional point of view, the viral IRESs vary in primary and higher
order structures and in their requirements for canonical trans-
lation initiation factors and other cellular or viral proteins
which often bind to IRES and facilitate translation initiation
complex attachment. Some viral IRESs are able to bind 40S

15 small ribosomal subunit alone (hepatitis C virus) or even the
complete 80S ribosome (cricket paralysis virus, Taura syn-
drome virus) (1,2). IRES RNA elements from 56 distinct vir-
uses have been studied so far. As yet �200 scientific
publications have been dedicated to the study of the hepatitis

20 C virus (HCV) IRES, thus making the HCV IRES element the
most prominent. However, other viral IRES elements, espe-
cially from poliovirus (PV), encephalomyelocarditis virus
(EMCV), classical swine-fever virus (CSFV), foot-and-
mouth disease virus (FMDV), human immunodeficiency

25 virus (HIV), bovine viral diarrhoea virus (BVDV) and cricket
paralysis virus (CrPV) are among the frequently studied mod-
els. IRESs can be found in viruses belonging to taxonomically
distant families. Therefore, we may expect that a similar trans-
lation initiation strategy gets utilized also by normal euka-

30 ryotic cells.
Indeed, 73 eukaryotic mRNAs containing IRES have been

reported in the genes of yeast, the fruit fly and mammals during
the past few years, and the number is growing rapidly. Proteins
encoded by these genes cover a very broad spectrum of func-

35 tions and take part in many key processes like stress response,
embryogenesis and development, angiogenesis, the response
to hypoxia and ischemia, cell cycle, oncogenesis, tumorigen-
esis, apoptosis, the transcription and the translation initiation
control and amino acid transport. It was shown that the situ-

40 ation in the cellular IRES field is unlikely to be as simple as
had been thought just a few years ago.

Difficulties with the reliable detection and characterization
of new IRES stem from both the complexity of genomes and
cellular regulatory networks of higher eukaryotes, and the

45 imperfect methodical approaches which are currently used
for IRES determination. The most common methods for deter-
mination of the IRES activity are based on in vivo production
of the 50-capped bicistronic mRNA containing the desired
IRES sequence inserted in between the two reporter genes

50 (3). The calculated expression levels ratio between the second
and the first cistron shows the frequency of translation initi-
ation driven by the inserted IRES sequence at the second
reporter cistron. The first reporter gene is usually translated
by the cap-dependent pathway. The false measurements of the

55 positive IRES activity and other confusions can occur in cases
when shorter mRNA species derived from the test bicistronic
mRNA appear in the experiment. The IRES activity analyses
are usually performed under the conditions in vivo. Such an
experimental setup is more prone to produce shorter and con-

60 sequently ‘more active’ transcripts due to the possible pres-
ence of promoters in the DNA master sequence coding for test

bicistronic mRNA or, at the mRNA level, due to the presence
of sites hypersensitive to breakage or RNases. Cellular IRES
sequences are usually much less efficient compared to the

65larger, highly structured, specialized viral IRESs. The putative
IRES sequences come up from DNA regions located in a close
proximity to the 50 coding part of the genes, and thus, due to
complexity of cellular transcription regulatory networks one
can expect that such sequences will be more inclined to con-

70tain weak or cryptic promoters. These promoters might be
active only under a particular condition and/or tissue context
or might even not be active at all under normal circumstances,
but will be active enough when excised from their natural
vicinity and inserted into the bicistronic construct in the

75new molecular context. The set up of suitable experimental
conditions and proper controls thus becomes a challenge.

Promoters have already been found in several DNA
sequences which had been previously reported to contain
IRES, and there are probably more currently recognized cel-

80lular IRES sequences that require re-evaluation (4–8). How-
ever, clear evidence exists that some mRNAs remain bound to
the polysomes and are translated even under circumstances
when the cellular cap-dependent translation initiation is
reduced, e.g. during stress response [for review, see (9,10)],

85or even severely impaired, e.g. in poliovirus-infected cells
(11). Also many of the currently known cellular IRES seg-
ments are well and reliably characterized and their structures,
interacting proteins and biological functions are reported [for
recent reviews, see (9,10,12–16)]. IRES segments would also

90be responsible for the efficient translation of downstream cis-
trons of natural bi- or polycistronic mRNAs whose occurrence
has been recently reported in both unicellular and multicellular
eukaryotes (17).

We have developed the IRESite database with the aim of
95comparing all known eukaryotic cellular and viral IRES

sequences from the point of view of their primary and sec-
ondary structures, their activities under various experimental
conditions and their requirements for canonical translation
initiation factors and IRES trans-acting factors (ITAFs), as

100well as with the aim of defining as yet unknown common
features of the cellular and viral IRESs, and to answer
other important questions concerning the IRES function.
We hope that the initial dataset currently available will dem-
onstrate the power of the database and will induce scientists

105working in the translation initiation field to contribute their
results and to compare them with others taking advantage of
the provided IRESite tools. IRESite is designed as a non-
redundant public database containing a collection of IRES-
related data which are not available in any of the publicly

110available primary databases. We hope that IRESite will be
accepted not only as a store of valuable data but will turn
into a very helpful analytical tool for molecular biologists.

DATABASE DEVELOPMENT AND DESIGN

The IRESite database has been designed as a very robust
115storage engine intended for housing the maximum possible

scientifically relevant characteristics of every individual
experiment ever published in scientific literature in the field
of IRES elements. We have collected the methodological char-
acteristics of all previously published experimental setups,
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characteristics of the molecules involved in the experiments
and also identified the data types of measured values. We have
also carefully determined several other parameters which all
do or could affect the results of the experiments, their inter-

5 pretation and/or validity. This has led to the accumulation of
92 parameters describing a broad range of experimental attrib-
utes (the most important ones are described in detail below),
which can be completed in the IRESite record. The database
thus accommodates genetic and biochemical data as well as

10 the attributes describing molecules, reagents and methods used
in a course of every single experiment. The current database
schema is balanced to be succinct while most descriptive.
Most of the 92 mentioned attributes are facultative but should
be used whenever possible. If some information is not expli-

15 citly stated in the original publication, it still can be deduced
from the published text or derived from other resources. The
data are stored in mysql-4.1 relational database using InnoDB
tables and our programs use SQL transactions to ensure max-
imal data safety. To keep the number of records minimal, the

20 data are organized efficiently and no overly similar rows are
accumulated within the very same table. This requires the
database to have a certain structure and the direct result of
this approach is the separation of the 92 recorded parameters
into 25 tables.

25 The IRESite database can accommodate any scientific
report describing either a new IRES segment, its primary or
secondary structure, interaction with proteins or rRNA or even
reports improving the functional characterization (Figure 1).
The database can also cope with records which were shown in

30 more recent publications not to be IRESs at all (for various
reasons). This rapid development in IRES research has led to
the introduction of the ‘IRES status’ attribute (explained in the
text below) which allows us to rate the IRES elements using a
relatively fine-grained scale. Thus, it is possible to re-annotate

35 already existing data in IRESite when new findings appear and
it is possible to append new results to previously reported
entries while keeping the new data separated from the former
and retaining proper citations. For example, it is very simple
for a user to add new results describing a new RNA–protein

40 interaction or yet another secondary structure determined on
some formerly reported RNA molecule or even add new
expression data obtained by translation of the very same bicis-
tronic reporter mRNA molecule in another host organism or
another in vitro system.

45 The IRESite is a curated database with an extra value added
by curators in respect of the data contained in the original
publications. Such new data include for example full-length
sequence information, evaluation of the methodological
approach used in the original publications, recalculation of

50 experimentally measured values into relative scale, etc. All
IRESite records consist of several parts which have their own
version numbers. This allows the precise tracking of changes
by future third party software using the data (Figure 1).

CONTENT OF THE DATABASE

55 The IRESite database distinguishes two basic types of
records—‘natural’ and ‘engineered’. IRES records referred
to herein as ‘natural’ contain data describing the features of
the naturally occurring RNA molecule inherently possessing

the particular IRES sequence. Remarkable attributes of ‘nat-
60ural’ records are as follows:

� Description of the mRNA/+RNA molecule.
� Occurrence of promoters in donor DNA.
� List of open-reading frames, their coordinates, description,
the presence of frameshift or translational read-through sites

65and the existence of multiple protein variants as the result of
alternative initiation of translation.

� IRES status describes whether the recorded element is cur-
rently considered as functional IRES. This field can clearly
separate functional IRESs from their aberrant forms.

70� mRNA status similarly describes the quality of the mRNA/
+RNA sequence as it is available in the database. It clearly
highlights records containing experimentally verified full-
length sequence information.

� The rRNA complementarity section helps to separate IRES
75elements containing regions complementary to some of the

rRNAs.
� The RNA–protein interaction data section is used to collect
maximum information about the IRES trans-acting factors
(ITAFs).

80� The RNA secondary structure section is used to describe
experimentally verified secondary structures.We use bracket
notation (18) to demonstrate paired and unpaired nucleic acid
regions.

85IRES records referred to as ‘engineered’ describe IRES
containing RNA molecules, which were artificially construc-
ted by researchers and used in some experiments. Besides
containing essentially the same descriptive set of data
which are used for the annotation of ‘natural’ RNA, the ‘engin-

90eered’ records contain additional entries. These entries
describe the experiment and/or set of experiments where par-
ticular artificially constructed (meaning engineered) RNA was
used. This kind of organization of the database allows careful
monitoring of experimental conditions, detailed evaluation of

95positive and negative controls used during the experiment and
mainly allows comparison of the experimentally obtained data
with other already published experiments. In addition to the
features of ‘natural’ records shown above, the ‘engineered’
records have the following attributes:

100� Name and sequence of the plasmid vector including the
inserted IRES element.

� Promoter name used to drive transcription from the plasmid.
� Analyses taken to prove that mRNA was transcribed in its
expected size and integrity.

105� The effect of various inhibitors of cap-dependent translation
on yields/activity of the reporter proteins.

� Actual yields/activity of the reporter proteins related to posi-
tive and negative control whenever applicable.

� Size of tested intercistronic region and position of the IRES
110within it.

� Size of intercistronic region of the positive and the negative
controls.

� Typeof translation system (either in vitroor in vivo) including
further specification (cell line, organism, temperature, etc.) of

115the experimental conditions.

The ‘natural’ records are expected to be updated by curators
when new findings are reported. On the other hand, the
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‘engineered’ records are not expected to change in this case
as they refer to an individual experiment carried out in the
past. The only exception could be changes in the interpretation
of the recorded experimental results reflected by the IRES

5 status and Remarks columns. It is very important to note
that not all ‘engineered’ records describe the functional
IRES element as the IRES function is typically demonstrated
hand-in-hand with studies of IRES variants displaying some-
how impaired activity and supported by negative and positive

10 controls. This will lead to over-representation of the ‘engin-
eered’ records in the database. Their increasing number will
make them the most valuable due to their potential to be used
in direct comparison of function, e.g. of the particular IRES
segment under different experimental conditions or inversely

15 of different IRES segments in the same cell line, vector,
translation lysate, etc.

DATABASE ACCESS AND INTERFACE

The IRESite database is accessible freely through the Internet
at http://www.iresite.org. Its user-friendly interface is made of

20dynamically generated HTML/JavaScript based web-pages.
The database contents can be easily browsed using any web
browser or searched for by an extremely powerful search
interface which allows the search by a combination of multiple
parameters. Whenever applicable, the IRESite entries are

25cross-linked to several external databases including GenBank
(19), PubMed (20), NCBI Taxonomy (20), PDB (21) and
SCOP (22).

At the moment, the search tool offers 50 distinct query fields
which cover the most relevant fields available in the database.

30For example, a user can query the IRESite by any substring
appearing in the name of an organism, the name of a gene, the

Figure 1. Every individual IRESite record consists of two facultative sections (NUCLEIC ACID and IRES ELEMENT) and up to four optional sections (rRNA
COMPLEMENTARITY, TRANSLATION, PROTEIN INTERACTION and 2D STRUCTURE).Whenever possible, the data are hyperlinked to external databases
includingGenBank,NCBITaxonomy and protein-oriented databases. Every section providesRemarks field for the additional data and link to original publication(s).
For simplicity, the data shown here are representative pieces of several distinct records (non-existing chimera). All sections of every IRESite record except the
NUCLEICACID section allow embedded unlimited amount of child sections. Thus, multiple regions of themRNA/+RNA can be annotated on singlemolecule as an
IRES containing region, RNA–protein interacting region (and multiple interacting proteins too), rRNA complementary region and secondary structures. In the case
of ‘engineered’ records, IRES activity within these regions is described in section TRANSLATION by the experimentally measured values.
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name of an IRES, the description, the function or the remarks
columns and in any combination of these. The user can also
filter the data by the size of an mRNA/+RNA molecule, by the
size of an IRES, by relative position of the IRES within the

5 underlying mRNA/+RNA, by the promoter used for transcrip-
tion from plasmid vector and even by the yields of the trans-
lation reactions. Further, it is possible to include/exclude from
the result such experiments where cap analogs were (or were
not) supplemented into the translational system (or introduced

10 into the host cells). Importantly, one can find experiments
where mRNA was introduced ready-made into the transla-
tional system. The user can also filter experiments where
secondary structure was characterized, where RNA–protein
interaction was demonstrated or where base-pairing between

15 IRES containing RNA and rRNA was reported.
New data can be submitted through the IRESite web inter-

face after creating a personal account. The submission form
contains extensive help text for every field directly accessible
from the browser window, thus the submission procedure is

20 very simple. Conveniently, for a submitter sequence informa-
tion including the names of the genes encoded within ORFs,
their synonyms, source host organism and several other para-
meters are fetched from the GenBank when the GI:# number
is supplied. Similarly, citation data are fetched from NCBI

25 PubMed when a PMID number is provided. Individual account
holders can store their own, as yet unfinished submission data
on the server and therefore postpone the submission. During
any subsequent session, the user may continue any of the
formerly unfinished submissions and eventually submit the

30 record to the curators. They verify completeness of the record,
the logical content and especially ensure that the IRES is
properly labelled as either being ‘true IRES’ (read functional)
or being a ‘defective’ mutant variant of the former, or will
mark the record as ‘not IRES’ (e.g. when a cryptic promoter is

35 found in the mRNA). Similarly, curators can postpone their
work and thus only approved records are released. Any sub-
mitted data can be delayed and made available to the public
after a certain date in the future upon request. The curators
contact submitters by email.

40 DISCUSSION AND FUTURE DEVELOPMENT

We present here fully a functional database solution which is
dedicated to IRES segments of viral and cellular origin. By the
end of October 2005, the IRESite has been filled with the
initial set of data consisting of 30 ‘natural’ and 40 ‘engineered’

45 entries. Those already available ‘natural’ mRNA records con-
stitute more than one-fifth of all known viral and cellular
IRESs and thus represent a considerable portion of all the
data published so far. The IRESite database further extends
the idea of Bonnal and co-authors who clearly showed the

50 necessity of the database aimed at viral and cellular IRESs
(23). However, the databases do not overlap to any consider-
able degree. Furthermore, the IRESite is designed to accom-
modate RNA secondary structure information and information
about the experiments carried out with the aim of both study-

55 ing and utilizing the IRES elements. As we have already
mentioned herein, most of the information presented in the
IRESite database is manually extracted from published liter-
ature and with the help of public databases. Many independent

pieces of information had to be creatively put together in order
60to obtain the final records which have subsequently been

evaluated by a team of experienced biologists. As an example
of this kind of laborious work, we use herein one of the 92
available attributes—the mRNA sequence. Our aim is to
collect the full-length sequences of all mRNAs manifesting

65IRES activity. Many of these sequences do not exist in any
database and they have to be either manually extracted from
the literature or mostly taken from public sequence databanks
and manipulated to match the description in literature. A sim-
ilar task to collect experimentally verified data was also faced

70by UTRdb curators. UTRdb is a valuable database of 50 and 30

untranslated sequences of eukaryotic mRNAs which contains
as few as 52 UTRexp records with experimentally investigated
50 and 30-UTRs of �300.000 entries automatically derived
from primary sequence databanks (24). Some of the UTRexp

75sequences like the IRESite entries had to be manually
extracted from literature.

In the near future, we plan to provide IRESite with a blast
interface and a graphical representation of the currently avail-
able secondary structure data. We are also preparing the

80implementation of a new tool which will allow us to search
the database by secondary structure motifs. We will continue
to fill the database with new data and expect that most, if not
all, currently known cellular IRES sequences will appear in the
database by the beginning of 2006. We hope that the IRESite

85will help to clarify the situation in the eukaryotic cellular IRES
field and will help to formulate new operational criteria more
suitable for the distinction of eukaryotic cellular IRES
sequences. Finally, because of the content and the regular
updates of primary data, we believe that the IRESite database

90will become a respected source of information.
IRESite is an open database and thus we would like to invite

the scientific community not only to use and analyse its con-
tent but also to kindly contribute their results and provide
feedback. Our team is ready to help any researcher with the

95data submission procedure.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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