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A Bayesian model for
chronic pain
Anna-Lena Eckert*, Kathrin Pabst and Dominik M. Endres
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The perceiving mind constructs our coherent and embodied experience of the
world from noisy, ambiguous and multi-modal sensory information. In this
paper, we adopt the perspective that the experience of pain may similarly be
the result of a probabilistic, inferential process. Prior beliefs about pain,
learned from past experiences, are combined with incoming sensory
information in a Bayesian manner to give rise to pain perception. Chronic
pain emerges when prior beliefs and likelihoods are biased towards inferring
pain from a wide range of sensory data that would otherwise be perceived
as harmless. We present a computational model of interoceptive inference
and pain experience. It is based on a Bayesian graphical network which
comprises a hidden layer, representing the inferred pain state; and an
observable layer, representing current sensory information. Within the hidden
layer, pain states are inferred from a combination of priors p( pain), transition
probabilities between hidden states p( paint+1 | paint) and likelihoods of
certain observations p(sensation | pain). Using variational inference and free-
energy minimization, the model is able to learn from observations over time.
By systematically manipulating parameter settings, we demonstrate that the
model is capable of reproducing key features of both healthy- and chronic
pain experience. Drawing on mathematical concepts, we finally simulate
treatment resistant chronic pain and discuss mathematically informed
treatment options.
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1. Introduction

Pain has an undeniable function in daily life. By signalling potential or actual bodily

damage and directing both attention and behavior, it ensures the individual’s physical

integrity in the long run (1). When touching a hot plate, for example, the individual

will withdraw their hand immediately to avoid further tissue damage, and seek to

soothe the acquired damage.

The same can not be said about chronic pain, where pain persists beyond the

presence of acute injury (1). With around 20% of adults and children reporting

symptoms of chronic pain, it is a highly prevalent disorder (2, 3). Chronic pain leads

to significant losses of quality of life (adults: (4), adolescents: (5)). The disorder is

associated with decreased levels of psycho-social functioning and productivity (6) and
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frequent utilization of healthcare services (7), causing a

substantial economic burden (8–10).

Despite the ever-rising prevalence of chronic pain (11, 12),

its underlying mechanisms remain poorly understood.

Computational-level mathematical models (cmp. (13)) can

help to elucidate the problem that the mind is trying to solve

(e.g., detecting harm to the body) and where such solution

attempts go wrong. Recent developments in cognitive

computational neuroscience and machine learning may offer

new opportunities for studying chronic pain from this

statistical viewpoint.

A growing body of work suggests interoception, just like

perception, follows probabilistic, Bayesian principles (14–18).

Perceiving both the external world and the internal milieu

requires effectively dealing with noisy, ambiguous and

incomplete sensory information, usually from a multitude of

sources and modalities. For this, the mind appears to rely on

prior knowledge in the shape of a generative model of the

environment, which is integrated with the current sensory

input (19–21). Following this account, perception is not only

shaped by the sensory information reaching the mind or

body, but also by the predictions of the generative model this

information is met with. This notion is summarized under the

free-energy principle (22, 23).

The modulatory effects of prior knowledge on pain

perception have been widely demonstrated - from the level of

neural processing in the brain stem (24) through to self-

reported pain intensity (25–28). For example, Tabor et al. (16)

show that pain perception varies in dependence of an

exteroceptive cue. When paired with a blue light (signalling

safety), a noxious stimulus is perceived as less painful

compared to when it is paired with a red light (signalling

danger and heat). Further, placebo analgesia describes the

phenomenon of experiencing pain relief after taking a placebo

pill (15, 29, 30). In line with statistical accounts of pain, this

further suggests an integration of expectations, or prior

beliefs, with the physical sensory signal. In this context,

Hechler and colleagues (2016) have instantiated Bayes’

theorem with pain and nociception-related variables to

illustrate statistical computations underlying pain perception:

p( pain j sensation) ¼ p(sensation j pain) � p( pain)
p(sensation)

(1)

where p( pain j sensation) is the posterior probability. The

posterior determines the individual’s subjective experience of

pain. It is proportional to the likelihood p(sensation j pain)
times prior probability of pain, p( pain). p(sensation j pain)
describes the probability of being exposed to a certain

sensation (i.e., nociceptive signals) when the body or a specific

body part is in a state of pain. Following this account, chronic

pain has been described in terms of aberrant Bayesian
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inference (14). For example, averse life events may lead to a

heightened prior expectation of pain, p( pain). This may

underlie lowered pain thresholds and hyperalgesia frequently

observed in chronic pain patients (31). Long-term learning

experiences may alter the associations between sensory

information and the inferred experience in patients. In other

words, the likelihood term p(sensation j pain) may be subject

to learned biases in patients so that a broader range of stimuli

is associated with pain compared to healthy controls (14).

This may underlie allodynia, where harmless stimuli are

perceived as painful.

We build on these previous lines of work and propose a

quantitative Bayesian framework, implementing the above-

mentioned considerations within a hierarchical and sequential

model. It is built on the assumptions that (i) pain perception

emerges from Bayes-optimal combination of sensory input

and prior beliefs, (ii) chronic pain is characterized by

maladaptive learning processes on longer time-scales, (iii)

these learning processes result in generalizing, heightened

expectations of pain p(pain) as well as (iv) heightened

p(sensation j pain), i.e. patients erroneously infer being in

pain as the most likely cause of a wide range of sensations

usually considered harmless.

Our formal implementation is based on the assumption that

interoception is an inference problem that requires optimizing

the generative models, i.e. the mental representation of causal

relations between body state (i.e. a pain-free or pain state)

and sensory (e.g. harmless or noxious) inputs. Using concepts

from machine learning, such as variational inference, the

system’s state is approximated (32, 20). Pain is represented in

latent state variables and must be inferred from previous

model states and sensory information, represented as

observable variables. By representing perception and sensation

on different computational levels, our model allows the

formalization of non-veridical relationships between physical

stimulus and pain perception. In other words, pain needs to

be inferred using all available information, such as nociceptor

firing rates (sensations), general pain expectations and specific

pain expectations based on recent percepts. The model

incorporates learning, which is implemented using message

passing and the minimization of free energy over time (22,

33). We first describe the model’s architecture and features,

before simulating the effects of the parameters. Here, we focus

on the effects of a prior probability of pain, p(pain), a

likelihood model p(sensation j pain), and p(paintþ1 j paint),
which describes the probability of remaining in a state of pain

between subsequent time steps t and t þ 1. To illustrate our

results, chronic pain can emerge from a high and precise

prior belief to be in pain p(pain), which is generally more

likely than not being in pain (here over-lined, representing

the complement of pain; p(pain)); p(pain) . p(pain), in

patients. The prior is sharpened further with every time-step

where pain is inferred as the most likely cause of a given
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https://doi.org/10.3389/fpain.2022.966034
https://www.frontiersin.org/journals/pain-research
https://www.frontiersin.org/


Eckert et al. 10.3389/fpain.2022.966034
sensation, leading to a stabilization of the system within this

pathological state. The system then is resistant to correctly

interpreting harmless sensory information, as represented in

an ambiguous p(sensation j pain).
2. Materials and methods

2.1. Model preliminaries

2.1.1. Sequential data
Chronic pain develops over time, therefore an appropriate

computational model has to be sequential in nature. Further,

the state of the body a short moment ago is usually the best

predictor for its current state. The brain seems to leverage this

predictability to process sensory information more efficiently

(22, 32). It is hence plausible to introduce a dependency of

states over time into the model. Since the mind is assumed to

constantly predict future sensory input, the model needs to

accommodate longer time-series. The more recent past is

usually more relevant to the current situation than the distant

past. For example, what you saw three seconds ago is more

relevant to your current situation than things you saw 5

weeks ago. The future state of a Markov chain is conditionally

independent of all previous states, given the current state

(Markov property). A Markov chain model fulfills the

requirements of accounting for time-series dependencies while

maintaining computational tractability and hence biological

plausibility (for more details, see Appendix A).

2.2.2. Perceptual hierarchies
While a given intensity of noxious stimulation induces

intense pain in one subject, another one may barely

experience discomfort (34). The non-veridical relationship

between sensation and pain prompts the need for a

differential representation of the two within a model. This

large inter-individual heterogeneity in pain experience further

suggests a crucial role of an individual’s generative model of

pain experience. We use a Hidden Markov model (35, 36)

with latent (hidden) variables, representing the pain state, or

H, and observable variables, representing sensory input, or S;

see Figure 1 for a graphical representation. Pain is

represented in hidden state variables and functions as an

indicator of the body’s integrity. This information is not

directly accessible to the individual and hence has to be

inferred from the available sensory information and prior

expectations. From a Bayesian perspective, the experience of

pain is determined by performing inference on hidden states,

given the individual’s prior beliefs. Given the non-linear and

inter-individually heterogeneous relationships between

sensation (i.e. nociceptor firing after physical stimulation) and

percept (pain experience), an appropriate model allows the

distinction of the two. In our model, this is achieved via
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separate hierarchical layers (observable and hidden). Of note,

this computational-level model (in the sense of (13)) does not

translate directly to implementational, neuroanatomical levels

relevant to pain perception (37).

2.3.3. Inference and learning
The perceiving individual does not have direct access to

their surroundings. It has to rely on information from its

sensory organs, such as signals from sensory receptors, to

obtain a representation of its surroundings. The accuracy of

this information is crucial to the individual’s survival in a

given environment. Since the information arriving at the

sensory organs is noisy and ambiguous, the mind needs to

infer the real environmental causes for the sensation. Both

prior beliefs and sensory information appear to be represented

in a probabilistic manner (38). Perception then is the Bayes-

optimal combination of prior beliefs and said sensory

information. Conscious experience is determined by the

hidden state that is assigned the highest posterior probability.

In the context of pain perception, inference means

determining the extent to which an observation S ¼ s allows

the perceiver to update their knowledge about a hidden state

H ¼ h. For this purpose, it is necessary to infer the marginal

probabilities of the latent variables from observations. We use

the sum-product algorithm, also known as belief-propagation,

as an efficient means of deriving marginal probabilities in

singly-connected graphical models (36, 39). Inference and

learning over time is governed by the imperative to minimize

free energy, a principle which has been proposed as a general

theory of brain function (22, 20, 40). Variational message

passing, as proposed in this framework, has the advantage of

both computational tractability and biological plausibility (22).

The interested reader is referred to Appendix A for a detailed

description of the approach to inference applied here. While

inference in this framework refers to short-term conclusions

about marginal probabilities of pain, learning refers to longer-

term updates of model parameters. We here implemented

batch-updates, where model parameters are updated once

after the observation of a full time series. Psychologically, this

would correspond to retrospective memory consolidation, for

example during sleep.
3. Simulations

All models and simulations were implemented in Python

(version 3.9.7), in particular the numpy package (version

1.21.2, (41)) and a package for variational inference with

exponential family models by author D.E. (33). All plots were

created using the matplotlib.pyplot library for Python (version

3.4.3, (42)).

A Hidden Markov Model with N ¼ 20 time-steps and free-

energy learning over time is implemented (see Appendix A for
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FIGURE 1

Bayesian network representation of pain perception. We model perception in time as a hidden Markov model, where unobservable (hidden) nodes Ht

form a Markov chain. These hidden nodes represent the state of the body, that the perceiving agent has no direct access to. Each hidden node
connects to an observable node St , which represents a sensory (e.g. noxious) input. The connections indicate the direction of causation: body
states cause noxious inputs in a healthy agent. Tables show exemplary settings of relevant probabilities for both healthy and chronic pain
perception, where prior probabilities are chosen so that expectations are stable in time (see Appendix B for details).
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details). Its hidden state variables, or nodes, Ht , represent the

system’s internal state at time point t. There are two possible

states in each state, (H [ {pain, pain}) which are inferred

from the combination of previous nodes’ states and

incoming sensory information. Sensory information is

represented within the observable nodes St . There are two

possible observations: noxious or harmless sensory

information, or S [ {noxious, harmless}. Observable nodes

can remain unobserved. The top-down factor contains the

likelihood p(St j Ht) which allows explicit modelling of the

association between sensory information and internal model
Frontiers in Pain Research 04
state. The hidden variable nodes form a Markov chain,

connected through additional free-energy factor nodes

necessary for message passing. Here, the transition

probabilities p(Ht j Ht�1) represent the implicit expectations

of pain, or the pain prior, over time. In other words,

transition probabilities translate into the individual’s

expectation regarding the persistence of pain. A fixed and

precise transition probability can constrain the model to

arrive at a steady state, where conflicting sensory

information does not alter the model’s inferred hidden state,

which we will discuss in detail below. We systematically vary
frontiersin.org
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the above-mentioned parameters to capture healthy pain

perception as well as one that is biased towards chronically

inferring pain. While the underlying inference engine is the

same in both cases, there are four starting points from which

to manipulate the model’s behavior, also summarized in

Figure 1.

1. The prior of the first hidden variable H1;

2. The likelihood function, or the top-down factor connecting

observable and hidden nodes, p(St j Ht);

3. The transition probabilities p(Ht j Htþ1) between the

hidden variables;

4. The sensory information at observable nodes St .

Parameters are characterized by both the probabilities for

specific states or observations, represented by their sufficient

statistics l; and their precision, formalized by their

pseudocounts n (see Appendix A for details). n is referred to

as the pseudocount as it keeps count of the number of

observed data points.

Healthy interoceptive inference (“healthy observer,” from

here onward) is characterized by a low, but precise prior

expectation of pain (p(pain) ¼ 0:2, n ¼ 100) and a precise

likelihood function that allows accurate inferences based on

incoming sensory information (e.g., p(noxioust j paint) ¼ 0:8,

n ¼ 100). Transitions towards pain-free states are more likely

than transitions to painful states, as implemented in the

transition probabilities between hidden states (e.g.

p(Ht ¼ pain j Ht�1 ¼ pain) ¼ 0:7).

In contrast, chronic pain inference (“chronic pain observer”)

is characterized by an increased prior expectation of pain

(p(pain) ¼ 0:9, n ¼ 100). The likelihood functions are

imprecise and do not allow accurate inference from incoming

sensory data, with p(noxioust j paint) ¼ 0:6, n ¼ 20.

Transitions between hidden states are biased so that

transitions into painful states are more likely than transitions

into pain-free states, e.g. p(Ht ¼ pain j Ht�1 ¼ pain) ¼ 0:7.
3.1. Mixed observations

In a first simulation, both observers were exposed to the

same sensory information: noxious input for time steps

S1 � S5, and harmless input st S12 � S18 for 40 learning

trials. Results are shown in Figure 2. In the healthy observer

(Figure 2A), the exposure to noxious stimuli between time

steps 1 and 5 leads to an acute and highly precise inference

to be in pain. In contrast, the presentation of harmless

sensory information (time steps 12–18) decreases the

probability of inferring to be in pain drastically. In the

chronic pain model, however, the response to acute noxious

sensations follows a different pattern (Figure 2B)—the

baseline probability of inferring pain is at ceiling levels

already. In contrast, harmless information barely has any
Frontiers in Pain Research 05
significant effects on the probability of inferring pain, which

remains high.
3.2. Prolonged exposure

In another simulation, the two observers are exposed to

only-noxious vs. only-harmless sensory observations for all

20 time steps and 40 learning trials. Results are shown in

Figure 3. In individuals with chronic pain (3A,B), the type

of sensory information the system is exposed to does not

result in significant changes of p(pain). Especially compared

to the healthy inference model (3C,D), exposure to

harmless information does not lead to decreased

probabilities of inferring pain. In healthy inference,

prolonged exposure to noxious information leads to acute

heightened probabilities of experiencing pain. In contrast,

harmless stimulation results in very low probabilities of

inferring pain. Of note, the inferred probabilities of pain at

the first- and final time step differ from intermediate time

steps. This is an artifact caused by the model architecture

with a definite end node, and our batch-updates (learning)

that are performed at the end of one time series (see figure

caption for details).
4. Treatment-resistant chronic pain:
a null space problem?

Some forms of chronic pain are remarkably resistant to

psychotherapeutic (43) or pharmacological (44) intervention,

which has led to calls for ever more radical treatments such

as transcranial magnetic stimulation, or TMS, (45),

electroconvulsive therapy (46) or ketamine infusions (47).

A computational model of chronic pain therefore needs to

be able to demonstrate a rigid, “treatment-resistant” pain

experience over time. In the present model, this translates to a

high temporal stability of the inferred, latent pain-state,

regardless of the varying sensory input at the observable

nodes (i.e., psychotherapy) or modulation of the sensations

(i.e. pharmacotherapy). To derive the parameter settings

necessary to arrive in a fully stable model state, we borrow the

concept of the null space from linear algebra (36).

The null space of a matrix A contains all vectors~x such that

A~x ¼ 0 (48). We are interested in the null space of the matrix

that constrains the transition probability distributions

p(Htþ1 j Ht) to yield a p(Ht ¼ pain) after waiting for a

sufficiently long time, i.e. we are looking for the stable states of

the Markov chain. In other words, we are interested in changes

to the transition probabilities that have no effect in the long

run – i.e. a resistance of the system to treatment.

We demonstrate in Appendix B that for each marginal

p(pain), there are transition probabilities p(Htþ1 j Ht) that
frontiersin.org
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FIGURE 2

Healthy (A) and chronified pain inference (B). The X-axis shows the time-step, referring to e.g. times during a day. The learning trials on the Z-axis
refer to moments of parameter updates, e.g. consecutive days, or longer-term memory consolidation and learning. On the Y-axis, the inferred
marginal probabilities of pain are represented. Both models were exposed to noxious sensory information at nodes 1–5, and to harmless sensory
information at nodes 12–18 for 40 learning trials. The inferred marginal probabilities develop dynamically in the case of healthy inference (left),
whereas there are hardly any deviations from the prior beliefs in the case of chronified pain inference (right).
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satisfy this condition. Resulting is a line, the one-dimensional

null space, containing matching transition probabilities for a

given marginal probability of pain. The combination of

marginal and derived transition probabilities has a marked

effect on the inferred state: it remains stable within the range

of the preset marginal probability of pain, irrespective of the

quality of observations made, or changes to the prior. In

Figure 4, we illustrate the example of the marginal

p(pain) ¼ 0:7. First, as above, a model with 20 time steps

and 40 learning trials is created. The prior p(H0 ¼ pain)

on the first time step is chosen randomly. Crucially, we

sample transition probabilities from the null space and then

sample the inferred probability of pain at the last time step.

It becomes evident that within a very short period, the

inferred probability of pain stabilizes at the pre-defined

marginal p(pain) of 0:7—regardless of any changes to the

prior information.
4.1. Therapy for chronic pain

Exposure therapy is an effective treatment for chronic pain,

where patients with high levels of fear-avoidance are gradually

exposed to stimuli or movements that elicit fear (49). Relating the

idea of exposure therapy to our model, its goal would translate to

changing the interpretation of harmless sensory information so

that the inference becomes less biased towards pain. As an

example, a person with chronic low back pain may avoid lifting a

basket with groceries out of their car. In graded exposure
Frontiers in Pain Research 06
therapy, the therapist would guide the patient through lifting

baskets with increasing weight, all while closely monitoring the

patient’s fearful assumptions and physical sensations. Over the

course of the exposure treatment, we would expect a change in

p(lift� basket j pain) in this patient. Altered likelihoods may

lead to less guarding behavior in patients, an increase in

corrective sensory information and, ultimately, remission. In the

specific case of fixed transition probabilities, however, this

approach may not be sufficient. This picture would be in line

with treatment-resistant chronic pain. The maintenance of

p(pain) in these patients is mostly determined by the transition

probabilities, while incoming sensory information is mostly

disregarded. We simulated two observers who receive ten sessions

of exposure therapy (presentation of harmless sensory

information for one time step) over the course of fifty time steps.

In both cases, the pre-set marginal probability of inferring pain is

p(pain) ¼ 0:7, and the transition probabilities were sampled

from the respective null space of a marginal p(pain) ¼ 0:7.

Results are illustrated in Figure 5. In the case of the first patient,

the likelihood functions, p(sensation j pain) were ambiguous

(p(noxious j pain) ¼ 0:6, p(harmless j pain) ¼ 0:4, p(noxious j
pain) ¼ 0:6 p(harmless j pain) ¼ 0:4, and imprecise (n ¼ 20). In

the simulation, the marginal probability of inferring pain dips

slightly, before moving towards the initial, high p(pain) ¼ 0:7

again. In a second case, the likelihood functions were intact, that

is, accurate (p(noxious | pain) = 0.8, p (harmless | pain) = 0.2,

p(noxious pain) ¼ 0:1, p(harmless j pain) ¼ 0:9) and precise

(n ¼ 100). Here, the inference moves away from the high prior

faster and remains relatively pain-free for longer.
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FIGURE 3

Effect of prolonged exposure to one type of information. The X-axis in all plots shows the time step (e.g., time steps during a day), and the Y-axis
shows learning trials (e.g., memory consolidation at the end of each day). (A) and (B) show the observer with chronic pain exposed to 20 time steps
and 40 trials of noxious information (A), and 20 time steps and 40 trials of harmless observations (B). (C) and (D) illustrate the same observational
scheme under healthy pain inference. Of note, the marginal probabilities inferred at the first- and last time step differ from the probabilities
inferred in intermittent nodes for two reasons. First, due to our model architecture, the first- and final nodes only receive messages related to
sensory inputs from one neighbour, while intermittent nodes receive richer sensory information from their two respective neighbours (e.g., past
and future time steps), leading to increased certainty about the hidden state. Secondly, we perform batch updates at the end of one time series.
In psychological terms, this corresponds to retrospective memory consolidation during sleep. With increased learning trials (Y-axis), however, the
marginal probability of inferring pain under noxious stimulation (panels A and C) increases as a consequence of learning.
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5. Discussion

5.1. A Bayesian model for chronic pain

The experience of pain seems to be the result of an inferential

process, where prior expectations are integrated with current

sensory information over time (14, 16). This process is

probabilistic and non-linear, with large inter-individual
Frontiers in Pain Research 07
differences in the relationship between physical stimulation and

pain experience. While statistical accounts of pain have gained

momentum over the past decade, insights into computational

underpinnings of the chronification of pain have been sparse

(50, 18, 14).

We propose a Bayesian model for interoceptive perception

and pain experience in chronic pain. Drawing on machine

learning concepts such as belief-propagation and free-energy
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FIGURE 4

Null space of deviations from final state: over time, the marginal probability of inferring pain approaches and stabilizes within ranges of the preset
marginal, here, p(pain) ¼ 0:7. Random changes to the prior expectation of pain (at time step 0, illustrated by the different-colour lines) are
overridden within two time steps, and the marginal probability approaches the predefined value.
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minimization, we demonstrate that the model captures well-

studied phenomena such as decreased pain thresholds and

allodynia (i.e. perceiving innocuous stimuli as painful) in

individuals with chronic pain.

Our “chronic pain” observer is characterized by heightened

prior expectations of pain, aberrant associations between

sensory input and pain perception and heightened

assumptions about the persistence of pain. In our model, this

refers to overly precise priors for being in a state of pain,

p(pain)), ambiguous top-down or likelihood functions

p(sensation j pain) and more rigid transition probabilities

between hidden states p( paint j paint�1), respectively.
5.2. Chronic pain as biased inference

It has been suggested that chronic pain is associated with a

broad and heightened expectation of pain (51, 14, 24).

Heightened expectations of pain may stem from early averse

life events or injuries (52), or social factors such as an
Frontiers in Pain Research 08
overprotective, fearful parental style (14). In the patient

model, a heightened pain prediction led to inferring to be in

pain more readily compared to the healthy model. Conflicting

innocuous sensory stimulation hardly influenced the inferred

state. In accordance with this, empirical studies suggest

chronic pain patients may not attend to sensory information

but rather rely on their prior expectations of pain (53, 54).

Our observations fit into a larger discussion about

expectations as core features of a multitude of mental

disorders (51, 14). A further aspect of our model is that

harmless sensory information is associated with pain over

time. This phenomenon is commonly observed in patients

and referred to as allodynia (55, 14). The Bayesian Brain

hypothesis postulates that the perceiving individual

perpetually tries to infer the real-world causes for incoming

sensory information (22). We here present a perspective on

pain as an abstract percept of the body’s state. Following this

view, pain is an inference on a real-world “cause” (cmp. (56)),

bodily damage, based on all available prior- and current

sensory information. The chronic pain patient infers pain
frontiersin.org
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FIGURE 5

Simulation of ten sessions of exposure therapy in the nullspace of marginal p(pain) ¼ 0:7, with ambiguous and imprecise likelihoods (A) and precise
and accurate likelihoods (B). On the X-axis are the time steps, on the Y-axis the marginal probabilities of pain, and on the Z-axis the learning trials per
time step. The combination of null space derived transition probabilities and an imprecise and ambiguous likelihood model (p(noxious j pain) ¼ 0:6,
p(harmless j pain) ¼ 0:4, p(noxious j pain) ¼ 0:6, p(harmless j pain) ¼ 0:4) renders the repeated presentation of innocuous sensory information
rather inefficient: inferred probabilities of pain remain within the range of the predefined marginal. When the likelihood model is precise and
unambiguous (p(noxious j pain) ¼ 0:8, p(harmless j pain) ¼ 0:2, p(noxious j pain) ¼ 0:1, p(harmless j pain) ¼ 0:9), however, the presentation of
harmless sensory information is more efficient in reducing the inferred probability of pain.
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from a wide range of sensory stimuli that would not be

perceived as painful by healthy controls. Further, the

associations between sensory information and hidden state are

noisy and unclear in the chronic pain observer. While a

healthy observer maintains precise beliefs about the external

causes of harmless sensory input, p(harmless j pain), this

probability is completely ambiguous in our patient model.

Over time, the chronic pain patient is less and less likely to

infer a pain-free state from any type of incoming sensation.

Contrarily, a flexible and highly dynamic pattern can be

observed under healthy interoceptive inference. Here, noxious

stimuli are associated with pain, and a pronounced and acute

state of pain is inferred from incoming harmful stimuli.

However, once the stream of harmful sensory input stops, the

probability of pain normalizes very quickly. This dynamic

pattern is in line with the function of pain as a warning signal

—motivating quick and adaptive behavior change following a

threat to the individual’s physical integrity (57).

Note that our results also hold under the active inference

framework (23, 58). Canonical versions of active inference

contain a generative model that is very similar to ours

(Hidden Markov model, HMM), with the difference of an

additional layer that models an agent’s actions, or choices

(59). Actions then influence the transitions between states so

that more likely, or expected states under the current

observations, are reached. In other words, in active inference,

an agent infers the hidden state from the combination of

prior beliefs, sensory information and their own actions. As

an example, consider the case of a child with chronic
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abdominal pain who involuntarily keeps picking at her

abdomen (checking behavior, example from (14)), so that

increased pain is experienced. Under active inference, this can

be interpreted as causing observations (noxious sensations)

that are expected under the most likely state (pain). Acting

directly towards bringing about a certain observation changes

the causal relationship between observation and hidden state

(i.e., “do-operations”, (60)). However, it is impossible to act

directly on one’s nociceptors, so that pain still needs to be

inferred from sensations, even when the noxious stimulation

is self-induced.
5.3. Exposure and the null space of
psychotherapy

If the individual performs implicit Bayesian inference over

hidden states, then we here demonstrate that this inference

can be biased towards inferring pain. This has important

implications for the treatment of chronic pain patients.

Cognitive behavioral therapy (CBT) shows statistically

significant, but small effects on certain aspects of chronic pain

(pain, mood, disability, pain catastrophizing; (61)).

Techniques usually include relaxation training, behavioral

activation (i.e. engaging in behaviors that were previously

avoided due to fear of pain), setting behavioral goals,

problem-solving training and cognitive re-structuring (61, 62).

Further, exposure therapy has shown promising results in the

treatment of chronic pain (63, 64, 49). Exposure therapy
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seems to reduce disability more effectively than CBT in patients

with chronic lower back pain (49). It is designed to specifically

target emotional responses to pain- or expectations of pain,

which lead to excessive guarding behaviors. Guarding

behaviors, in turn, may limit the opportunity for receiving

corrective, conflicting sensory information, leading to the

solidification of fearful pain beliefs (65, 66). However, we

show that inference can stabilize towards pain, even in light

of conflicting sensory information. Specifically, when the

transition probabilities between hidden states have a stable

state with high marginal pain probability, a simulated patient

model returns to the inference of being in pain while

harmless sensory information is provided. In other words, the

initial deviation from the high pain state, which might have

been reached by therapeutic means, has vanished. This

simulation could be a model for treatment-resistant chronic

pain. We further show that these patients may be best served

by targeting their beliefs about the associations between

sensory stimuli and pain expectations (likelihoods). When

likelihoods allow the precise and accurate association between

sensory stimuli and pain, exposure to harmless sensory

information leads to more promising results. However, when

the patient does not have accurate likelihoods, exposure to

certain sensory stimuli may not be a promising approach. It

can hence be derived that patients may need to re-learn

precise and accurate inferences about different types of
FIGURE 6

Tabular overview of patient experience and model predictions. Timepoints: T
parameters underlying chronic vs. acute pain experience; where p, pain; p, pa
values, ", increased values compared to baseline; #, decreasing values; !, a
patients with chronic pain is biased towards pain from childhood on, e.g. v
(68–70).
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sensory stimuli, ideally before being guided through exposure

therapy.

One can speculate about the role of pharmacotherapy in the

context of our model. Potentially, analgesics target the patient’s

likelihood model by inhibiting the transmission of noxious

information from pain receptors (67). This assumption requires

empirical testing with appropriate data of medicated chronic

pain patients. In this case, combining pharmacological and

psycho-therapeutical strategies may be promising. More data is

necessary to assess which treatments target what model

parameter. For an overview of expected self-report scores and

hypothesized underlying model parameters, see Figure 6.

In Figure 6, we illustrate two hypothetical patients, one

developing chronic pain after an acute injury, whereas the

other patient does not develop chronic pain beyond acute

injury.

In the chronic pain patient, pain persists for prolonged

periods post injury. Empirically, we expect to see pain and

disability scores that are persistently heightened in the months

following injury. In experiments (i.e. fear conditioning, pain

ratings following noxious stimuli), our model predicts

increased levels of prior expectations of pain (note the shift in

probabilities over time), as well as decreased precision of

sensory information, corresponding to an ambiguous and

imprecise likelihood model. Finally, for pain to persist in a

very rigid way, transitions towards a pain-free state become
+ month, Model parameters: expected pattern of change in the model
in-free state; n, noxious input; n, harmless input. Self-report: Expected
verage values; *, there is some evidence that the generative model of
ia traumatic experiences, abuse and earlier chronic pain experiences
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more unlikely until therapy can reverse this effect. We can

speculate that likelihood models may be treated via

medication-supported exposure therapy, whereas prior beliefs

could be best targeted using CBT.

In the acute pain patient, the injury is followed by a quick

recovery and remission into a pain-free state. The noxious

stimulus leads to a transient state of experiencing pain, including

an elevated prior expectation of pain, which is a consequence of

learning about an acutely noxious stimulus. Disability and pain

experience as assessed with self-report measures are elevated in

times of acute injury. With the injury healing and the noxious

information subsiding, the pain-free state is re-established within

4 months. Note that the likelihood and transition models are

assumed to stay relatively intact in this patient.
5.4. Expectations as primary therapy
target

Following our model, there are three factors that could be

promising targets for patients with chronic pain. Firstly,

therapy could target the heightened and generalized

expectations of pain. This is in line with Rief et al. (51),

Panitz et al. (71), who discuss the importance of psychological

interventions that target expectations. Secondly, our model

suggests a need for re-learning the associations between

sensory information and the state of pain. This could be

achieved via gradual, guided exposure to harmless stimuli in

therapy. Lastly, a patient’s belief about the persistence of pain

over time could be targeted specifically with cognitive

interventions (e.g. retrospective evaluations, re-learning to

differentiate pain intensities), which may be especially relevant

in cases of treatment-resistant chronic pain.
5.5. Limitations

The presented model makes several simplifying

assumptions and can be extended in numerous ways.

Currently, latent- and observable variables could only take

one of two possible states for the sake of simplicity.

Continuous random variables could allow for more complex

conclusions. It is generally feasible to perform inference on

graphical models with continuous random variable nodes (72,

73). However, this added complexity might detract from our

main conclusions, which we expect to hold in the continuous

case, too. In future work, we will extend our model to

continuous sensory signals and internal states.

Further, future efforts to extend this framework should

account for the vast heterogeneity that is found among

chronic pain patients. Assuming a multitude of underlying

etiological factors, they might need differential representation

in quantitative terms as well.
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With this model, we focus on computational and

psychological aspects of pain inference. We have formalized a

hypothesis about the generative process underlying chronic

pain. While several salient features of acute and chronified

pain perception are captured by our model, we do not have

access to the true generative process and can hence not draw

any definite conclusions about it.

Besides psychological factors (e.g. beliefs), a multitude of

additional factors could be considered when extending this

model. As Kiverstein and colleagues (2022) note, a model of

chronic pain needs to take on a bio-psycho-social

perspective, integrating a multitude of empirical findings

under one approach. For example, pain experience seems to

be alleviated by the presence of a close friend or partner,

i.e. social support (74). In a recent review, Mohr and

Fotopoulou (2018) argue that social support may serve as a

security signal which renders prediction errors caused by

threats to the physical integrity less precise. Future

iterations of this model may be extended to incorporate

these findings, e.g. by means of a context-layer. Here,

however, we show that important characteristics of chronic

pain experience can be simulated from a Bayesian

perspective, by assuming that a) sensory information relates

to pain experience through (biased) parameters of a

generative model and b) the inferred states are marked by

correlations, or stability, over time.
5.6. Future directions

Rigid expectations that are not sufficiently constrained by

incoming sensory information seem to lie at the heart of

several mental disorders. Psychosis, for instance, can be

regarded as resulting from an exaggerated and inflexible

reliance on prior expectations (75, 76). Computational accounts

of mental disorders can provide novel mechanistic insights into

their etiology, exacerbation and maintenance over time (77).

The computational model of chronic pain presented here

can be applied to empirical data. Below, we outline possible

avenues towards testing the model presented here.

Firstly, data from learning experiments in chronic pain

patients and controls could shed light on the real-world

significance of the model’s parameters. In fear conditioning

experiments, participants learn the association between a

painful unconditioned stimulus (UCS, such as e.g. heat

stimulation with a thermode or electric shocks) and

unrelated, conditioned stimuli (CS, such as a visual cue). In

a first step, significant group differences in model parameters

would need to be investigated. Then, given their heightened

pain prediction, our model would predict decreased pain

thresholds in patients with chronic pain. Biased likelihood

terms may lead to altered learning about the UCS-CS

contingencies in chronic pain patients. Similarly, other
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assumptions that were used to furnish this model could be

tested empirically (e.g. biased and imprecise likelihood

models, heightened prior predictions of pain, or rigid and

exaggerated beliefs about the persistence of pain in chronic

pain patients).

A key challenge to empirical tests of our model in humans

is the need to approximate observable sensations, i.e.,

nociceptor firing. Sensations can be approximated by

measuring physical properties of experimental stimuli, such

as the temperature of a heat thermode, the current used for

electric stimuli, or the intensity of mechanical pressure. To

empirically test our model, future studies could assess the

relationship between physical sensations and the pain

percept. For this, concurrent measurements of sensations (or

proxies thereof, such as physical stimulus properties) and

reports on the pain percept (e.g. pain scores) are necessary.

Pain scores in response to stimuli with different intensities

could be collected from healthy individuals and chronic pain

patients. We would expect to find significant group

differences with respect to prior, transition- and likelihood

model parameters. Such data could further shed light on an

important detail of patient experience: what model

parameter is most relevant to the chronification of pain and

the experience of patients? In all cases, the full Bayesian

model would need to be compared to both simpler models,

such as e.g. single-trial vs. sequential models, and more

complex models, such as deeper predictive hierarchies, in a

model comparison.
5.7. Conclusion

A novel Bayesian model is able to reproduce common

features of healthy- and chronified pain perception. Machine

learning approaches, such as a hidden Markov model and

variational inference, allowed the exploration of parameters

that may underlie the development of chronic pain. We have

demonstrated that this model is able to capture many

phenomena observed in individuals with chronic pain, and

during acute, healthy pain perception. Additionally, the model

was able to simulate rigid, treatment resistant chronic pain.

Further research could significantly advance our mechanistic

understanding of chronic pain, which may help to inform

treatment selection.
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Appendix A. Variational inference

Graphical models are a useful tool when representing and

manipulating joint probability distributions. In the present

context, we are interested in characterizing the mind’s

probability computations of being in pain, given a series of

noxious or harmless observations, i.e. inference (36). For this

purpose, we use a modified state-space model architecture, i.e.

a Hidden Markov Model (36). It features a chain of

unobservable nodes, representing the inferred pain state at

different time points. Each unobservable node is connected to

one observable node representing sensations at the same time

point (see Figure A1).

Assuming that hidden state inference evolves in an auto-

correlated manner over time seems plausible because pain states

tend to persist at least for some time. For this reason, a Markov

chain of hidden states was selected as the basis of the model. The

Markov property states that inference at a given future node, Stþ1,

is conditionally independent (⊥) from all but the previous states St :

Stþ1?St�1 j St (A1)

In other words, the future state Stþ1 does not depend on the

distribution of the past state St�1 given the current state St .
FIGURE A1

Graphical model (fragment). Graphical model depicting the inter-dependenc
variable node, factor nodes are necessary to perform variational inference m
allows message passing without re-instantiating the model at each time-ste
S [ {noxious(1), harmless(0)}. The hidden states, representing the system’s in
or H [ { pain, pain}. The likelihood p(St j Ht) is the top-down factor in this
state Ht and the observed sensory input at St . The hidden variable nodes
which can be interpreted as the development of the pain prior ove
p(Ht ¼ pain j Ht�1 ¼ pain) . p(Ht ¼ pain j Ht�1 ¼ pain).
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It follows that the conditional distribution for the current

state St given all previous S is given by only its predecessor’s

state St�1:

p(St j S1, . . . , St�1) ¼ p(St j St�1) (A2)

The main inference goal is the estimation of the hidden random

variables’ Ht state, given a series of observations. This is

expressed in the random variable’s respective marginal

probabilities. Computing marginal probabilities is challenging,

because it usually entails computing the sums of integrals

over high-dimensional spaces. There are a number of widely

used algorithms for efficient inference on graphical models.

However, to perform inference with message-passing

algorithms, we first need to transform the Bayesian network

to a factor graph. A graphical representation of the factor

graph is illustrated in Figure A1 (36). A factor graph

represents the factorization of a function, or here, the

probability distributions of interest. In other words, it

provides a graphical representation of how probabilities of

certain events depend on adjacent events in the observable

and hidden layers. A factor graph consists of variable- and

factor nodes, denoted by circles and squares, respectively. In

our model, variable nodes can take on a binary set of values
ies between hidden Ht and observable St variables. Connected to each
essage passing. This approach is computationally efficient because it
p. The observable nodes St represent incoming sensory information,
ternal model, can in turn take on the values 0 (no pain) or 1 (pain),
model and allows quantifying the association between the model’s
form a Markov chain and contain transition probabilities p(Ht j Htþ1),
r time. In individuals with chronic pain, we here assume that
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(here; pain, pain for the hidden nodes, and noxious, harmless

input in the observable nodes). They can be observed or

unobserved. Factor nodes contain exponential family

distributions, parameterized by their natural parameters.

These parameters represent probabilities for either

transitioning between different hidden states or for observing

certain types of sensory information, given a specific latent

model state. We here further introduce hypernodes, denoted

by thick squares, that govern the learning of factor-inherent

natural parameters over time. All nodes are connected via

edges to their respective neighbour nodes.

Once transformed, it is now appropriate to apply inference

algorithms to the factorized graphical model. Sum-product

message passing, also known as belief propagation, is a well-

known algorithm that allows the efficient computation of

marginal probability distributions on graphical networks

without loops (39). In sum-product message passing, all

nodes compute sums and integrals locally, before passing the

results on towards the set of their neighbours in the shape of

messages (72). In the present use-case, all variables are binary.

In sum-product message-passing, the marginal probabilities

for each state of a variable node V are given by the product

of all incoming messages from factor nodes F:

p(V) ¼
Y

l[ne(V)

mFl!V (V) (A3)

where ne(V) are the are the factor nodes’ neighbouring the

variable node V , and conversely for factor nodes. mFl!V is the

message received from factor node Fl . Variable nodes can

only have factor nodes as neighbours. Messages from a factor

node F to a variable node V are given by

mF!V (V) ¼
X
V1

� � �
X
VM

F(V , V1, . . . , VM)
Y

m[ne(F)nV
mVm!F(Vm)

(A4)

Here, the product of the factor and all messages the factor node

received from its neighbouring variables nodes except V ,

ne(F)nV (a set of variable nodes without the recipient node),

mVm!F(Vm) is computed and summed over all variables

except V . When ne(F) ¼ None, that is, F’s only neighbour is

V , the factor node sends its factor information:

mF!V (V) ¼ F(V): (A5)

Messages from variable node V to a neighbouring factor node

are given by

mV!F(V) ¼
Y

l[ne(V)nF
mFl!V (A6)
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that is, V computes the product of all received messages from

neighbouring factor nodes mFl!V except F. ne(V)nF is empty

when F is the only neighbour of V , in which case the

message reduces to

mV!F(V) ¼ 1 (A7)

where the value 1 is sent from unobserved nodes. Otherwise, the

message value corresponds to the observation made at V . Note

that variable nodes can also remain unobserved.

We here adapt this scheme and transform messages into

log-space to avoid over- or underflow of the usual floating

point computer arithmetic. With this, the marginal of a

variable V is now computed via

p(V) ¼ exp
X

l[ne(V)

log (mFl!V (V))

 !
, (A8)

i.e., the marginal of a variable node is given by the sum of all

incoming, log-transformed messages (log (mFl!V (V)) from

factor nodes Fl .

Exact inference can become computationally inefficient or

intractable in case of continuous variables. This is the case in

our model due to the natural parameters of the probability

distributions. To avoid this, we use variational inference and

the lower bound approximation as implemented in the free-

energy framework (78, 79, 36). Instead of estimating the

(potentially intractable) posterior p(X j D), with X

representing model parameters and data D, an approximate

distribution q(X j D) is estimated. This further sidesteps the

increasingly costly computation of sums over all variables and

their values by introducing more simple update rules in order

to compute the posterior distribution. The optimal q(X j D) is
estimated by maximizing the lower bound on the marginal

log-likelihood of the data D, log (p(D)), also referred to as the

evidence lower bound (ELBO, (80)). In the present case, the

marginal log-likelihood of D is given by

log (p(D)) ¼ log
X
x

p(D, X)

 !

¼ log
X
x

q(X)p(D j X) p(X)
q(X)

 !
(A9)

Meaning that the marginal log-likelihood of the data is given by

the sum over all joint probability distributions p(D, X), or the

sum of an approximate distribution of X, q(X), and

conditional probabilities of the data given X, p(D j X) and a

normalization factor p(X)=q(X). The last term of Equation

A9 represents a factorization of log(p(D)).
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When trying to approximate log (p(D)), there are two

essential ingredients: Jensen’s inequality and the Kullback-

Leibler divergence (81, 82, 36). Applying Jensen’s inequality

for convex functions, it follows that

log
X
x

q(X)P(D j X) p(X)
q(X)

 !

�
X
x

q(X) log p(D j X) p(X)
q(X)

� �
: (A10)

The log sum of the factorized marginal probability distribution

of p(D) is larger or equal to the sum of all approximate

distributions q(X) times the log-normalized conditional

probability distribution p(D j X).
In a second step, we decompose the right-hand side of

Equation A10, using log (x � y) ¼ log (x)þ log (y) into the

expected likelihood and the Kullback-Leibler (KL) divergence

between the approximate posterior and prior. The KL

divergence can be interpreted as the dissimilarity of two

functions. In this context, we are interested in the

dissimilarity between our prior and the approximated

marginal probability p(D).

log
X
x

q(X)p(D j X) p(X)
q(X)

 !

� hlog (p(D j X)iq(X) � KL(q(X)kp(X))
(A11)

where KL(q(X)kp(X) is the non-negative KL divergence (81, 36)

between prior p(X) and approximate distribution q(X). It

follows that a lower-bound L(q(X), D) on the marginal log-

likelihood log (P(D)) is given by

L(q(X), D) ¼ hlog (p(D j X)iq(X) � KL(q(X)kp(X))
� log (p(D)): (A12)

Maximising the lower bound L w.r.t. q(X) is equivalent to

optimising the approximation between p(X) and q(X). When

these conditions are met, updated model parameters will

improve the approximation of p(X) over time.

We now turn to describing the parameter updates in more

detail. Variational inference schemes with identities vastly

facilitate parameter updates by re-parameterizing the messages

that are sent within the graphical model (36, 33). We

specifically base parameter updates on exponential family

distributions. The main reason for this choice is the

mathematically convenient property of conjugate priors. A

conjugate prior ensures that the prior probability distribution

and the posterior probability distribution come from the same
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distribution family (36), which vastly facilitates parameter

updates.

In the present model, we use the multinomial distribution,

which in its standard form is given by (see (33))

P(x j q) ¼
YK�1

k¼1

qxkk 1�
XK�1

k¼1

qk

 !xK

: (A13)

The multinomial distribution is a generalization of the Bernoulli

distribution to K possible outcomes (36). In it, multinomial

random variables x are represented by vectors with K

components. Each component is either 0 or 1, xk [ {0, 1} and

all components sum up to 1,
P1

k¼1 xk ¼ 1. q ¼ q1, . . . , qK are

the respective probabilities that xk ¼ 1, i.e. we use a 1-out-of-

K or one-hot representation.

The conjugate prior on the multinomial distribution is given

by the Dirichlet distribution. The density of the Dirichlet

distribution is given by Endres (33):

p(q j a) ¼ M
YK�1

k¼1

qak�1
k 1�

XK�1

k¼1

qk

 !
aK � 1: (A14)

where M is

M ¼ G(
PK

k¼1 ak)QK
k¼1 G(ak)

, (A15)

and G(x) is the gamma function.

Variational inference allows for learning over time and

avoids computationally costly new instantiations. For this, we

need to introduce free energy nodes with natural parameters

h (given by sufficient statistics l and pseudocounts n) into

the graphical model. Free energy factors (in the following:

factors/ factor nodes) are described by conjugate prior and

exponential family distributions introduced above. Parameter

updates in this context lead to improved model predictions so

that here, we can interpret the updating process as learning

over time.

Further efficiency is introduced into the model by

incorporating hypernodes, e.g. p(Ht j Ht�1) and p(St j Ht) in

Figure A1. Hypernodes ensure equal prior and posterior

distributions of P(Ht j Ht�1) and p(St j Ht) at each time step

t. They are connected to the more local, time point specific

factor nodes implicitly via the lower bound, so that no loops

occur and the application of belief-propagation algorithms

remains feasible. In this design, each factor node’s parameters

n and l are set to the specific parameter values of their

associated hypernode. Hypernodes are not involved in sum-

product message passing. Also, local factor parameters are not

updated individually, but rather, the hypernodes’ parameters
frontiersin.org
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TABLE A1. Detailed overview of exponential family parameter settings for the simulation of healthy- and chronic pain inference.

Parameter Healthy inference Pathological inference

Prior on 1st node l ¼ p( pain) ¼ 0:222, l ¼ p( pain) ¼ 0:777,

n ¼ 100 n ¼ 100

Top-down prior l ¼ p(noxioust j paint) ¼ 0:8, l ¼ p(noxioust j paint) ¼ 0:6,

l ¼ p(harmlesst j paint) ¼ 0:9, l ¼ p(harmlesst j paint) ¼ 0:4,

n ¼ 100 n ¼ 20

Transition prior l ¼ p(Ht ¼ pain j Ht�1 ¼ pain) ¼ 0:2, l ¼ p(Ht ¼ pain j Ht�1 ¼ pain) ¼ 0:7,

l ¼ p(Ht ¼ pain j Ht�1 ¼ pain) ¼ 0:7, l ¼ p(Ht ¼ pain j Ht�1 ¼ pain) ¼ 0:2,

n ¼ 100 n ¼ 100

Observations S1 � S5= noxious input, S12 � S18 = harmless input for both cases

Further, the first observation scheme to produce Figure 2 is shown below. Probabilities and their respective counter-probabilities sum up to 1 (83).

Eckert et al. 10.3389/fpain.2022.966034
are updated after message-passing and then passed on to the

local factor nodes. It can be shown that updates of hypernode

parameters are done via:

~n : ¼ nþ r (A16)

~l : ¼ nlþ r
~n

(A17)

where ~n are the updated n, or pseudocounts and ~l denotes the

updated l, or natural parameters. b is an inverse temperature

parameter. In case of Bayes-optimal updates, b ¼ 1. n is

referred to as the pseudocount as it keeps count of the

number of observed data points. ~l can be interpreted as a

weighted mean of the prior l and the observed data. The

responsibilities r, i.e. the accumulated posterior probabilities

of observations, can be computed from all messages a factor

node F received:

r ¼ exp ( log (F(X))þPM
m[ne(F) log (mvm!F(Vm)))PM

m[ne(F) exp ( log (F(X))þ
PM

m[ne(F) log (mVm!F
(Vm)))

(A18)

Hypernodes collect responsibilities from all neighbouring factor

nodes:

rH : ¼
XN

n[ne(H)

rn (A19)

This way, all observations made at the observable variable nodes

in each time step are taken into account. Before message-

passing can be instantiated anew, the posterior parameters of

all local factor nodes are set to those of their neighbouring

hypernode. The exponential family parameterization used in

our simulations of healthy vs. chronic pain inference are

summarized in Table A1.
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Appendix B. Derivation of null space
and stable pain states

Chronic pain is marked by very tenacious pain perception

in the absence of acute tissue damage. This translates to stable

pain states in our model. To achieve this stability of hidden

states, we need to derive transition probabilities

P( paintþ1 j paint) and P( paintþ1 j paint) such that the

inferred probability of pain in some next time step t þ 1 is

equal to the probability of pain in the current time step t,

which in turn is equal to some stable marginal probability of

pain, P( pain1):

P( paintþ1) ¼ P( paint) ¼ P( pain1) (B1)

The probability of pain in a future time step t þ 1 is given by the

sum over the possible previous states [ {pain, pain} and the

transition probabilities:

P(paintþ1) ¼ P(paintþ1 j paint) � P(paint)
þ (1� P(paintþ1 j paint) � (1� P(paint))

(B2)

Thus, for a stable pain percept after a long time, we require:

P(pain1) ¼ P(paintþ1 j paint) � P(pain1)
þ (1� P(paintþ1 j paint) � (1� P(pain1))

(B3)

Conversely, the condition for a stable no-pain percept is:

(1� P(pain1)) ¼ (1� P(paintþ1 j paint)) � P(pain1)
þ P(paintþ1 j paint) � (1� P(pain1))

(B4)
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FIGURE B1

Illustration of null space of transition probability deviations for different marginal p( pain1). We show that when the transition probabilities
p( paintþ1 j paint) and p( paintþ1 j paint) are sampled from the one-dimensional null space of a given marginal probability of pain p( pain1), the
marginal probability p( paint) will approach and stabilize within the range of p( pain1). Here, we illustrate the transition probabilities for
p( pain1) [ [0:1, 0:9] (legend).
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Solving equation B3 for the transition probabilities, we find

P(paintþ1 jpaint) �P(pain1)�P(paintþ1 jpaint) � (1�P(pain1))
¼P(pain1)þP(pain1)�1¼2P(pain1)�1

(B5)

Similarly, for (1�P(pain1)) (Equation B4):

�P(paintþ1 jpaint)�P(pain1)þP(paintþ1 jpaint) � (1�P(pain1))
¼1�P(pain1)�P(pain1)¼1�2P(pain1)

(B6)

In matrix-vector form, the last two equations can be written as

P(pain1) �(1�P(pain1))
�P(pain1) (1�P(pain1))

� �
P(paintþ1 jpaint)
P(paintþ1 jpaint)

� �

¼ 2P(pain1)�1
1�2P(pain1)

� �
(B7)

To solve for the transition probabilities, we decompose the
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transition probability vector into the sum of q and r:

(qþr)¼ P(paintþ1 jpaint)
P(paintþ1 jpaint)

� �
(B8)

where q and r are constrained such that

P(pain1) �(1�P(pain1)
�P(pain1) (1�P(pain1)

� �
�q¼ 2P(pain1)�1

1�2P(pain1)

� �
(B9)

in other words, q is that summand of the transition probability

decomposition which produces the desired stable marginal

probability of pain.

In contrast, for r we require that

P(pain1) �(1� P(pain1))
�P(pain1) (1� P(pain1)

� �
� r ¼ 0 (B10)

i.e. r is a vector in the null space of the matrix in Equation B7.
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Solving for the components of q ¼ (q1, q2)
T and

r ¼ (r1, r2)
T yields

P(pain1) �(1� P(pain1)
�P(pain1) (1� P(pain1)

� �
q1
q2

� �

¼ 2P(pain1)� 1
1� 2P(pain1):

� �
(B11)

i.e.

q1 ¼ 2P(pain1)� 1 ¼ �q2 (B12)

Similarly, for r,

P(pain1) �(1� P(pain1))
�P(pain1) (1� P(pain1))

� �
r1
r2

� �
¼ 0

0

� �
(B13)

we find

P(pain1)
1� P(pain1)

r1 ¼ r2 (B14)
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Thus, the transition probabilities for a given P(pain1) can be

written as

P(paintþ1 j paint)
P(paintþ1 j paint)

� �
¼ 2P(pain1)� 1

1� 2P(pain1)

� �

þ b
1

P(pain1)
1�P(pain1)

� �
(B15)

for any b [ R such that P(paintþ1 j paint),
P( paintþ1 j paint) [ [0, 1]. This implies a one-dimensional

null space, where pain percepts remain stable even if the

transition probabilities change within this null space (further

illustrated in Figure B1). Alternatively, we can eliminate b by

solving the first component equation for b and substituting

the result into the second component equation:

P( paintþ1 j paint) ¼
1� 2P( pain1)
1� P( pain1)

þ P( pain1)
1� P( pain1)

� P( paintþ1 j paint)

(B16)
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