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Simulation study 
towards quantitative X‑ray 
and neutron tensor tomography 
regarding the validity of linear 
approximations of dark‑field 
anisotropy
Jonas Graetz 

Tensor tomography is fundamentally based on the assumption of a both anisotropic and linear 
contrast mechanism. While the X-ray or neutron dark-field contrast obtained with Talbot(-Lau) 
interferometers features the required anisotropy, a preceding detailed study of dark-field signal 
origination however found its specific orientation dependence to be a non-linear function of the 
underlying anisotropic mass distribution and its orientation, especially challenging the common 
assumption that dark-field signals are describable by a function over the unit sphere. Here, two 
approximative linear tensor models with reduced orientation dependence are investigated in a 
simulation study with regard to their applicability to grating based X-ray or neutron dark-field tensor 
tomography. By systematically simulating and reconstructing a large sample of isolated volume 
elements covering the full range of feasible anisotropies and orientations, direct correspondences 
are drawn between the respective tensors characterizing the physically based dark-field model 
used for signal synthesization and the mathematically motivated simplified models used for 
reconstruction. The anisotropy of freely rotating volume elements is thereby confirmed to be, for 
practical reconstruction purposes, approximable both as a function of the optical axis’ orientation or 
as a function of the interferometer’s grating orientation. The eigenvalues of the surrogate models’ 
tensors are found to exhibit fuzzy, yet almost linear relations to those of the synthesization model. 
Dominant orientations are found to be recoverable with a margin of error on the order of magnitude 
of 1 ◦ . Although the input data must adequately address the full orientation dependence of dark-field 
anisotropy, the present results clearly support the general feasibility of quantitative X-ray dark-field 
tensor tomography within an inherent yet acceptable statistical margin of uncertainty.

The anisotropic nature of X-ray and neutron dark-field contrast allows imaging of directional information within 
unresolved substructure of a sample and thereby provides the fundamental prerequisite to tensor-valued volume 
imaging analog to other anisotropic contrast modalities e.g. in the field of magnetic resonance imaging. Follow-
ing on demonstrations of planar dark-field anisotropy e.g. by Jensen et al.1, extensions of anisotropic dark-field 
imaging to non-scalar volume reconstruction techniques have been shown by Malecki et al., Bayer et al., Vogel 
et al., Wieczorek et al., Dittmann et al., Gao et al., Kim et al.2–8. Common to all of these approaches is a heuristic 
3D extension of planar dark-field anisotropy as a function of the interferometer sensitivity axis orientation (as is 
e.g. explicitly exploited in Schaff et al.9 to decouple the problems of volume and tensor reconstruction), while the 
specific signal models and reconstruction algorithms vary considerably. Malecki et al.2 and Vogel et al.4 employed 
a temporary expansion of voxels into a non-orthogonal basis of principal scattering orientations, with subsequent 
fitting to a non-linear tensor model. Wieczorek et al.5 proposed an expansion into spherical harmonics (which 
represent an orthogonal expansion basis for functions over the unit sphere), and Bayer et al.3 used a sinusoidal 
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model describing the anisotropy of each voxel only within the tomographic plane. The expansion basis proposed 
by Malecki et al.2 was also adopted by Schaff et al.9 and Kim et al.8. Dittmann et al.6 and Gao et al.7 proposed 
the use of linear rank two tensor models for the description of voxel anisotropy analog to other fields of tensor 
tomography (e.g., diffusion tensor imaging in the context of magnetic resonance tomography).

Although formal extensions of the Radon transform and its inverse to vector and tensor fields (c.f. e.g. the 
overview given by Defrise and Gullberg10) establish the theoretic feasibility of non-scalar tomography, the linear 
projection models assumed and required within the mathematical conception of tensor tomography are not actu-
ally well reproduced by the available physical contrast modality (dark-field). In a recent review, the origination 
and actual orientation dependence of dark-field contrast for anisotropic mass distributions has been investigated 
in detail (Graetz et al.11), yielding a minimal yet non-linear model capturing the central features of general dark-
field anisotropy including in particular also the effect of varying scattering cross section in addition to the char-
acteristic dependence of dark-field contrast on a structure’s correlation lengths. I.e., general dark-field anisotropy 
is concluded to be a function of two orientations (the optical axis and a perpendicular axis of interferometer 
sensitivity), which has not been taken into account so far and in particular challenges the general assumption in 
present literature that dark-field signals may be described as a function over the unit sphere.

While this additional complexity, and the non-linearity in particular, are highly undesirable with regard to 
tomographic reconstruction, the derived physically based model allows to synthesize large amounts of anisotropic 
dark-field signals that will here be used to systematically study the general applicability of approximative linear 
tensor models suited for classic tensor tomography. As it likewise uses a tensor to parametrize the structural 
anisotropy of the considered volume element, direct comparisons between the respective tensors of the physi-
cally motivated non-linear signal model and the mathematically motivated linear tensor models can be made. 
Especially the qualitative scaling behavior of the reconstructed eigenvalues with respect to the extents of the 
original mass distribution as well as the intrinsic uncertainty in the reconstruction of orientation vectors are of 
concern here, while further results on the root mean square errors of the simplified models provide additional 
qualitative insights. The analyses form the basis towards a more detailed and quantitative understanding of X-ray 
or neutron dark-field tensor tomography.

Methods
Physical model of dark‑field anisotropy.  Dark-field contrast originates from a sample’s microscopic 
density variations below the imaging resolution, which may be described using auxiliary functions reproducing 
the typical densities and auto-correlation properties. This was e.g. proposed by Yashiro et al.12 and Lynch et al.13 
in the context of their wave optical derivations of dark-field origination, and is also common in other theories of 
scattering. Based on these concepts, a minimal physically motivated model of dark-field orientation dependence 
for the case of arbitrary sample rotations (as opposed to rotations only about the optical axis) has been derived 
in Graetz et al.11. The central results shall be briefly recapitulated here.

Anisotropy within a considered volume element is modeled by means of a three dimensional Gaussian mass 
density distribution ρ(�r) , which is formulated as

and parametrized by a spatial coordinate �r ∈ R
3 and a positive definite 3× 3 tensor T ∈ R

3×3

with σi ∈ R>0 denoting the Gaussian ellipsoid’s standard deviations along its principal axes and R being a unitary 
rotation matrix characterizing its orientation. As an auxiliary description of the substructure of individual volume 
elements within the field of view of an imaging system, the spatial scale of ρ(�r) is assumed to range below the 
system’s voxel size. Typical structure scales giving rise to X-ray dark-field contrast range between 10−6 m and 
10−4 m , whereas pixel or voxel sizes commonly range on the order of magnitude of 10−4 m . The specific absolute 
scales are however of no further relevance to the present considerations.

By projecting the 3D Gaussian mass density distribution along the imaging system’s optical axis n̂ (cf. Fig. 1) 
and evaluating both its resulting mean variance σ 2

� over a fixed area (typically, the pixel size) and its auto-cor-
relation function γ (ξ) along the axis of interferometer sensitivity ê , the following minimal model of dark-field 
orientation dependence has been, based on concepts introduced in different ways by Yashiro et al.12 and Lynch 
et al.13, derived in Graetz et al.11:

with v ∈ [0, 1] denoting the sample-induced visibility loss measurable with grating interferometers. Given the 
purpose of Eq. (3) to capture the essential interrelations of scattering cross section and auto-correlation width 
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of a rotating anisotropic scatterer, a number of leading order approximations are involved in the derivation of 
Eq. (3), for the details of which the reader shall be referred to Graetz et al.11. In particular, any rotation invariant 
factors affecting only the global scale of µDF have been dropped. The approach is finally justified by the consist-
ency of Eq. (3) with actual experiments11.

T is without loss of generality evaluated in the coordinate system of the grating interferometer (in which n̂ 
and ê align with the z- and x-axis respectively). General orientations of the acquisition system characterized 
by n̂ and ê other than (0, 0, 1) and (1, 0, 0) can be considered by a respective (inverse) rotation transformation 
applied to T prior to evaluating Eq. (3).

The prefactor T−1/2
zz  corresponds to the mass distribution’s standard deviation (i.e., its extent) along the 

optical axis and is proportional to the leading order of the scattering cross section, while the term (Txx − T2
xz

Tzz
) 

corresponds to the inverse variance of the projected Gaussian density distribution along ê and results from its 
auto-correlation function. Whenever the modeled ellipsoid is not inclined with respect to the optical axis, the 
off-diagonal term Txz becomes 0. This is typically the case in anisotropic dark-field imaging of planar objects, 
which are aligned parallel to the gratings and rotated only about the optical axis. Likewise, off-diagonal terms 
vanish in the isotropic case, i.e., when σ1 = σ2 = σ3 . Any terms affecting only the absolute scale of µDF have 
been neglected as solely the orientation dependence shall be studied (note e.g. a global scaling with det(T)−1/2 , 
the material’s refractive index at a given X-ray or neutron energy, and the specific correlation distance of the 
instrument, cf.11).

Figure 2 (upper left) gives an example of anisotropic dark-field contrast according to Eq. (3) for an elongated 
structure inclined with respect to the optical axis. The corresponding experimental configuration is illustrated 
in Fig. 1. Figure 2 (upper right) illustrates the special cases of either constant scattering cross section (dashed) 
or constant auto-correlation width (solid). In the former case, dark-field anisotropy arises solely from variations 
of the sample’s auto-correlation width along ê , in the latter case solely from variations in scattering cross section 
along n̂ . While classic anisotropic dark-field imaging of planar samples perpendicular to the optical axis needs 
to consider only the former case, both effects need to be considered in the general case of tomographic imaging.

Equation 3 will be used here to synthesize dark-field signals required for the systematic evaluation of tensor 
reconstruction techniques based on the mathematically motivated linear signal models addressed in the follow-
ing Section. Figures 1, 2 give an illustration, which will be discussed in the following.

Linear tensor models and iterative reconstruction.  A fundamental assumption for volume recon-
struction from projections is the linearity of the projection process. I.e., the sum of projections of individual 
volume elements is expected to be equivalent to the projection of the sum of the respective volume elements. In 
classic X-ray tomography, this is ensured both by Beer’s law of attenuation and the assumption of an isotropic 
contrast mechanism. Equation 3 however is clearly non-linear with respect to the tensor T characterizing indi-
vidual volume elements, and should, with regard to tomographic volume reconstruction, be replaced by a suit-
able linear surrogate.

Classic tensor tomography considers models of the form r̂U r̂ comprising a unit orientation vec-
tor r̂ ∈ R

3 with 
∥
∥r̂
∥
∥ = 1 and a symmetric tensor U ∈ R

3×3 with U = U
T , which are generally linear (i.e., 

∑

j r̂ U
(j) r̂ = r̂(

∑

j U
(j))r̂ ). Given the actual dark-field signal dependence on both the optical axis n̂ and the 

direction ê of grating sensitivity, two obvious models thus suggest themselves:

and

which capture either of the dark-field contrast’s orientation dependencies respectively. The designations N and E 
for the respective symmetric 3× 3 tensors have been chosen for clear discernibility of both models. They both do 
represent gross simplifications whose adequacy remains to be justified, and it therefore is the aim of the present 
article to discuss their relation to the actual contrast mechanism of dark-field imaging better described by Eq. (3).

(4)µDF(ê, n̂,N) ≈ n̂N n̂

(5)µDF(ê, n̂,E) ≈ êEê ,

Figure 1.   Sketch of a Talbot interferometer imaging an anisotropic volume element. From left to right: 
Integrating detector pixel with analyzer grating G2, volume element with indicators for the rotations 
and inclinations referred to in Fig. 2, and the modulating grating G1. The optical axis and orientation of 
interferometer sensitivity are indicated by n̂ and ê respectively. (Figure adapted from Graetz et al.11).
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To this end, tensors N and E will be reconstructed from a set of scalar dark-field projections µ(i)
DF (enumerated 

by i) synthesized with Eq. (3) from a given mass distribution tensor T and acquisition geometry (characterized by 
a set of acquisition system orientations n̂(i), ê(i) ), which will be detailed in Sect. 2.3. The following iterative scheme 
as proposed by the author in6 will be used for the reconstruction of N  and E from projection data respectively:

with k enumerating iterations, ik denoting the particular projection i considered at iteration k, and �k being a 
relaxation factor damping convergence. The specific back projection procedure within Eq. (6) can be verified 
to have two important properties: changes to U (k)

mn will scale with the residual error between data and model, 
and the update is performed by means of a pseudo-inverse of the linear tensor model r̂U r̂ such that immediate 
consistency of r̂ U (k) r̂ with the considered projection µ(ik)

DF  is achieved for �k = 1 . The continuous reduction of 
�k accounts for the expected inconsistency between µDF and the linear tensor models by gradually reducing the 
impact of individual projections µ(i)

DF and thus their specific order of consideration as convergence to a mean 
solution progresses.

In total, each individual projection will here be considered 25 times throughout the iterative process, with 
�0 = .2 , τ = 3kmax/25 , and kmax being 25 times the number of total projections µ(i)

DF (cf. following Section).
Figure 2 gives an example comparison of the simplified linear signal models (bottom row) with the original 

dark-field signal (top row) used as input to the reconstruction procedure. The modeling of only either of both 
orientation dependencies manifests itself at 0 ◦ (180◦ ) and 90◦ (270◦ ) respectively. A spatial representation of 
the reconstructed signal models and comparison to the original mass distribution is given in Fig. 3, illustrating 
the ability to reproduce the orientation of the underlying structure.

Projection geometry.  The reconstruction of individual tensor voxels from scalar projections requires a 
number of such projections sufficiently covering the parameter space of the signal model, i.e., sufficiently cover-
ing variations in both orientations n̂ and ê . Figure 4 depicts circular trajectories about a volume element in the 
origin. Each point on the trajectories represents a different orientation both of the optical axis n̂ (direction of 
projection, pointing towards the center), and the respective orientation ê of grating sensitivity (here tangential 
to the respective circular rotation orbits). Each trajectory is normal to one of the coordinate axes (blue) or to 

(6)

U (k)
mn = U (k−1)

mn + �k

back projection
︷ ︸︸ ︷

r(ik)m r(ik)n (µ
(ik)
DF −

∑
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r(ik)m U (k−1)
mn r(ik)n
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)

with U (0)
mn = 0

and �k = �02
−k/τ , �0 ∈ ]0, 1]
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∥
∥r̂

∥
∥ = 1,

Figure 2.   The different orientation dependencies of the physical model of dark-field anisotropy and the 
linear tensor models considered for reconstruction. Modeled is an elongated object inclined with respect to a 
rotational axis perpendicular to both the optical axis and the axis of interferometer sensitivity, cf. Fig. 1. The 
original signal (upper left) is generated according to Eq. (3) (with σ3/σ1 = σ3/σ2 = 2 ) and arbitrarily scaled to 
1. The respective scales and offsets of the linear approximations (bottom row) emerge from the reconstruction 
procedure.
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one of their diagonals (red and green), yielding a total of 13. Such a geometry is, in practice, realized by placing 
a sample in different orientations on the rotary stage of a typical tomography setup with the grating bars of the 
Talbot interferometer running parallel to the rotational axis. The circular trajectories will be sampled at discrete, 
equidistant points. With regard to the present simulations of individual volume elements, each trajectory is 
sampled at 29 points equidistantly covering the full circle.

Parameter exploration.  The parameter space of the physical dark-field model given in Eq. (3) consists of 
the to-be-reconstructed tensor characterizing the volume element on the one hand and the orientations n̂ and ê 
of the considered projection on the other hand. While the coverage of projection parameters, which correspond 
to the imaging procedure, has just been discussed, an adequate exploration scheme for the space of anisotropic 
volume elements described by T shall be addressed here.

At first it can be confirmed that the absolute scale of T does not affect the orientation dependence of µDF 
(see Eq. 3). It is therefore sufficient, without loss of generality, to require trace(T) = 1 = ∑

i σ
−2
i  for the present 

purposes, thereby implicitly constraining one eigenvalue and reducing the parameter space to the remaining 
two. Further, permutations of equivalent sets of eigenvalues correspond to rotations, which are treated separately. 
Based on these considerations, the following definitions can be made with regard to an exhaustive coverage of 
the parameter space:

Figure 3.   Illustrations of the considered tensors and signal models: On the left, an anisotropic Gaussian mass 
density distribution described by T (with σ3/σ1 = σ3/σ2 = 2 ) is represented by an iso-surface. The resulting 
dark-field signal cannot be represented in three dimensions given its dependence on two orientation vectors. 
On the center and right, the reconstructed signal approximations parametrized by either of the two orientations 
are shown. Both approximate models align with the principal orientation of the original mass distribution. 
Systematic comparisons of eigenvectors and eigenvalues are shown in Figs. 6, 7, 8.

ên

Figure 4.   Circular scanning trajectories (expressed in the sample coordinate system) about a volume element 
in the center of the circumscribed sphere. Each trajectory describes a set of projection directions n̂ pointing 
towards the center and associated tangential orientations of interferometer sensitivity ê . For better visualization, 
they have been grouped into trajectories about the coordinate axes (blue), about their face diagonals (red) and 
about their space diagonals (green). Intersections of trajectories represent points of constant projection direction 
n̂ at varying dark-field sensing directions ê . For the present study, each trajectory is sampled at 29 equidistant 
points, yielding a total of 377 distinct combinations (n̂(i), ê(i)) enumerated by i.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18477  | https://doi.org/10.1038/s41598-021-97389-y

www.nature.com/scientificreports/

The eigenvalues of T parametrizing the synthesization model are sampled on a regular grid covering 20× 20 
combinations of σ−2

1  and σ−2
2  within the specified ranges, with σ−2

3  resulting from the given constraints. The 
particular coverage shown in Fig. 5 results from the generation of two orthogonally oriented linear ramps on a 
20× 20 grid ranging from 0 to 1/3 and from 0 to 1/2 respectively, which are then complemented by a third map 
according to the normalization requirement. Figure 5 emerges after sorting the resulting triplets of generated 
eigenvalues at each point of the sampling grid in ascending order. It reveals redundancies in the coverage of 
eigenvalue combinations in the range σ−2

2 , σ−2
3 ∈ [1/3, 1/2] , which however do not conflict with the present 

purpose of covering the entire range of possible combinations.

Experiment
Two simplified linear models of dark-field anisotropy parametrized by symmetric 3× 3 tensors (cf. Sect. 2.2) are 
to be compared to a physically based nonlinear reference model parametrized by an anisotropic Gaussian mass 
distribution likewise characterized by a symmetric 3× 3 tensor.

To this end, an extensive set of feasible mass distribution tensors T (parametrizing the reference model, 
cf. Sect. 2.1) is generated. The range of feasible eigenvalue combinations of T and a respective practical sampling 
scheme has been discussed in Sect. 2.4. For each triplet of eigenvalues (describing an anisotropic Gaussian ellip-
soid), 300 rotation matrices are generated randomly (using the algorithm described in14), yielding a uniform 
distribution of eigenvectors on the unit sphere. Randomness increases the overall amount of different orientations 
considered over a range of eigenvalues while especially avoiding the inadvertent over- or underrepresentation 
of specific orientations relative to the acquisition geometry in the light of its numerous symmetries. In total, 
400× 300 = 120 000 different instances of T are generated, covering both the feasible range of eigenvalues and 
orientations.

For each instance of T  describing an isolated anisotropic volume element, a set (enumerated by i) of 
13× 29 = 377 dark-field signals µ(i)

DF(T) is synthesized by means of Eq. (3) for a corresponding set of acquisi-
tion poses defined in Sect. 2.3. These are characterized by different combinations (ê(i), n̂(i)) of the instrument’s 
orientations of optical axis and grating sensitivity relative to the sample coordinate system as illustrated in Fig. 4. 
(Note that, as already stated in Sect. 2.1, Eq. (3) is for technical reasons defined in the coordinate system of the 
instrument).

For each set of synthesized dark-field signals arising from an instance of T , tensors N  and E characterizing 
the simplified signal models defined by Eqs. (4, 5) are reconstructed using Eq. (6) and the known acquisition 
geometry (defined by the set of vectors (ê(i), n̂(i)) enumerated by i). Illustrating examples are given in Figs. 2 
and 3. The relation between the simplified and the complete model of dark-field anisotropy is finally assessed 
by comparing their tensors’ eigenvectors and -values. An evaluation of normalized root mean square errors 
between the synthesized signals and the fitted simplified models provides qualitative insights into the degrees 
of approximation involved.

If dark-field anisotropy was actually adequately described by either of the linear models (4) or (5), three 
orthogonal projection trajectories (Fig. 4, blue) would fundamentally be sufficient to fully determine the respec-
tive tensor (also in a tomographic setting, cf. e.g.10). As such a reduced set of trajectories is highly desirable with 
regard to practical data acquisition, it shall therefore be considered here as well. The just described simulation 
experiment is therefore repeated also for a reduced set of only 3 orthogonal acquisition trajectories (marked blue 
in Fig. 4, yielding 3× 29 = 87 dark-field signals µ(i)

DF(T)(3)).

(7)

σ−2
1 ∈ [0, 1/3]

σ−2
2 ∈ [0, 1/2]

σ−2
3 ∈ [1/3, 1]

with σ−2
1 ≤ σ−2

2 ≤ σ−2
3

and
∑

i

σ−2
i = 1 .

Figure 5.   Coverage of the parameter space (on a 20× 20 grid) of possible eigenvalue combinations in T 
according to Eq. (7). The salient triangular region extending from the top right corner to the bottom (cf. center 
and right panels) corresponds to redundancies in the coverage of the range σ−2

2 , σ−2
3 ∈ [1/3, 1/2] arising from 

the generation scheme, which shall here be noted for completeness.
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Results
Goodness of fit and reproduction of dominant orientations.  Figure 6 (left) shows normalized root 
mean square errors

of the linear tensor models (4) and (5) with respect to the noiseless input data µ(i)
DF . Normalization of the root 

mean square errors puts the quantified deviations in relation to the approximated signal, thereby providing a 
meanigful scale. The statistical distribution of deviations arises both from the range of considered anisotropies 
and of considered orientations. While the distributions peak at 10-20% NRMSE, values over 100% are still 
encountered. These deviations reflect the highly approximative nature of the linear tensor models.

Nevertheless, the principal orientation, which is one of the central concerns of tensor tomography, is repro-
duced to a typical precision of 0.33◦ and 1.0◦ respectively for the considered reconstruction models: Figure 6 
(right) compares the eigenvectors corresponding to either the smallest (in the case of E ) or largest (in the case of 
N  ) eigenvalues to the original synthesized orientation of T (cf. Fig. 3 for a visualization of the respective tensors 
and their extents). The considered eigenvector of each tensor indicating a volume element’s principal orientation 
is denoted v̂T , v̂E and v̂N respectively, whereby v̂T represents the ground truth. The reconstruction error (with 
respect to orientation) induced by the simplified models is measured by the relative angles

The observed orientation error distributions are compared to a normal distribution of inclination angles, 
which, due to integration over the azimuthal angle, takes the form

It can be staightforwardly shown to exhibit its maximum at �θ = σ�θ in the small angle approximation 
sin(�θ) ≈ �θ . Figure 6 (right) shows to be consistent with this distribution up to the maximum value, i.e., up 
to its standard deviation parameter.

Eigenvalues.  Figure  7 (top) reveals fuzzy, yet almost linear relations among the normalized and sorted 
eigenvalues of all models despite the strong approximations involved. Due to the expected anti-correlation of the 
eigenvalues of N  with those of T and E (cf. the illustrating example given in Figure 3), they are sorted in reverse 
order prior to comparison. Model (5) parametrized by E exhibits (on average) an almost proportional relation 
to the original signal generating mass distribution tensor T with moderate deviation from its positive definite 
nature. Model (4) parametrized by N  in contrast exhibits an inverse relation to T with the spectrum of eigen-
values being notably shifted towards negative values. The mapping of eigenvalues nevertheless remains approxi-
mately linear as opposed to an actual reciprocal relation. The direct comparison of the normalized eigenspectra 
of N  and E reveals—on average—a perfectly linear relation, indicating that both capture highly similar informa-
tion given the present acquisition geometry (see Fig. 4).

The deviations from the apparent mean curves relating the different models reflect both statistical variances 
among different orientations of the same volume element as well as systematic deficiencies of the simplified 
models. As these effects are not separable in practical applications, no further effort is made to investigate their 
individual contributions.

Figure 7 (bottom) shows the eigenvalues’ (of both N  and E ) absolute scale by means of their average values. 
They are found, by direct comparison, to reproduce the mean observed dark-field signal with little variance.

(8)NRMSE =

√

(µ
(i)
DF − r̂(i)U r̂(i))2

µ
(i)
DF

(9)
�θ(E) = arccos |v̂T · v̂E|

and�θ(N) = arccos |v̂T · v̂N | .

(10)PDF(�θ , σ�θ ) ∝ sin(�θ)e
− 1

2
�θ2

σ�θ ≈ �θe
− 1

2
�θ2

σ2
�θ .

Figure 6.   Histograms showing the normalized root mean square errors (NRMSE, cf. Eq. 8) and angular 
deviations (Eq. 9) of the fitted approximative tensor models with respect to the synthesized dark-field data and 
mass distribution tensors. The angular deviations are compared to (unnormalized) Gaussian distributions of 
inclination angles (integrated over the azimuthal degree of freedom, cf. Eq. 10). These are found to describe the 
empiric distributions up to their maximum and are used for quantification purposes.
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The case of one or two eigenvalues of T being exactly zero corresponds to the limit of infinitely extended 
volume elements, causing an extreme orientation dependence and divergence of the dark-field signal according 
to Eq. (3) and thus also unstable (highly orientation dependent) reconstruction results in N  and E , as can be 
observed in Fig. 7. This limit is expected to be only of academic relevance.

Reconstruction from three orthogonal trajectories.  The simulation experiment has been repeated 
also for a reduced set of only 3 orthogonal acquisition trajectories (marked blue in Fig. 4), which would be suf-
ficient if either of Eqs. (4–5) were an exact description of dark-field signal anisotropy. Figure 8 depicts, analog to 
Figs. 6, 7, the relations between the considered models’ tensors. Despite the reduced set of data, which generally 
gives reason to expect fewer model inconsistencies, the observed distribution of root mean square errors is still 
qualitatively comparable to that found previously in Fig. 6. The eye-catching reduction of jitter within the distri-
bution of NRMSEs as compared to Fig. 6 may however be hypothesized to be indeed related to the reduced data 
constraints. Although the visibly diffused relations between the tensors’ eigenspectra reflect a notably degraded 
relation between the reconstructed tensors and the original input, principal orientations are still roughly repro-
duced within an error margin of about 4.5◦ to 10◦ . Similar to the previous case, the mean eigenvalues of both N  
and E give an almost exact representation of the mean observed dark-field signal. As compared to the findings of 
Fig. 7 (bottom), the variance of observed values (along the diagonals) is increased though, showing that simpli-
fying the acquisition geometry also affects the reconstruction of the signal’s zeroth order (i.e., the signal’s mean).

Discussion
While several proofs of concept plausibly demonstrating tomographic reconstruction of sub-resolution anisot-
ropy based on various heuristic signal models were given in previous literature, explicit validations have been 
lacking so far. A central assumption explicitly or implicitly shared by all current approaches is that 3D dark-field 
anisotropy can be described as a function of a single orientation vector. This has been, deriving from planar dark-
field anisotropy, the interferometer’s direction of sensitivity. A detailed discussion of dark-field origination given 
recently11 however concludes that a complete description of general dark-field anisotropy for arbitrarily oriented 
structures further exhibits a non-negligible dependence also on the relative orientation of the optical axis (the 
direction of projection). I.e., dark-field contrast will likewise vary for anisotropic structures rotating about the 
axis of grating sensitivity (changing their inclination with respect to the optical axis) as for the classical case of 
objects rotating about the optical axis (changing their orientation with respect to the interferometer’s gratings). 
General dark-field anisotropy is thus fundamentally a function of two orientations: the axis of interferometer 
sensitivity, and the axis of projection.

With regard to tensor tomography, this observation has two remarkable implications: Foremost, it obviously 
raises the question why the present approaches to anisotropic dark-field tomography do nevertheless produce 
plausible results. And as neglecting parts of the orientation dependence is apparently tolerable, this also indicates 
that dark-field anisotropy may likewise be approximable as a function of the optical axis, modeling variations 

Figure 7.   Upper row: Pairwise comparisons of the eigenspectra of tensors describing dark-field anisotropy 
in different ways (cf. Fig. 3). Instances of N and E have to this end been reconstructed from dark-field signals 
synthesized from generated instances of T as detailed in Section 3. For each pair among the tensors T , N and 
E (cf. Eqs. 1–5), their respective normalized and sorted eigenvalues (in reverse order for N ) are plotted against 
each other in 2D density histograms. Bottom row: Comparisons of mean eigenvalues of N and E to the mean of 
the dark-field signals they were reconstructed from (left and center panel), as well as comparisons among each 
other (right panel).
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in scattering cross section as opposed to variations in auto-correlation properties. As both effects have opposite 
relations with the considered structure’s extents (cf. Fig. 2 upper right), the net relation of either model to the 
signal generating structure is non-obvious. The purpose of the present study therefore was to systematically 
investigate the actual relations based on the physically motivated signal model derived and supported experi-
mentally previously (11) based on the current state of knowledge on dark-field origination.

As expected, the approximative models can exhibit large root mean square errors with regard to the actual 
signal, especially due to the partial neglection of orientation dependencies. Nevertheless, both linear models 
correctly reproduce the mean observed dark-field signal and are in particular able to recover the principal 
orientation of the original mass distribution up to a statistical accuracy of 0.33◦ to 1 ◦ when provided with dark-
field data covering both orientation dependencies. Their normalized eigenvalues, which do encode the actual 
aspect ratios of anisotropic volume elements, are found to exhibit a fuzzy yet approximately linear relation to the 
normalized inverse variances of the original mass distribution (as opposed to being linear e.g. in its extents) for 
both models. This is the scaling behavior expected due to the influence of the volume element’s auto-correlation 
function along the axis of interferometer sensitivity, which appears consistent with the observation that model 
(5) yields slightly better reconstruction results. The eigenvalues’ absolute scale, reflecting signal intensity, does 
however not allow inferences on the absolute scale of the imaged structure due to the hardly separable influences 
of both structure scale and material density (refractive index) on the total signal strength. Further quantitative 
interpretations also of the observed variances in the distribution of eigenvalues are left to future research.

Although the true complexity of dark-field anisotropy (especially with regard to its orientation dependence) 
generally mandates a rather extensive data acquisition scheme, the consequences of using only a minimal set of 
three circular acquisition trajectories (which would be sufficient if the tensor models proposed for reconstruction 
were accurate descriptions of dark-field anisotropy) has been explicitly considered as well. While the quantita-
tive relation between input and reconstruction is, as expected, notably degraded as compared to the preceding 
experiment, principal orientations for isolated volume elements could still be recovered to a statistical accuracy 
of 5 ◦ to 10◦ . That these values exhibit slightly differing ratios of degradation as compared to the preceding results 
of 0.33◦ and 1 ◦ respectively is taken note of as an empiric observation. As it is conjecturable that the additional 

Figure 8.   Comparison of NRMSEs, principal orientations, eigenspectra and mean signal intensities analog to 
Fig. 6, 7 when reconstructing tensors N and E from a reduced set of dark-field projections acquired along only 
three orthogonal projection trajectories (Fig. 4, indicated in blue).
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influences of noise and signal superpositions (in the tomography use case) will further challenge the stability of 
these reconstructions in practical applications, more comprehensive acquisition schemes as considered initially 
are nevertheless expected to be advisable though.

Conclusion
The practical feasibility of dark-field tensor volume tomography depends on the applicability of linear approxi-
mations to actual dark-field signal anisotropy, given that non-linear dependencies can void the ability to solve 
the problem of volume reconstruction from projections. Central concern in this context was the impact of the 
previously unconsidered dependence of dark-field signal anisotropy also on the direction of the optical axis 
in addition to that of the interferometer’s direction of sensitivity, which is here the source of non-linearity and 
further generally challenges any models of dark-field based on functions over the unit sphere that have been 
assumed in all present works on non-scalar dark-field tomography. While such models must indeed be considered 
invalid with regard to accurate signal description and related theoretic reasoning, they can nevertheless serve 
the practical purpose of quantifying anisotropy properties. The present study confirms that linear tensor models 
modeling either of the actual orientation dependencies of dark-field contrast are indeed able to recover orienta-
tions up to a statistical accuracy on the scale of 1 ◦ . These models are particularly well suited for tomographic 
applications, and the observed statistical variance is expected to range below other sources of uncertainty in 
practical applications. The observed scaling behavior of the reconstructed tensors’ eigenvalues with regard to 
those of the underlying mass distribution further provides first qualitative insights towards future quantitative 
evaluations also of aspect ratios. Central to the applicability of simplified linear models is however a comprehen-
sive data acquisition scheme adequately addressing the actual orientation dependencies of dark-field anisotropy.
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