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Abstract: Cisplatin (CDDP), one of the most eminent cancer chemotherapeutic agents, has been
successfully used to treat more than half of all known cancers worldwide. Despite its effectiveness,
CDDP might cause severe toxic adverse effects on multiple body organs during cancer chemotherapy,
including the kidneys, heart, liver, gastrointestinal tract, and auditory system, as well as peripheral
nerves causing severely painful neuropathy. The latter, among other pains patients feel during
chemotherapy, is an indication for the use of analgesics during treatment with CDDP. Different types
of analgesics, such as acetaminophen, non-steroidal anti-inflammatory drugs (NSAIDS), and narcotic
analgesics, could be used according to the severity of pain. Administered analgesics might modulate
CDDP’s efficacy as an anticancer drug. NSAIDS, on one hand, might have cytotoxic effects on their
own and few of them can potentiate CDDP’s anticancer effects via inhibiting the CDDP-induced
cyclooxygenase (COX) enzyme, or through COX-independent mechanisms. On the other hand,
some narcotic analgesics might ameliorate CDDP’s anti-neoplastic effects, causing chemotherapy to
fail. Concerning safety, some analgesics share the same adverse effects on normal tissues as CDDP,
augmenting its potentially hazardous effects on organ impairment. This article offers an overview of
the reported literature on the interactions between analgesics and CDDP, paying special attention to
possible mechanisms that modulate CDDP’s cytotoxic efficacy and potential adverse reactions.

Keywords: cisplatin; analgesics; acetaminophen; non-steroidal anti-inflammatory drugs;
morphine; cytotoxicity

1. Introduction

Cisplatin (CDDP) is a platinum-based agent that has long been used in the treatment
of various types of malignancies [1]. Unfortunately, CDDP may cause toxic side effects on
normal human tissues that might lead to multiple organ damage [2,3]. During chemother-
apy, several patients may suffer from pain and are likely to take medications to relief it.
According to the level of the pain, these medications may range from acetaminophen or
non-steroidal anti-inflammatory drugs (NSAIDs), in the case of mild to moderate pain,
reaching up to stronger pain killers such as narcotic analgesics in the case of severe pain. It
is possible that administering these medications concomitantly with CDDP might augment
CDDP-induced organ toxicity or alter its anticancer efficacy. To date, the interactions of
analgesics with CDDP have not been fully reviewed. Here, data were collected from the
literature to formulate an updated review of the molecular mechanisms that might be in-
volved in the interactions of different types of analgesics with CDDP, and the implications
of such interactions on rational use of analgesics for the treatment of pain during CDDP
cancer chemotherapy in humans.
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2. CDDP Efficacy and Toxicity

CDDP was originally created by M. Peyrone in 1844, and in 1893 its chemical com-
position (Figure 1) was first revealed by Alfred Werner [4]. This was followed by the
accidental discovery of CDDP’s cytotoxic actions by Dr. Rosenborg in 1965 [5] and the
approval of CDDP for medical use in 1978 [6]. Since then, this anticancer drug has been
used to treat numerous neoplasms, including those of the testes, ovaries, uterus, breasts,
bladder, gastrointestinal tract, lung, bone, and brain [4,6,7]. CDDP performs its anticancer
actions through forming covalent intra-strand DNA adducts between its CDDP platinum
complexes and the neoplastic cell DNA, which causes subsequent DNA damage and ob-
struction of efficient DNA repair, resulting in restriction of DNA synthesis and inhibition of
tumor cell growth [8,9]. CDDP induces free-radical formation, especially reactive oxygen
species (ROS) that can be the initial trigger of cancer-programmed cellular death: apoptosis.
This is due to the induction of pro-apoptotic factors, such as Bax and Bid, and the dysregu-
lation of anti-apoptotic factors, such as Bcl-2, as well as the activation of caspases, which
result in an apoptotic cascade [10]. Unfortunately, CDDP, by the same mechanisms, may
also affect normal tissues, resulting in morbid, and sometimes fatal, side effects. Nearly
a quarter of patients treated with CDDP develop nephrotoxicity as a side effect, through
epigenetic DNA methylation, histone modification, oxidative stress, inflammation, and
apoptosis [11]. Similar mechanisms are involved in CDDP-induced hepatotoxicity [12,13],
cardiotoxicity [14], gastrointestinal toxicity [15], and ototoxicity [16]. CDDP was also found
to be neurotoxic [17], affecting mainly sensory nerves, inducing painful neuropathy as a
side effect [18], which may be a strong indication for the use of analgesics concomitantly
with CDDP to relief such pain.

Figure 1. Chemical structure of cisplatin. Two neutral ammonia (NH3) ligands and two chloride (Cl)
anions are coordinated to the central platinum (Pt) ion.

3. Interactions of Acetaminophen with CDDP

Acetaminophen, also acknowledged as paracetamol, is a para-aminophenol derivative
that may be used for the management of mild to moderate pain during CDDP anticancer
treatment, as well as for treatment of CDDP-chemotherapy-related fever [19]. Since it
lacks anti-inflammatory properties, acetaminophen is usually not considered as one of the
NSAIDs. It was reported that acetaminophen may act as a chemo-enhancer that promotes
the cytotoxic effect of CDDP on hepatocarcinoma and hepatoblastoma cells, by decreasing
GSH and the induction of oxidative stress [20]. The same mechanism was seen when
an acetaminophen/CDDP combination was administered to resistant atypical teratoid
rhabdoid pediatric tumor cells [21] and human ovarian carcinoma [22]. Unfortunately,
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both acetaminophen and CDDP are considered hepato- and nephrotoxic [23], thus may be
cautiously used concomitantly if the patient has kidney or liver function impairment.

4. Interactions of NSAIDs with CDDP

The major mechanism of action of NSAIDs in treating pain is through the inhibition
of the cyclooxygenase (COX) enzyme that catalyzes the formation of eicosanoids that
mediate inflammation and pain, such as thromboxanes, prostaglandins, and prostacyclins,
from membrane phospholipid arachidonic acid [24]. Since inflammation offers a suitable
microenvironment for malignancies to develop, it is conceivable that NSAIDs possessing
anti-inflammatory properties may help in the management of cancer. Interestingly, CDDP
can induce COX-2 that causes the secretion of large amounts of prostaglandins, resulting
in a decrease in CDDP chemotherapeutic efficacy [25,26]. It is, thus, logical that NSAIDs,
especially selective COX-2 inhibitors, might act as chemosensitizers to resistant cancers,
making them more susceptible to treatment by CDDP [27]. Interestingly, several non-
selective NSAIDs, such as ketoprofen and naproxen, were assumed to have cytotoxic,
anti-proliferative effects on their own, which was independent from the COX pathway,
but seemed to be, at least partially, due to the induction of the NSAID-activated gene;
NAG-1 [28]. NSAIDs that hold some potential to improve CDDP anticancer effects are
summarized in Figure 2.

Figure 2. Effect of different analgesics on cisplatin’s anticancer efficacy. Analgesic names in green
letters are non-steroidal anti-inflammatory drugs and those in red letters are narcotic analgesics.

The NSAIDs can be subdivided into salicylates, propionic acids, acetic acids, enolic
acids, anthranilic acids, naphthylalanine, and selective COX-2 inhibitors [24]. Due to their
chemical diversity, NSAIDs show different levels of selectivity on inhibiting COX-1 and
COX-2 enzymes [29]. In general, most non-selective NSAIDs are known to induce gastric
ulceration [30], as well as having renal side effects including tubulointerstitial nephritis,
nephrotic syndrome, acute kidney injury, and chronic kidney disease [31], whereas COX-2
selective NSAIDs may cause cardiovascular side effects [32]. Still, there are several ex-
ceptions. For example, the non-selective NSAID loxoprofen, might not harm the gastric
mucosa as much as its peer NSAIDs [33]. Its derivative fluoro-loxoprofen, might even have
gastroprotective effects [34]. Indomethacin, on the other hand, was reported to have the
highest gastrotoxic potential [35].

4.1. Interactions of Salicylates with CDDP

Salicylate, the prototype of NSAIDs, has shown promising anticancer effects [36–38].
Several studies indicated that salicylate can, by different mechanisms, increase the cytotoxic
efficacy of CDDP. In one study, salicylate was reported to improve the anti-tumor effects of
CDDP against T cell lymphoma via changing the tumor microenvironment pH, altering
the expression of the cell cycle’s regulatory/apoptotic factors, such as p53, bcl-2, bcl-xL,
cyclin B1, and D, as well as cytokines IFN-γ, VEGF, IL-4, and -10 [39]. Other studies
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showed that salicylate also increased the anti-tumor effect of CDDP against osteosarcoma,
through modulating the NF-κB pathway [40], and against non-small cell lung carcinoma
stem-like cells by repressing migration through acting on the mTOR-Akt axis [41]. In
addition, salicylate improved CDDP toxicity against colon cancer cells through preventing
NF-κB binding to a COX-2 promoter [42] against lung cancer cells, by abrogating cancer
cell stemness [43], against epithelial ovarian cancer cells by increasing p53 acetylation
and promoting apoptosis [44], and against oesophageal squamous cell carcinoma through
epigenetic modulation of chromatin by altering histone acetylation levels [45]. Due to these
beneficial effects, asplatin or prodrug platin-A, which are CDDP-based Pt(IV) prodrugs
complexed with salicylate, were developed to improve cytotoxicity against resistant cancer
cells [46,47]. Despite its obvious potentiating cytotoxic effects on tumor cells, salicylate
might have a protective effect on normal cells against CDDP-induced nephrotoxicity,
ototoxicity, and neurotoxicity [48–50].

4.2. Interaction of Propionic Acid-Derived NSAIDs (Profens) with CDDP

Ibuprofen, one of the propionic acid-derived NSAIDs, showed cytotoxic effects when
administered alone to human promyelocytic leukemia and colon carcinoma cells [51]. Some
studies succeeded in synthesizing lipid encapsulated ibuprofen metallodrug nanoparticles
to overcome CDDP chemoresistance in glioblastoma cancer cells [52]. It was also reported
that ibuprofen increased CDDP anticancer efficacy against lung cancer cells through de-
pletion of heat shock protein 70, thus enhancing tumor cell apoptosis [53]. In addition,
combining ibuprofen with CDDP caused a higher cytotoxic effect on thyroid and pancreatic
cancer cells in vitro [54]. Furthermore, an ibuprofen/CDDP combination reversed CDDP
resistance in non-small-cell lung cancer through a COX-independent mechanism [55]. In
addition to increasing CDDP’s cytotoxic efficacy, ibuprofen was reported to inhibit human
ovarian cancer cell metastasis into several organs, such as the liver, lungs, bone marrow,
and spleen in mice [56]. Unfortunately, through stimulating oxidative stress, ibuprofen
might cause toxicity similar to CDDP on the kidneys and liver [57,58].

Ketoprofen, another propionic acid-derived NSAID, was conjugated with CDDP-
based Pt(IV) prodrug to form ketoplatin that could delay breast cancer cells’ tumor growth
and had less systemic toxic effects compared to CDDP alone in vitro and in vivo [59]. Inter-
estingly, ketoprofen was suggested to protect against CDDP-induced nephrotoxicity [60],
which is in line with more recent findings that ketoprofen has no nephrotoxic effects [61].
Several trials were also performed to assess the anti-tumor effects of combining CDDP with
a third propionic acid-derived NSAID, naproxen [62,63], where the combination showed
higher cytoxicity than CDDP alone on human cancer cells of the lungs and ovaries, with less
toxicity on normal human liver cells [64]. Similar results were shown for a naproxen/CDDP
combination on triple-negative breast cancer [65], as well as on ovarian endometrioid ade-
nocarcinoma, lung adenocarcinoma, malignant pleural mesothelioma, and colon carcinoma
cells [28]. Carprofen alone was able to ameliorate canine osteosarcoma in vitro [66]. Novel
NSAIDs were created, such as derivatives of naproxen, flurbiprofen, and ibuprofen, that
showed promising anticancer effect against cultured human glioblastoma cells [67], as well
as human liver, breast, and colon carcinoma cells [68]. Whether the anticancer effects of
these NSAIDS would be additive to that of CDDP or not still needs further investigation.

4.3. Interaction of Acetic Acid-Derived NSAIDS with CDDP

One of the acetic acid-derived NSAIDs, indomethacin, attenuated the growth of human
oesophageal squamous carcinoma cells [69]. Sulindac could also ameliorate the growth
rate of oral tumor cells and help their elimination by natural killer cells [70]. In addition,
sulindac could prevent the progression of colorectal cancer clinically, by up-regulating
cyclin G2 which resulted in delaying tumor cell cycle progression [71]. Interestingly,
sulindac showed comparable cytotoxic effects to those of CDDP when tested on HEK293
cells [72]. Given together with CDDP, ketorolac succeeded in reversing CDDP chemo-
resistance in a patient-derived cell xenograft model [73]. Diclofenac also showed improved
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CDDP anticancer effects against human lung adenocarcinoma CDDP-resistant cells [74,75].
To the contrary to what is expected from non-selective COX inhibitors, diclofenac did not
deteriorate CDDP-induced nephrotoxicity [74]. Nevertheless, diclofenac, as with CDDP,
had the hazard of causing hepatotoxicity as an adverse effect [76].

4.4. Interaction of Enolic Acid Derivatives of NSAIDs (Oxicams) with CDDP

Meloxicam, an enolic acid derivative of NSAIDs with relative preferential selectivity
to inhibit COX-2, had a synergistic effect on CDDP cytotoxicity in human osteosarcoma
cells [77]. Interestingly, meloxicam protected the kidney from CDDP-induced renal lesions
in mice [78]. Oxicams have been suggested as chemosensitizers of CDDP, and some trials
attempted to develop CDDP–oxicam complexes as anticancer drugs, using meloxicam
and isoxicam, where the results showed promising cytotoxic effects on different cell lines
in vitro [79]. Piroxicam, another enolic acid derivative of NSAIDs, when given as an adju-
vant to CDDP-loaded nanoparticles, increased apoptosis in mesothelioma cells [80]. Unfor-
tunately, unlike meloxicam, piroxicam was shown to worsen CDDP-induced nephrotoxicity
in rats [81]. Tenoxicam alone seemed tolerable in patients with renal impairment [82], but
was reported to have an injurious effect on the liver [83].

4.5. Interaction of Anthranilic Acid and Naphthylalanine Derivatives of NSAIDs (Fenamates)
with CDDP

The anthranilic acid derivatives, flufenamic and mefenamic acids, were reported
to augment CDDP’s anticancer effect in vitro through inhibiting aldo–keto reductase 1C
enzyme [84,85]. Similarly, tolfenamic acid was coupled with CDDP to form a nanopro-
drug that had tumor apoptotic and anti-metastatic effects on breast cancer in vitro and
in vivo [26]. On their own, neither meclofenamic nor niflumic acid showed promising
anticancer effects against uterine cervical cancer and breast adenocarcinoma cells, respec-
tively [86,87]. Concerning safety, meclofenamic acid could aggravate CDDP-induced renal
damage [88]. However, meclofenamic acid seemed to have the potential to protect against
CDDP-induced ototoxicity via improving the viability of ear hair cells [89]. Nabumetone, a
naphthylalanine derivative, had an antiproliferative effect on MCF-7 and MDA-MB-231
breast carcinoma cells [90], with low toxic effects on gastric mucosa cells [91].

4.6. Interaction of COX-II Selective NSAIDS (Coxibs) with CDDP

Selective COX-2 inhibitors, frequently referred to as “coxibs”, were reported to have,
on their own, promising potential for preventing and treating malignancies [92,93]. Ad-
ministered with CDDP, rofecoxib was reported to enhance cytotoxic effects on gastric
cancer cells by down regulating multidrug resistance protein 1 expression [94]. Neverthe-
less, combining CDDP with celecoxib did not improve the anticancer activity of CDDP
against human esophageal squamous cell carcinoma xenograft model in vivo [95]. Despite
their safety with regards to gastric ulceration, selective COX-2 inhibitors were reported
to mediate cardiotoxicity [32]. Indeed, several members of this group, such as valdecoxib
and rofecoxib, were removed from the market due to their potential cardiovascular haz-
ards [96,97]. Despite its reported hazard on cardiomyocytes [98], celecoxib only received
a box warning on its pack, but is still sold in the market. Interestingly, parecoxib was
reported to have a protective effect on ischemia-reperfusion injury of the heart in rats [99].
Celecoxib showed protective effect against CDDP-induced nephrotoxicity [100]. Another
coxib, still present on the market, etoricoxib, was tested for possible nephroprotective
effects against CDDP-induced renal toxicity in rats, but, unfortunately, the results were not
conclusive [101].

5. Interaction of Narcotic Analgesics with CDDP

Opioids have different impacts on cancer viability. Both morphine and fentanyl
might promote cancer, while buprenorphine had no effect on cancer, and tramadol might
ameliorate cancer by modulating the activity of natural killer cells [102]. Tramadol initiated
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apoptotic effects in colon cancer stem cells [103]. Still, tramadol might interfere with
CDDP cytotoxicity via a different mechanism, as it suppresses gap junction activity [104].
It seems that opioids, especially µ- and κ-receptor agonists, suppressed natural killer
cells cytotoxicity, promoting viability of cancer cells [105]. Indeed, fentanyl decreased the
sensitivity of lung cancer cells to CDDP [106]. We have shown that morphine, the prototype
agonist of opioid µ-receptor, also reduced the anticancer efficacy of CDDP on breast cancer
cells [107]. An exception to this is methadone, another opioid µ-receptor agonist, that might
enhance CDDP anticancer effects against bladder cancer [108], as well as head and neck
cancer cells [109]. Regarding toxicity, we have previously reported the hazardous effects of
morphine on CDDP-induced cardiotoxicity and hepatotoxicity [13,107]. Tapentadol was
also reported to cause lung, heart, and neuronal toxicity [110], as well as hepatorenal toxic
effects [111]. Further studies are needed to validate if tapentadol’s side effects would be
cumulative to that of CDDP if taken together. Table 1 summarizes the effect of different
analgesics on CDDP-induced toxicities.

Table 1. Effect of analgesics on organ toxicity that may deteriorate or protect against cisplatin-induced
organ/tissue damage.

Name of NSAID Organ/Tissue Effect Type of Experiment Ref.

Acetaminophen
Kidney Nephrotoxicity

Animal study (rat) [23]
Liver Hepatotoxicity

NSAIDs 1 Kidney Nephro-protective Animal study (rat) [48]

1. Salicylate
Auditory system Protect against

ototoxicity Human study [49]

Neurons Neuro-protective In vitro [50]

2. Propionic acid-derived NSAIDs

Fluoro-loxoprofen Stomach Gastroprotective Animal study (rats) [34]

Ibuprofen
Kidney Nephrotoxicity Animal study (rat) [57]

Liver cells Hepatotoxicity In vitro [58]

Ketoprofen Kidney Nephro-protective Animal studies
(rat and pig) [60,61]

3. Acetic acid-derived NSAIDS

Indomethacin Stomach cells Gastric ulceration In vitro [35]

Diclofenac
Kidney Nephrotoxicity Human (review) [31]

Liver Hepatotoxicity Animal study (rat) [76]

4. Enolic acid-derived NSAIDs

Meloxicam Kidney Nephroprotective Animal study (mouse) [78]

Piroxicam
Stomach Gastric ulceration Human (review) [30]

Kidney Nephrotoxicity Animal study (rat) [81]

Tenoxicam Liver Hepatotoxicity Animal study (rat) [83]

5. Anthranilic acid-derived NSAIDs

Meclofenamic acid
Kidney Nephrotoxicity Animal study (mouse)

and in vitro [88]

Cochlear hair cell Protect against
ototoxicity In vitro [89]
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Table 1. Cont.

Name of NSAID Organ/Tissue Effect Type of Experiment Ref.

6. COX-II 2 selective NSAIDS

Valdecoxib Heart Cardiotoxicity Human (review) [96]

Rofecoxib Heart Cardiotoxicity Animal study (rat) [97]

Celecoxib
Cardiomyocytes Cardiotoxicity In vitro [98]

Kidney Nephroprotective Animal study (rat)
and in vitro [100]

Parecoxib Heart Cardio-protective Animal study (rat) [99]

Narcotic analgesics

Morphine
Heart Cardiotoxicity Animal study (rat) [13]

Liver Hepatotoxicity Animal study (rat) [107]

Tapentadol

Lung, heart, and
neurons

Lung, heart, and
neuronal toxicities Animal study (rat) [110]

Liver, Kidney Hepato- and
nephrotoxicity Animal study (rat) [111]

1 NSAIDs; non-steroidal anti-inflammatory drugs, 2 COX-II; cyclooxygenase-II.

6. Conclusions

Despite the absolute need for analgesics for the treatment of pain during cancer
chemotherapy with CDDP, physicians should bear in mind the consequences of the com-
bination of different analgesics on CDDP efficacy and toxicity. Rational evidence-based
combinatorial therapy with CDDP and analgesics can provide enormous benefits in provid-
ing higher selectivity in targeting cancer cells and avoiding augmentation of the hazards
of CDDP’s side effects. Still, it should be noted that the majority of available data con-
cerning the interaction between CDDP and analgesics on the level of efficacy and toxicity
were generally interpreted from in vitro or in vivo animal models. Future clinical studies
are needed to verify the impact of the CDDP/analgesic interaction during actual patient
chemotherapeutic settings.
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Syntheses and cytotoxicity of phosphatidylcholines containing ibuprofen or naproxen moieties. Sci. Rep. 2019, 9, 220. [CrossRef]

52. Alves, S.R.; Colquhoun, A.; Wu, X.Y.; Silva, D.D.O. Synthesis of terpolymer-lipid encapsulated diruthenium(II, III)-anti-
inflammatory metallodrug nanoparticles to enhance activity against glioblastoma cancer cells. J. Inorg. Biochem. 2020, 205, 110984.
[CrossRef] [PubMed]

53. Endo, H.; Yano, M.; Okumura, Y.; Kido, H. Ibuprofen enhances the anticancer activity of cisplatin in lung cancer cells by inhibiting
the heat shock protein 70. Cell Death Dis. 2014, 5, e1027. [CrossRef] [PubMed]

54. Petruzzella, E.; Sirota, R.; Solazzo, I.; Gandin, V.; Gibson, D. Triple action Pt(iv) derivatives of cisplatin: A new class of potent
anticancer agents that overcome resistance. Chem. Sci. 2018, 9, 4299–4307. [CrossRef] [PubMed]

55. Fan, C.-C.; Tsai, S.-T.; Lin, C.-Y.; Chang, L.-C.; Yang, J.-C.; Chen, G.; Sher, Y.-P.; Wang, S.-C.; Hsiao, M.; Chang, W. EFHD2
contributes to non-small cell lung cancer cisplatin resistance by the activation of NOX4-ROS-ABCC1 axis. Redox Biol. 2020, 34,
101571. [CrossRef]

56. Gunjal, P.M.; Schneider, G.; Ismail, A.A.; Kakar, S.S.; Kucia, M.; Ratajczak, M.Z. Evidence for induction of a tumor metastasis-
receptive microenvironment for ovarian cancer cells in bone marrow and other organs as an unwanted and underestimated side
effect of chemotherapy/radiotherapy. J. Ovarian Res. 2015, 8, 1–11. [CrossRef]

http://doi.org/10.1016/j.lfs.2020.117631
http://doi.org/10.1248/bpb.33.398
http://www.ncbi.nlm.nih.gov/pubmed/20190399
http://doi.org/10.1016/j.bcp.2012.09.016
http://www.ncbi.nlm.nih.gov/pubmed/23022227
http://doi.org/10.1016/j.plefa.2006.04.006
http://www.ncbi.nlm.nih.gov/pubmed/16806870
http://doi.org/10.1042/BJ20150122
http://doi.org/10.1002/pros.23755
http://www.ncbi.nlm.nih.gov/pubmed/30609074
http://doi.org/10.1016/j.mbplus.2020.100031
http://www.ncbi.nlm.nih.gov/pubmed/33543028
http://doi.org/10.1007/s11010-012-1421-9
http://www.ncbi.nlm.nih.gov/pubmed/22893064
http://doi.org/10.1158/1078-0432.CCR-15-0198
http://www.ncbi.nlm.nih.gov/pubmed/26202947
http://doi.org/10.1038/s41598-019-53134-0
http://doi.org/10.18632/aging.102644
http://doi.org/10.1111/1759-7714.13619
http://www.ncbi.nlm.nih.gov/pubmed/32991066
http://doi.org/10.7717/peerj.11591
http://www.ncbi.nlm.nih.gov/pubmed/34414020
http://doi.org/10.1038/s41416-021-01499-3
http://doi.org/10.1039/C4CC00419A
http://doi.org/10.1002/anie.201308899
http://doi.org/10.1081/DCT-120024841
http://doi.org/10.1007/s10616-015-9896-3
http://www.ncbi.nlm.nih.gov/pubmed/26199062
http://doi.org/10.1038/s41598-018-36571-1
http://doi.org/10.1016/j.jinorgbio.2019.110984
http://www.ncbi.nlm.nih.gov/pubmed/31927403
http://doi.org/10.1038/cddis.2013.550
http://www.ncbi.nlm.nih.gov/pubmed/24481441
http://doi.org/10.1039/C8SC00428E
http://www.ncbi.nlm.nih.gov/pubmed/29780561
http://doi.org/10.1016/j.redox.2020.101571
http://doi.org/10.1186/s13048-015-0141-7


Medicina 2022, 58, 46 10 of 12

57. Awad, D.S.; Ali, R.M.; Mhaidat, N.M.; Shotar, A.M. Zizyphus jujuba protects against ibuprofen-induced nephrotoxicity in rats.
Pharm. Biol. 2013, 52, 182–186. [CrossRef] [PubMed]

58. Kim, M.; Lee, E.J.; Lim, K.-M. Ibuprofen Increases the Hepatotoxicity of Ethanol through Potentiating Oxidative Stress. Biomol.
Ther. 2021, 29, 205–210. [CrossRef] [PubMed]

59. Ma, Z.-Y.; Song, X.-Q.; Hu, J.-J.; Wang, D.-B.; Ding, X.-J.; Liu, R.-P.; Dai, M.-L.; Meng, F.-Y.; Xu, J.-Y. Ketoplatin in triple-negative
breast cancer cells MDA-MB-231: High efficacy and low toxicity, and positive impact on inflammatory microenvironment.
Biochem. Pharmacol. 2021, 188, 114523. [CrossRef]

60. Yasuyuki, S.; Yoshihiko, S.; Yoshio, T.; Sadao, H. Protection against cisplatin-induced nephrotoxicity in the rat by inducers and an
inhibitor of glutathione S-transferase. Biochem. Pharmacol. 1994, 48, 453–459. [CrossRef]

61. Fazzio, L.; Raggio, S.; Romero, J.; Membrebe, J.; Minervino, A. Safety Study on Ketoprofen in Pigs: Evaluating the Effects of
Different Dosing and Treatment Scheme on Hematological, Hepatic, and Renal Parameters. Vet. Sci. 2021, 8, 30. [CrossRef]
[PubMed]

62. Chen, Y.; Wang, Q.; Li, Z.; Liu, Z.; Zhao, Y.; Zhang, J.; Liu, M.; Wang, Z.; Li, D.; Han, J. Naproxen platinum(iv) hybrids inhibiting
cycloxygenases and matrix metalloproteinases and causing DNA damage: Synthesis and biological evaluation as antitumor
agents in vitro and in vivo. Dalton Trans. 2020, 49, 5192–5204. [CrossRef]

63. Wang, Q.; Hou, X.; Gao, J.; Ren, C.; Guo, Q.; Fan, H.; Liu, J.; Zhang, W.; Liu, J. A coassembled peptide hydrogel boosts the
radiosensitization of cisplatin. Chem. Commun. 2020, 56, 13017–13020. [CrossRef]

64. Li, L.; Chen, Y.; Wang, Q.; Li, Z.; Liu, Z.; Hua, X.; Han, J.; Chang, C.; Wang, Z.; Li, D. Albumin-encapsulated Nanoparticles of
Naproxen Platinum(IV) Complexes with Inflammation Inhibitory Competence Displaying Effective Antitumor Activities in vitro
and in vivo. Int. J. Nanomed. 2021, 16, 5513–5529. [CrossRef]

65. Jin, S.; Muhammad, N.; Sun, Y.; Tan, Y.; Yuan, H.; Song, D.; Guo, Z.; Wang, X. Multispecific Platinum(IV) Complex Deters Breast
Cancer via Interposing Inflammation and Immunosuppression as an Inhibitor of COX-2 and PD-L1. Angew. Chem. Int. Ed. 2020,
59, 23313–23321. [CrossRef] [PubMed]
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