

Contents lists available at ScienceDirect

# Data in brief

journal homepage: www.elsevier.com/locate/dib

Data Article

## Dataset on concentration and enrichment factor of rare earth elements (REEs) in sediments of Linggi River, Malaysia



## Md Suhaimi Elias <sup>a, b, \*</sup>, Shariff Ibrahim <sup>a</sup>, Kamarudin Samuding <sup>c</sup>, Nesamalar Kantasamy <sup>a</sup>, Jeremy Andy Dominic Daung <sup>c</sup>, Shamsiah Ab Rahman <sup>b</sup>, Azian Hashim <sup>b</sup>

<sup>a</sup> School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia
<sup>b</sup> Analytical Chemistry Application Group (ACA), Waste and Environmental Technology Division, Malaysian Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
<sup>c</sup> Environmental Tracer Application Group (E-TAG), Waste and Environmental Technology Division,

Malaysian Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia

#### ARTICLE INFO

Article history: Received 22 March 2019 Received in revised form 15 April 2019 Accepted 30 April 2019 Available online 24 May 2019

Keywords: Rare earth elements Enrichment factor Sediment Linggi river

## ABSTRACT

This study is on the distribution of rare earth elements (REEs) concentrations in sediments collected from 113 sampling locations of Linggi River. The analysis of sediment samples was performed by Neutron Activation Analysis (NAA) and Inductively Coupled Plasma – Mass spectrometer (ICP-MS). The main compositions of Linggi river sediments were silt > sand > clay. The mean of total concentrations of REEs ( $\Sigma$ REE), light REEs ( $\Sigma$ LREE) and heavy REEs ( $\Sigma$ HREE) in Linggi sediment were 249, 228, and 22.0 mg/kg, respectively. The results of Linggi river sediments were normalised to several reference shale values. REEs of Linggi river sediments were comparable to MUQ reference shale values. Enrichment factors (EF) of mean values indicate Linggi River sediment can be categorised as having minor to moderate enrichment.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/).

E-mail address: mdsuhaimi@nm.gov.my (M.S. Elias).

https://doi.org/10.1016/j.dib.2019.103983

<sup>\*</sup> Corresponding author. School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia.

<sup>2352-3409/© 2019</sup> The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

#### Specifications table

| Subject area<br>More specific subject area<br>Type of data | Environmental Sciences<br>Rare earth elements (REEs) pollution in sediment of Linggi River<br>Tables and figures                                                                                                                                               |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                            | (ICP-MS) -Model Elan 6000, Perkin Elmer.                                                                                                                                                                                                                       |
| Data format                                                | Raw and analysed                                                                                                                                                                                                                                               |
| Experimental factors                                       | Linggi River sediment samples compared to several reference shale values. The enrichment factor (EF) was applied to identify the enrichment of REEs in Linggi sediment and possible sources of pollution.                                                      |
| Experimental features                                      | Determination of REEs such as La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er, Tm, Yb and Lu concentrations.                                                                                                                                                            |
| Data source location                                       | Linggi River sediment of Negeri Sembilan, Malaysia                                                                                                                                                                                                             |
| Data accessibility                                         | Data is in this article                                                                                                                                                                                                                                        |
| Related research article                                   | B.S. Kamber, A. Greig, K.D. Collerson. 2005. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia, Geochim. Cosmochim. Acta. 69, 1041–1058. https://doi.org/10.1016/j.gca.2004.08.020. |

#### Value of the Data

• The dataset is presented on the concentrations of rare earth element (REEs) in the sediments of Linggi River which can serve as a baseline for future references.

• Normalization of Linggi sediment to several reference shale values showed Linggi sediment samples are comparable to MUQ reference shale value.

• This data is useful to identify the major REEs pollution in Linggi River sediments.

### 1. Data

Composition and average of particle size of Linggi River sediment are depicted in Fig. 1. Major compositions of Linggi River sediment are silt > sand > clay. The average of particle size of Linggi River sediment was less than 35  $\mu$ m in all sampling locations (Fig. 1). High content of clay and silt (particle size average < 63  $\mu$ m) in sediment is adequate for analysis of elemental content including rare earth elements concentration. Sediment chart and plotting results of textural classification of the Linggi River sediment is depicted in Fig. 2. The texture of Linggi River sediment can be classified as slit and silt loam (Fig. 2).

Light rare earth elements (LREEs) consist of La, Ce, Pr, Nd, Sm and Eu whereas heavy rare earth elements (HREEs) consist of Gd, Tb, Ho, Er, Tm, Yb, and Lu. The results obtained for the statistical summary of the minimum (min), maximum (max), mean, total concentration of each element,  $\Sigma$ REE,  $\Sigma$ LREE, and  $\Sigma$ HREE of sediment samples that were collected from 113 locations of Linggi River are tabulated in Table 1. Generally, LREEs were the major concentrations contributing to  $\Sigma$ REE in Linggi River sediments. The  $\Sigma$ LREE in Linggi River sediments were higher than  $\Sigma$ HREE, indicating the LREEs in the sediment may have originated from terrigenous and riverine sources. The analytical results of standard reference material (SRM) and experimental values of IAEA SL-1 and BHVO-1 are tabulated in Table 1. The relative bias (%) values of REEs range from -18.9 to 14.2%. The relative bias of the REEs are within the range of the acceptable values (<±20%) [1,2].

REEs in Linggi sediments are normalised to several reference shale values such as post-Archaean Australian Shale (PAAS), mud from Queensland (MUQ), Archaean shale, North American Shale Composite (NASC) and upper continental crust (UCC) as shown in Fig. 3. The data of reference shale and Linggi sediment values of REEs and the ratio of Linggi sediment to other reference values are tabulated in Table 2. The REEs data from Linggi sediment display almost a flat pattern normalised to MUQ reference shale values, with REEs values of 0.8–1.60 except for Yb and Lu (Fig. 3). This indicate the Linggi sediment are comparable to the MUQ reference values due to not much fluctuation of REEs compared to the other reference values such as PAAS, Archaean shale, NASC and UCC.



Fig. 1. Composition and average of particle size of Linggi River sediment.



Fig. 2. Plotting results of Linggi River sediment textural classification.

The enrichment factor (EF) is frequently used to evaluate the possible addition of an anthropogenic component and lithogenic processes [7-10]. The calculation of the enrichment factor (EF) of Linggi sediment is according to Eq. (1).

| Table 1                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------|
| The elemental concentrations (mg/kg), LREE, HREE, total REE, and statistical summary of REEs in the sediments of Linggi River. |
|                                                                                                                                |

| Location | La            | Ce           | Pr           | Nd           | Sm           | Eu   | Gd            | Tb    | Но           | Er           | Tm   | Yb                        | Lu   | LREE       | HREE         | Total<br>REE |
|----------|---------------|--------------|--------------|--------------|--------------|------|---------------|-------|--------------|--------------|------|---------------------------|------|------------|--------------|--------------|
| L001     | 37.1          | 115          | 11.6         | 31.7         | 7.47         | 0.93 | 5.21          | 0.85  | 1.03         | 1.79         | 0.45 | 3.61                      | 0.54 | 204        | 13.5         | 218          |
| L002     | 20.3          | 88.2         | 10.0         | 21.9         | 4.31         | 0.52 | 4.29          | 0.53  | 0.64         | 1.08         | 0.26 | 2.59                      | 0.36 | 145        | 9.74         | 155          |
| L003     | 74.1          | 161          | 12.9         | 65.3         | 12.7         | 0.75 | 7.86          | 1.25  | 0.69         | 1.82         | 0.36 | 5.06                      | 0.71 | 327        | 17.7         | 344          |
| L004     | 21.5          | 64.7         | 3.79         | 31.9         | 4.01         | 0.57 | 2.36          | 0.16  | 0.27         | 0.77         | 0.17 | 1.57                      | 0.23 | 126        | 5.53         | 132          |
| L005     | 72.9          | 138          | 19.9         | 51.3         | 13.8         | 0.73 | 12.7          | 1.52  | 1.00         | 2.54         | 0.46 | 5.69                      | 0.83 | 297        | 24.7         | 321          |
| L006     | 158           | 171          | 30.9         | 110          | 39.5         | 1.17 | 22.2          | 4.37  | 2.35         | 3.60         | 0.69 | 14.6                      | 1.92 | 511        | 49.7         | 561          |
| 1008     | 69.0<br>56.2  | 130          | 28.4         | 58.8<br>45.0 | 18.0         | 2.21 | 16.2          | 2.70  | 5./9<br>3.37 | 10.6<br>6.14 | 2.82 | 002                       | 1.60 | 312        | 50.9<br>34.7 | 303          |
| 1009     | 56.8          | 109          | 21.5         | 45.0<br>61.6 | 14.9         | 1.55 | 9.94<br>11 9  | 2.23  | 3.98         | 7 24         | 1.07 | 9.92                      | 1.45 | 265        | 37.8         | 303          |
| L010     | 45.8          | 112          | 15.3         | 53.6         | 10.2         | 0.90 | 6.74          | 1.28  | 1.53         | 2.76         | 0.71 | 5.61                      | 0.84 | 238        | 19.5         | 258          |
| L011     | 53.7          | 112          | 19.2         | 61.4         | 12.9         | 1.00 | 8.00          | 1.97  | 1.95         | 3.59         | 0.95 | 11.2                      | 1.62 | 260        | 29.3         | 289          |
| L012     | 44.1          | 98.5         | 16.4         | 54.7         | 11.6         | 1.04 | 8.16          | 1.72  | 2.29         | 4.16         | 1.12 | 8.71                      | 1.27 | 226        | 27.4         | 254          |
| L013     | 44.6          | 117          | 18.1         | 56.5         | 12.1         | 1.33 | 9.36          | 1.93  | 2.80         | 4.89         | 1.36 | 9.17                      | 1.30 | 249        | 30.8         | 280          |
| L014     | 58.3          | 124          | 18.9         | 81.5         | 15.1         | 1.03 | 6.96          | 2.21  | 1.89         | 3.47         | 0.95 | 11.8                      | 1.72 | 299        | 29.0         | 328          |
| L015     | 43.7          | 94.9         | 11.0         | 62.1         | 11.6         | 1.06 | 8.93          | 1.53  | 1.66         | 4.98         | 0.79 | 6.98                      | 1.10 | 224        | 26.0         | 250          |
| L015     | 46.0          | 106          | 10.6         | 53.6         | 12.0         | 1.24 | 9.07          | 1./1  | 1.74         | 5.11         | 0.84 | 8.01                      | 1.08 | 229        | 27.6         | 257          |
| LU17     | 45.2          | 112          | 0.35         | 41.0<br>36.6 | 12.1         | 1 /1 | 9.59          | 1.55  | 1.55         | 4.59         | 0.70 | 9.09                      | 1.10 | 212        | 28.5         | 241          |
| 1019     | 41.0          | 102          | 893          | 26.5         | 11.0         | 1 10 | 7 72          | 1.07  | 1.04         | 429          | 0.72 | 6.98                      | 0.83 | 191        | 23.4         | 214          |
| L020     | 42.9          | 100          | 7.63         | 29.1         | 11.4         | 1.11 | 6.53          | 1.50  | 1.29         | 3.77         | 0.64 | 8.37                      | 1.13 | 193        | 23.2         | 216          |
| L021     | 41.8          | 97.0         | 9.58         | 25.2         | 11.6         | 1.12 | 9.18          | 1.35  | 1.90         | 5.59         | 1.00 | 6.89                      | 0.86 | 186        | 26.8         | 213          |
| L022     | 47.6          | 117          | 13.0         | 38.2         | 12.6         | 1.38 | 11.3          | 1.51  | 2.18         | 6.40         | 1.13 | 8.40                      | 0.99 | 230        | 31.9         | 262          |
| L023     | 38.2          | 87.7         | 8.23         | 25.6         | 9.98         | 0.95 | 6.34          | 1.29  | 1.14         | 3.36         | 0.56 | 7.59                      | 0.91 | 171        | 21.2         | 192          |
| L024     | 47.6          | 105          | 10.4         | 59.5         | 12.1         | 1.00 | 8.76          | 1.77  | 1.71         | 5.00         | 0.83 | 7.63                      | 1.14 | 235        | 26.8         | 262          |
| L025     | 40.2          | 91.2         | 9.81         | 27.2         | 10.8         | 0.98 | 7.79          | 1.49  | 1.41         | 4.15         | 0.69 | 8.08                      | 1.06 | 180        | 24.7         | 205          |
| LU26     | 44.4          | 108          | 11.2         | 27.5         | 12.4         | 1.22 | 9.62          | 1.54  | 1.90         | 5.51         | 0.92 | 8.35<br>0.00              | 1.02 | 205        | 28.8         | 234          |
| 1027     | 44.1          | 102          | 9.96         | 50.4         | 11.7         | 1.02 | 9.95          | 1.45  | 1.07         | 4.94         | 0.61 | 8.09<br>6.99              | 0.95 | 206        | 27.9         | 233          |
| 1029     | 36.9          | 114          | 7 35         | 35.1         | 8.83         | 1.05 | 5.07          | 1 31  | 1.42         | 2.76         | 0.55 | 7 72                      | 1.02 | 204        | 19.6         | 274          |
| L030     | 44.0          | 86.4         | 10.6         | 35.9         | 10.4         | 1.58 | 7.11          | 1.94  | 1.60         | 3.91         | 0.77 | 5.58                      | 0.87 | 189        | 21.8         | 211          |
| L031     | 41.0          | 102          | 9.47         | 60.9         | 10.0         | 0.94 | 7.72          | 1.19  | 1.37         | 4.04         | 0.65 | 5.05                      | 0.72 | 224        | 20.8         | 245          |
| L032     | 45.6          | 124          | 9.86         | 29.4         | 9.68         | 1.23 | 6.35          | 1.09  | 1.32         | 3.22         | 0.62 | 5.41                      | 0.61 | 220        | 18.6         | 239          |
| L033     | 49.0          | 100          | 7.63         | 33.0         | 8.04         | 1.02 | 4.17          | 0.84  | 0.76         | 1.85         | 0.34 | 3.32                      | 0.56 | 199        | 11.9         | 211          |
| L034     | 29.4          | 62.4         | 8.06         | 19.4         | 6.29         | 0.78 | 4.81          | 0.68  | 0.86         | 2.12         | 0.41 | 3.94                      | 0.67 | 126        | 13.5         | 140          |
| L035     | 57.2          | 66.I         | 12.0         | 38.9         | 9.16         | 1.19 | 0.53          | 1.04  | 1.24         | 3.00         | 0.57 | 4.87                      | 0.67 | 185        | 17.9         | 202          |
| 1037     | 40.4<br>45.4  | 92.1         | 10.5         | 16.2<br>25.8 | 0.04<br>10.9 | 1.02 | 7.24          | 0.97  | 1.10         | 5.12<br>4 30 | 0.51 | 4.91                      | 0.65 | 171        | 18.5         | 212          |
| 1.038    | 45.2          | 101          | 10.0         | 27.4         | 943          | 1.22 | 7.65          | 1.17  | 1.50         | 3 32         | 0.54 | 5 2 5                     | 0.66 | 194        | 19.6         | 212          |
| L039     | 39.6          | 99.2         | 10.8         | 30.5         | 8.61         | 1.14 | 7.57          | 1.25  | 1.23         | 3.57         | 0.59 | 5.49                      | 0.83 | 190        | 20.5         | 210          |
| L040     | 42.2          | 90.8         | 10.9         | 34.8         | 9.14         | 1.17 | 8.00          | 1.03  | 1.30         | 3.74         | 0.62 | 4.94                      | 0.60 | 189        | 20.2         | 209          |
| L041     | 40.7          | 79.9         | 8.16         | 38.8         | 8.70         | 1.08 | 6.35          | 1.20  | 1.03         | 2.98         | 0.49 | 5.27                      | 0.72 | 177        | 18.0         | 195          |
| L042     | 52.5          | 99.4         | 12.5         | 34.6         | 9.50         | 1.26 | 6.33          | 1.18  | 1.33         | 2.45         | 0.59 | 4.74                      | 0.66 | 210        | 17.3         | 227          |
| L043     | 49.7          | 103          | 12.8         | 42.3         | 10.8         | 1.35 | 7.66          | 1.46  | 1.65         | 3.07         | 0.77 | 5.99                      | 0.80 | 220        | 21.4         | 241          |
| L044     | 39.7          | 77.0         | 9.83         | 34.3         | 8.52         | 1.06 | 6.90          | 1.11  | 1.06         | 2.02         | 0.50 | 4.97                      | 0.68 | 170        | 17.2         | 188          |
| L045     | 40.5          | 92.4         | 9.92         | 27.4         | 9.86         | 1.20 | 5.45<br>6 1 4 | 1.25  | 1.31         | 2.49         | 0.62 | 5.54                      | 0.78 | 187        | 17.4         | 205          |
| 1040     | 42.1          | 89.7<br>89.6 | 8 56         | 39.3         | 9.90         | 1.21 | 4 90          | 1.39  | 1.49         | 2.80         | 0.70 | 5.55<br>6.10              | 0.72 | 195        | 10.0         | 100          |
| 1.048    | 43.1          | 103          | 14.9         | 39.8         | 10.5         | 1.43 | 6.75          | 1.43  | 1.87         | 3.35         | 0.90 | 6.49                      | 0.84 | 212        | 21.6         | 234          |
| L049     | 38.9          | 83.3         | 10.2         | 38.0         | 8.97         | 1.17 | 4.68          | 1.27  | 1.31         | 2.36         | 0.64 | 6.01                      | 0.79 | 181        | 17.1         | 198          |
| L050     | 51.7          | 113          | 9.91         | 39.1         | 11.9         | 1.57 | 4.72          | 1.63  | 1.33         | 2.40         | 0.65 | 7.45                      | 1.02 | 227        | 19.2         | 246          |
| L051     | 77.6          | 169          | 15.9         | 70.4         | 15.3         | 1.20 | 10.9          | 1.77  | 1.45         | 4.20         | 0.66 | 9.90                      | 1.13 | 349        | 30.1         | 379          |
| L052     | 101           | 177          | 14.7         | 85.1         | 17.9         | 1.04 | 9.50          | 1.58  | 1.18         | 3.33         | 0.56 | 8.15                      | 0.80 | 397        | 25.1         | 422          |
| L053     | 47.8          | 118          | 9.43         | 38.1         | 9.79         | 1.25 | 7.83          | 1.21  | 1.48         | 4.31         | 0.71 | 6.85                      | 0.73 | 224        | 23.1         | 247          |
| L054     | 33.7          | 80.9         | 5.15         | 41.5         | 7.21         | 1.02 | 3.87          | 0.80  | 0.69         | 2.00         | 0.33 | 5.27                      | 0.56 | 169        | 13.5         | 183          |
| 1055     | 40.4<br>44 4  | 114<br>110   | 7.84<br>7.72 | 50.5<br>28.1 | 9.22<br>8.86 | 1.35 | 0.54<br>6 35  | 1.13  | 1.10         | 3.49<br>3.46 | 0.57 | 7.30<br>4.44              | 0.75 | 230<br>200 | 21.0<br>17.6 | 201<br>227   |
| 1057     | -14.4<br>43.7 | 112          | 8.01         | 20.1<br>37 7 | 0.00<br>9.06 | 1.96 | 6.64          | 1 1 5 | 1.10         | 3 70         | 0.57 | - <del>1.44</del><br>5.40 | 1.06 | 209        | 19.8         | 233          |
| L058     | 57.7          | 148          | 3.72         | 51.2         | 10.3         | 2.30 | 3.98          | 1.28  | 0.87         | 2.59         | 0.42 | 4.78                      | 0.82 | 273        | 14.7         | 288          |
| L059     | 52.4          | 138          | 7.73         | 38.2         | 10.2         | 1.16 | 7.26          | 1.18  | 1.55         | 4.85         | 0.77 | 4.89                      | 0.90 | 248        | 21.4         | 269          |
| L060     | 55.5          | 127          | 3.43         | 36.8         | 9.47         | 1.77 | 3.00          | 1.12  | 0.57         | 1.72         | 0.28 | 4.92                      | 0.90 | 234        | 12.5         | 247          |
| L061     | 46.7          | 132          | 11.1         | 52.6         | 11.9         | 0.66 | 8.27          | 1.74  | 1.23         | 3.61         | 0.58 | 6.70                      | 1.06 | 255        | 23.2         | 278          |
| L062     | 55.2          | 153          | 12.6         | 77.3         | 15.9         | 1.06 | 9.55          | 1.71  | 1.54         | 4.44         | 0.69 | 4.84                      | 0.88 | 315        | 23.7         | 338          |
| L063     | 42.9          | 133          | 10.1         | 49.6         | 11.3         | 0.84 | 7.38          | 1.45  | 1.15         | 3.33         | 0.53 | 5.33                      | 0.93 | 247        | 20.1         | 267          |

Table 1 (continued)

| Location          | La   | Ce    | Pr           | Nd           | Sm           | Eu   | Gd           | Tb   | Но   | Er    | Tm   | Yb           | Lu   | LREE  | HREE | Total<br>REE |
|-------------------|------|-------|--------------|--------------|--------------|------|--------------|------|------|-------|------|--------------|------|-------|------|--------------|
| L064              | 36.9 | 107   | 11.5         | 42.5         | 9.46         | 0.80 | 7.22         | 1.05 | 1.72 | 4.20  | 0.51 | 4.25         | 0.72 | 208   | 19.7 | 227          |
| L065              | 32.5 | 100   | 10.6         | 37.6         | 9.17         | 0.60 | 8.00         | 1.49 | 1.60 | 3.90  | 0.50 | 4.91         | 0.94 | 190   | 21.3 | 211          |
| L066              | 34.7 | 91.9  | 13.3         | 33.1         | 7.84         | 0.58 | 8.55         | 1.40 | 1.20 | 3.45  | 0.57 | 5.30         | 0.89 | 181   | 21.4 | 203          |
| L067              | 50.6 | 134   | 11.4         | 51.0         | 11.0         | 0.78 | 8.98         | 1.56 | 1.29 | 3.94  | 0.62 | 5.88         | 0.99 | 258   | 23.3 | 282          |
| L068              | 47.1 | 124   | 13.6         | 40.4         | 9.64         | 0.84 | 11.1         | 1.20 | 1.62 | 4.71  | 0.72 | 3.75         | 0.76 | 235   | 23.9 | 259          |
| L069              | 33.2 | 89.2  | 15.0         | 37.3         | 7.17         | 0.54 | 12.4         | 1.15 | 1.78 | 5.49  | 0.88 | 4.33         | 0.79 | 182   | 26.9 | 209          |
| L070              | 38.5 | 102   | 8.61         | 43.0         | 8.58         | 0.46 | 5.85         | 1.32 | 0.68 | 2.10  | 0.33 | 6.38         | 1.08 | 201   | 17.7 | 219          |
| L071              | 43.8 | 106   | 11.1         | 41.7         | 9.06         | 1.35 | 8.48         | 1.39 | 1.34 | 4.05  | 0.63 | 4.83         | 0.79 | 213   | 21.5 | 235          |
| LU72              | 43.6 | 115   | 11.3         | 38.8         | 9.27         | 1.30 | 8.84<br>9.20 | 1.53 | 1.43 | 4.35  | 0.67 | 4.99         | 0.89 | 219   | 22.7 | 242          |
| L075<br>L074      | 40.9 | 125   | 12.5         | 40.0         | 9.92         | 1.27 | 0.05         | 1.55 | 2 10 | 4.57  | 0.90 | 5.02<br>4.01 | 0.80 | 254   | 23.0 | 237          |
| 1075              | 47.0 | 129   | 13.5         | 44.5         | 973          | 1.52 | 3.0J<br>8.77 | 1.51 | 2.10 | 4.82  | 0.99 | 4.01         | 0.85 | 247   | 23.4 | 256          |
| L076              | 51.3 | 129   | 16.5         | 36.6         | 10.0         | 1.86 | 9.59         | 1.42 | 1.96 | 4.48  | 0.92 | 5.50         | 0.91 | 245   | 24.8 | 270          |
| L077              | 44.1 | 111   | 14.1         | 34.7         | 9.27         | 1.09 | 9.03         | 1.31 | 2.13 | 4.89  | 1.01 | 4.28         | 0.74 | 214   | 23.4 | 237          |
| L078              | 39.4 | 103   | 8.11         | 41.1         | 8.24         | 1.36 | 5.81         | 1.31 | 0.90 | 2.68  | 0.42 | 4.53         | 0.87 | 201   | 16.5 | 217          |
| L079              | 43.9 | 107   | 9.50         | 30.5         | 8.82         | 1.23 | 7.18         | 1.23 | 1.19 | 3.54  | 0.56 | 4.91         | 0.78 | 200   | 19.4 | 220          |
| L080              | 37.2 | 84.8  | 10.1         | 27.2         | 8.02         | 1.24 | 6.87         | 1.29 | 0.87 | 2.63  | 0.41 | 4.80         | 0.84 | 169   | 17.7 | 186          |
| L081              | 53.1 | 147   | 10.3         | 53.3         | 10.6         | 1.45 | 6.81         | 1.77 | 0.91 | 2.51  | 0.43 | 8.37         | 1.23 | 276   | 22.0 | 298          |
| L082              | 52.6 | 130   | 10.2         | 45.1         | 10.5         | 1.59 | 7.21         | 1.62 | 1.17 | 3.20  | 0.56 | 7.27         | 0.95 | 250   | 22.0 | 272          |
| L083              | 35.4 | 96.2  | 5.92         | 38.9         | 7.72         | 0.90 | 5.06         | 1.38 | 0.56 | 1.70  | 0.27 | 7.40         | 1.16 | 185   | 17.5 | 203          |
| L084              | 41.4 | 119   | 7.55         | 48.1         | 8.15         | 1.31 | 0.1/<br>0.1C | 1.46 | 0.71 | 2.18  | 0.34 | 7.70         | 1.09 | 225   | 19.6 | 245          |
| 1085              | 54.3 | 144   | 9.08<br>6.21 | 50.6         | 9.50         | 2.18 | 0.10<br>7.11 | 1.59 | 0.97 | 2 93  | 0.46 | 5.04<br>6.67 | 0.48 | 256   | 20.2 | 278          |
| L087              | 48.0 | 123   | 4.60         | 46.9         | 8.92         | 1.79 | 5.89         | 1.31 | 0.71 | 2.18  | 0.34 | 5.33         | 0.55 | 233   | 16.3 | 249          |
| L088              | 45.4 | 120   | 4.67         | 60.0         | 9.16         | 1.13 | 5.12         | 1.15 | 0.56 | 1.69  | 0.26 | 5.79         | 0.84 | 241   | 15.4 | 256          |
| L089              | 41.2 | 106   | 10.9         | 36.5         | 7.44         | 1.12 | 7.73         | 1.00 | 1.04 | 3.20  | 0.50 | 5.23         | 0.79 | 203   | 19.5 | 223          |
| L090              | 51.3 | 131   | 10.9         | 41.8         | 8.73         | 1.62 | 7.85         | 1.32 | 1.11 | 3.37  | 0.51 | 5.09         | 0.79 | 245   | 20.0 | 265          |
| L091              | 70.8 | 140   | 17.2         | 77.4         | 13.8         | 1.63 | 12.1         | 3.42 | 1.31 | 4.05  | 0.63 | 10.5         | 1.44 | 321   | 33.4 | 354          |
| L092              | 50.2 | 140   | 9.38         | 47.8         | 10.3         | 1.51 | 7.31         | 1.53 | 1.11 | 3.35  | 0.54 | 7.51         | 1.03 | 260   | 22.4 | 282          |
| L093              | 49.8 | 135   | 9.11         | 43.7         | 9.84         | 1.33 | 6.82         | 1.62 | 0.93 | 2.82  | 0.44 | 7.42         | 1.10 | 249   | 21.2 | 270          |
| L094              | 45.4 | 130   | 8.88         | 46.4         | 9.01         | 1.55 | 6.88         | 1.39 | 1.06 | 3.17  | 0.50 | 6.10         | 0.74 | 241   | 19.8 | 261          |
| 1095              | 49.5 | 128   | 11.5         | 33.2<br>78.2 | 9.69         | 1.87 | 9.74         | 3.24 | 1.70 | 5.09  | 0.82 | 0.50         | 1.55 | 230   | 25.4 | 262          |
| 1.097             | 47.1 | 124   | 9 97         | 37.7         | 9 14         | 1.75 | 7 93         | 1.04 | 1.75 | 3.89  | 0.75 | 5 46         | 0.44 | 230   | 20.7 | 251          |
| L098              | 54.8 | 138   | 10.4         | 42.9         | 11.3         | 1.84 | 9.37         | 1.51 | 1.77 | 5.32  | 0.85 | 7.17         | 0.61 | 259   | 26.6 | 286          |
| L099              | 51.1 | 130   | 10.0         | 40.5         | 9.09         | 1.87 | 8.14         | 1.05 | 1.29 | 3.92  | 0.60 | 5.03         | 0.40 | 242   | 20.4 | 263          |
| L100              | 53.7 | 131   | 10.1         | 37.0         | 10.3         | 1.74 | 8.18         | 1.08 | 1.29 | 3.96  | 0.61 | 5.71         | 0.53 | 244   | 21.4 | 265          |
| L101              | 48.4 | 124   | 8.74         | 38.4         | 8.44         | 1.68 | 6.69         | 0.98 | 0.94 | 2.83  | 0.44 | 5.66         | 0.70 | 229   | 18.2 | 247          |
| L102              | 53.5 | 142   | 9.84         | 39.5         | 10.9         | 1.53 | 7.81         | 1.31 | 1.08 | 3.22  | 0.50 | 7.89         | 1.27 | 258   | 23.1 | 281          |
| L103              | 53.4 | 135   | 10.0         | 46.5         | 10.6         | 1.59 | 8.11         | 1.21 | 1.25 | 3.78  | 0.59 | 5.05         | 0.50 | 257   | 20.5 | 277          |
| L104<br>L105      | 48.0 | 134   | 9.89         | 36.2         | 9.91         | 1.78 | 8.41<br>6.92 | 1.11 | 1.52 | 3.90  | 0.61 | 0.15         | 0.54 | 240   | 17.0 | 262          |
| L105<br>L106      | 42.2 | 100   | 0.20<br>9.21 | 24.0<br>28.4 | 0.47<br>9.51 | 1.49 | 7 90         | 0.95 | 1.00 | 3.88  | 0.49 | 4.71         | 0.00 | 203   | 10.8 | 213          |
| L100              | 50.1 | 133   | 9.81         | 36.5         | 10.2         | 1.71 | 7.98         | 1.17 | 1.28 | 3.83  | 0.61 | 5.50         | 0.65 | 203   | 21.0 | 262          |
| L108              | 47.6 | 120   | 8.25         | 39.4         | 9.25         | 1.78 | 6.58         | 1.04 | 0.99 | 2.99  | 0.46 | 4.99         | 0.70 | 227   | 17.8 | 244          |
| L109              | 48.2 | 127   | 9.48         | 37.1         | 9.31         | 1.85 | 7.55         | 0.99 | 1.09 | 3.30  | 0.51 | 5.02         | 0.72 | 233   | 19.2 | 252          |
| L110              | 42.4 | 92.7  | 8.41         | 40.5         | 6.89         | 1.25 | 7.02         | 1.15 | 1.07 | 3.24  | 0.50 | 4.46         | 0.57 | 192   | 18.0 | 210          |
| L111              | 52.2 | 76.5  | 8.53         | 34.9         | 8.57         | 0.98 | 7.07         | 1.09 | 1.01 | 3.05  | 0.47 | 4.08         | 0.58 | 182   | 17.4 | 199          |
| L112              | 46.4 | 93.6  | 8.52         | 37.6         | 7.69         | 0.84 | 7.31         | 0.97 | 1.07 | 3.23  | 0.50 | 4.02         | 0.58 | 195   | 17.7 | 212          |
| L113              | 48.2 | 102   | 8.14         | 32.7         | 8.21         | 1.43 | 6.82         | 1.04 | 1.03 | 3.07  | 0.47 | 4.14         | 0.56 | 200   | 17.1 | 218          |
| N<br>Min          | 20.2 | 62.4  | 24           | 113          | 113          | 0.46 | 113          | 0.16 | 0.27 | 077   | 0.17 | 113          | 0.22 | 113   | 55   | 113          |
| Max               | 20.5 | 177   | 30.9         | 10.2         | 39.5         | 2 30 | 2.30         | 437  | 5.79 | 10.77 | 2.82 | 1.57         | 1.92 | 511   | 50.9 | 561          |
| Sum               | 5461 | 12849 | 1242         | 4836         | 1180         | 142  | 877          | 157  | 158  | 410   | 74.6 | 706          | 97.9 | 25709 | 2481 | 28191        |
| Mean              | 48.3 | 114   | 11.0         | 42.8         | 10.4         | 1.26 | 7.76         | 1.39 | 1.40 | 3.63  | 0.66 | 6.25         | 0.87 | 228   | 22.0 | 249          |
| Standard<br>error | 1.40 | 2.10  | 0.39         | 1.36         | 0.34         | 0.04 | 0.23         | 0.05 | 0.06 | 0.12  | 0.03 | 0.19         | 0.03 | 4.79  | 0.59 | 5.19         |
| Variance          | 221  | 499   | 17.2         | 209          | 12.9         | 0.14 | 5.99         | 0.27 | 0.45 | 1.69  | 0.11 | 4.25         | 0.09 | 2593  | 40.0 | 3039         |
| Standard          | 14.9 | 22.3  | 4.14         | 14.5         | 3.59         | 0.37 | 2.45         | 0.52 | 0.67 | 1.30  | 0.33 | 2.06         | 0.29 | 50.9  | 6.3  | 55.1         |
| deviation         |      |       |              |              |              |      |              |      |      |       |      |              |      |       |      |              |
| Median            | 46.4 | 112   | 10.1         | 39.1         | 9.9          | 1.23 | 7.66         | 1.31 | 1.29 | 3.47  | 0.60 | 5.58         | 0.83 | 224   | 21.0 | 245          |
| 25 percentile     | 42.2 | 99.3  | 8.7          | 34.8         | 8.9          | 1.02 | 6.56         | 1.13 | 1.06 | 2.83  | 0.50 | 4.92         | 0.67 | 194   | 18.0 | 213          |
| 75 percentile     | 51.5 | 130   | 12.5         | 48.9         | د.11         | 1.52 | ð.//         | 1.53 | 1.63 | 4.30  | 0.76 | 1.44         | 1.03 | 247   | 23.8 | 269          |

(continued on next page)

Table 1 (continued)

| Location                    | La    | Ce    | Pr    | Nd    | Sm    | Eu    | Gd    | Tb    | Но    | Er    | Tm    | Yb    | Lu    | LREE | HREE | Total<br>REE |
|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|--------------|
| Coefficient of<br>variation | 30.8  | 19.6  | 37.7  | 33.8  | 34.3  | 29.6  | 31.5  | 37.5  | 48.0  | 35.8  | 49.7  | 33.0  | 33.7  | 22.4 | 28.8 | 22.1         |
| Detection limit             | 0.001 | 0.50  | 0.05  | 0.01  | 0.005 | 0.001 | 0.02  | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | _    | -    | _            |
| SRM Certificate<br>value    | 52.6# | 117#  | 18*   | 43.8# | 9.25# | 1.60# | 6.40* | 1.40# | 0.99* | 2.42* | 0.33* | 3.42# | 0.54# | -    | -    | -            |
| SRM Analysis<br>value       | 45.9  | 99.1  | 14.6  | 42.6  | 10.1  | 1.67  | 7.31  | 1.26  | 1.11  | 2.66  | 0.37  | 3.41  | 0.45  | -    | -    | -            |
| Relative bias (%)           | -12.7 | -15.3 | -18.9 | -2.75 | 9.19  | 4.70  | 14.2  | -10.1 | 11.7  | 9.77  | 11.0  | -0.39 | -15.8 | -    | -    | -            |

Standard reference materials (SRM) values were obtained from IAEA SL-1 (#) and BHVO-1 (\*) certificate.



Fig. 3. Normalization of Linggi sediment to other reference values of REEs.

#### Table 2

Linggi sediment, reference values (MUQ, PAAS, Archaean shale, NASC and UCC) of REEs and normalization ratios of Linggi sediment to reference values REEs.

|                               | La   | Ce   | Pr   | Nd   | Sm   | Eu   | Gd   | Tb   | Но   | Er   | Tm   | Yb   | Lu   |
|-------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Linggi sediment               | 48.3 | 114  | 11.0 | 42.8 | 10.4 | 1.26 | 7.76 | 1.39 | 1.40 | 3.63 | 0.66 | 6.25 | 0.87 |
| MUQ <sup>(a)</sup>            | 32.5 | 71.1 | 8.46 | 32.9 | 6.88 | 1.57 | 6.36 | 0.99 | 1.22 | 3.37 | 0.51 | 3.25 | 0.49 |
| PAAS <sup>(b)</sup>           | 38.0 | 80.0 | 8.90 | 32.0 | 5.60 | 1.10 | 4.70 | 0.77 | 1.00 | 2.90 | 0.40 | 2.80 | 0.43 |
| Archaean shale <sup>(b)</sup> | 20.0 | 42.0 | 4.90 | 20.0 | 4.00 | 1.20 | 3.60 | 0.57 | 0.74 | 2.10 | 0.30 | 2.00 | 0.31 |
| NASC <sup>(c)</sup>           | 32.0 | 73.0 | 7.90 | 33.0 | 5.55 | 1.24 | 5.20 | 0.85 | 1.04 | 3.40 | 0.50 | 3.10 | 0.48 |
| UCC <sup>(d)</sup>            | 32.3 | 65.7 | 6.30 | 25.9 | 4.70 | 0.95 | 2.80 | 0.50 | 0.62 | 2.10 | 0.30 | 1.50 | 0.27 |
| Linggi sediment/MUQ           | 1.49 | 1.60 | 1.30 | 1.30 | 1.52 | 0.80 | 1.22 | 1.40 | 1.15 | 1.08 | 1.29 | 1.92 | 1.77 |
| Linggi sediment/PAAS          | 1.27 | 1.42 | 1.23 | 1.34 | 1.86 | 1.15 | 1.65 | 1.81 | 1.40 | 1.25 | 1.65 | 2.23 | 2.02 |
| Linggi sediment/              | 2.42 | 2.71 | 2.24 | 2.14 | 2.61 | 1.05 | 2.16 | 2.44 | 1.89 | 1.73 | 2.20 | 3.12 | 2.80 |
| Archaean shale                |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Linggi sediment/NASC          | 1.51 | 1.56 | 1.39 | 1.30 | 1.88 | 1.02 | 1.49 | 1.64 | 1.35 | 1.07 | 1.32 | 2.02 | 1.81 |
| Linggi sediment/UCC           | 1.50 | 1.73 | 1.74 | 1.65 | 2.22 | 1.33 | 2.77 | 2.78 | 2.26 | 1.73 | 2.20 | 4.17 | 3.21 |
|                               |      |      |      |      |      |      |      |      |      |      |      |      |      |

(a)[3]. (b)[4]. (c)[5]. (d)[6].

Table 3The EF values and statistical summary of REEs in Linggi River sediments.

| Location | La         | Ce         | Pr         | Nd         | Sm         | Eu  | Gd         | Tb         | Но         | Er         | Tm         | Yb         | Lu         |
|----------|------------|------------|------------|------------|------------|-----|------------|------------|------------|------------|------------|------------|------------|
| L001     | 3.5        | 5.0        | 4.2        | 3.0        | 3.3        | 1.8 | 2.5        | 2.6        | 2.6        | 1.6        | 2.7        | 3.4        | 3.4        |
| L002     | 1.5        | 2.9        | 2.8        | 1.6        | 1.5        | 0.8 | 1.6        | 1.3        | 1.2        | 0.8        | 1.2        | 1.9        | 1.7        |
| L003     | 11.0       | 11.0       | 7.4        | 9.6        | 8.9        | 2.3 | 6.0        | 6.1        | 2.7        | 2.6        | 3.4        | 7.5        | 7.0        |
| L004     | 1.4        | 2.0        | 1.0        | 2.1        | 1.3        | 0.8 | 0.8        | 0.3        | 0.5        | 0.5        | 0.7        | 1.0        | 1.0        |
| L005     | 14.4       | 12.5       | 15.2       | 10.0       | 12.9       | 3.0 | 12.9       | 9.9        | 5.3        | 4.9        | 5.8        | 11.3       | 10.9       |
| L006     | 16.7       | 8.3        | 12.5       | 11.5       | 19.7       | 2.5 | 12.0       | 15.2       | 6.6        | 3.7        | 4.6        | 15.4       | 13.5       |
| L007     | 5.6        | 5.0        | 8.8        | 4.7        | 6.9        | 3.7 | 6.7        | 7.2        | 12.4       | 8.2        | 14.5       | 9.1        | 8.6        |
| L008     | 4.8        | 5.1        | 5.8        | 3.8        | 6.1        | 2.8 | 4.4        | 6.4        | 7.7        | 5.1        | 9.1        | 8.5        | 8.3        |
| L009     | 5.3        | 4.7        | 7.7        | 5.7        | 6.3        | 2.6 | 5.7        | 6.2        | 9.9        | 6.5        | 11.5       | 8.9        | 8.2        |
| L010     | 5.3        | 6.0        | 6.8        | 6.1        | 5.6        | 2.2 | 4.0        | 4.9        | 4.7        | 3.1        | 5.2        | 6.5        | 6.4        |
| L011     | 5.9        | 5.6        | 8.1        | 6.6        | 6.6        | 2.3 | 4.5        | 7.1        | 5.7        | 3.8        | 6.6        | 12.2       | 11.7       |
| L012     | 4.5        | 4.6        | 6.5        | 5.6        | 5.6        | 2.2 | 4.3        | 5.8        | 6.3        | 4.1        | 7.3        | 9.0        | 8.6        |
|          | 4.7        | 5.6        | 7.3        | 5.9        | 6.0        | 2.9 | 5.0        | 6.6        | 7.8        | 4.9        | 9.1        | 9.6        | 9.0        |
| L014     | 6.4        | 6.2        | 8.0        | 8.8        | 7.9        | 2.3 | 3.9        | 8.0        | 5.5        | 3.7        | 6.6        | 12.9       | 12.5       |
| L015     | 4.8        | 4.7        | 4.6        | 6.7        | 6.0        | 2.4 | 5.0        | 5.5        | 4.8        | 5.2        | 5.4        | 7.6        | 7.9        |
| LUID     | 4.6        | 4.9        | 4.1        | 5.3        | 5.7        | 2.6 | 4.7        | 5.6        | 4.6        | 4.9        | 5.4        | 8.0        | 7.2        |
| LUI/     | 5.Z        | 5.5<br>4.9 | 5./<br>2.2 | 4.8        | 0.0<br>E C | 2.2 | 2.7        | 5.8<br>E 1 | 4.8        | 5.1<br>4.2 | 0.C        | 10.5       | 8.9<br>6.7 |
| 1010     | 4.1        | 4.0        | 2.2        | 3.3<br>2.5 | 5.0        | 2.7 | 2.9        | 5.1<br>4.2 | 4.0        | 4.5        | 4.0        | 6.9        | 5.4        |
| 1020     | 4.0        | 4.5        | 2.2        | 2.5        | 5.1        | 2.2 | 3.0        | 4.5        | 3.5        | 3.4        | 3.8        | 7.0        | 71         |
| 1020     | 4.0        | 4.5        | 2.0        | 2.7        | 5.5        | 2.2 | 47         | 4.0        | 5.1        | 5.4        | 5.0<br>6.4 | 69         | 5.7        |
| 1022     | 4.1        | 47         | 43         | 33         | 5.2        | 2.5 | 5.0        | 43         | 5.1        | 54         | 63         | 73         | 57         |
| 1023     | 47         | 49         | 39         | 31         | 5.8        | 2.4 | 4.0        | 5.2        | 37         | 40         | 44         | 93         | 74         |
| 1024     | 45         | 46         | 3.8        | 56         | 55         | 2.0 | 43         | 55         | 44         | 46         | 5.0        | 73         | 72         |
| 1.025    | 3.7        | 3.8        | 3.4        | 2.5        | 4.7        | 1.8 | 3.6        | 4.5        | 3.4        | 3.7        | 4.0        | 7.4        | 6.4        |
| L026     | 4.0        | 4.5        | 3.9        | 2.5        | 5.3        | 2.3 | 4.5        | 4.6        | 4.6        | 4.8        | 5.3        | 7.6        | 6.2        |
| L027     | 4.4        | 4.7        | 5.0        | 3.3        | 5.6        | 2.1 | 5.1        | 4.8        | 4.5        | 4.8        | 5.2        | 8.1        | 6.3        |
| L028     | 3.8        | 4.0        | 3.4        | 4.4        | 4.6        | 1.9 | 3.5        | 4.2        | 3.3        | 3.6        | 3.9        | 6.1        | 5.9        |
| L029     | 4.0        | 5.7        | 3.1        | 3.7        | 4.5        | 3.2 | 2.8        | 4.7        | 3.2        | 2.9        | 3.8        | 8.4        | 8.0        |
| L030     | 4.3        | 3.8        | 4.0        | 3.4        | 4.8        | 3.2 | 3.5        | 6.2        | 4.1        | 3.7        | 4.8        | 5.4        | 5.6        |
| L031     | 3.2        | 3.7        | 2.9        | 4.7        | 3.7        | 1.5 | 3.1        | 3.1        | 2.9        | 3.1        | 3.3        | 4.0        | 3.8        |
| L032     | 2.6        | 3.3        | 2.2        | 1.7        | 2.6        | 1.5 | 1.9        | 2.0        | 2.0        | 1.8        | 2.3        | 3.1        | 2.3        |
| L033     | 2.9        | 2.7        | 1.7        | 1.9        | 2.3        | 1.3 | 1.3        | 1.6        | 1.2        | 1.1        | 1.3        | 2.0        | 2.2        |
| L034     | 3.5        | 3.4        | 3.7        | 2.3        | 3.6        | 1.9 | 2.9        | 2.7        | 2.7        | 2.4        | 3.1        | 4.7        | 5.3        |
| L035     | 2.8        | 1.5        | 2.3        | 1.9        | 2.1        | 1.2 | 1.7        | 1.7        | 1.6        | 1.4        | 1.8        | 2.4        | 2.2        |
| L036     | 3.1        | 3.2        | 3.1        | 1.4        | 3.1        | 1.6 | 2.8        | 2.5        | 2.2        | 2.3        | 2.5        | 3.8        | 3.3        |
| L037     | 3.6        | 3.4        | 3.2        | 2.0        | 4.0        | 2.0 | 3.5        | 3.0        | 3.1        | 3.3        | 3.6        | 4.8        | 3.3        |
| L038     | 2.9        | 3.0        | 2.6        | 1.8        | 2.9        | 1./ | 2.5        | 2.3        | 2.0        | 2.1        | 2.2        | 3.4        | 2.9        |
| L039     | 2.7        | 3.1        | 2.9        | 2.1        | 2.8        | 1.6 | 2.7        | 2.8        | 2.3        | 2.4        | 2.6        | 3.8        | 3.8        |
| 1040     | 2.1        | 3.U<br>2.2 | 5.U<br>2 Q | 2.5        | 2.6        | 1.0 | 2.0        | 2.5        | 2.5        | 2.0        | 2.9        | 5.0<br>4.7 | 2.9        |
| 1041     | 3.0        | 2.2<br>2.0 | 2.0        | 5.4<br>2.1 | 2.0        | 2.0 | 2.9        | 3.J<br>2.4 | 2.4        | 2.5        | 2.8        | 3.0        | 4.2<br>2.8 |
| 1043     | 34         | 3.2        | 3.4        | 2.1        | 3.5        | 1.0 | 2.0        | 2.4        | 3.0        | 2.0        | 3.4        | 41         | 3.6        |
| 1044     | 3.6        | 3.2        | 35         | 31         | 37         | 2.0 | 3.2        | 33         | 2.6        | 1.8        | 2.9        | 46         | 41         |
| 1.045    | 3.5        | 3.2        | 2.9        | 2.0        | 3.5        | 2.0 | 2.1        | 3.1        | 2.6        | 1.8        | 3.0        | 4.2        | 3.9        |
| L046     | 3.6        | 3.5        | 3.5        | 3.3        | 4.0        | 2.1 | 2.6        | 3.9        | 3.3        | 2.3        | 3.7        | 4.7        | 4.0        |
| L047     | 3.1        | 3.1        | 2.5        | 2.4        | 3.3        | 2.1 | 1.9        | 3.3        | 2.5        | 1.7        | 2.8        | 4.6        | 4.2        |
| L048     | 3.1        | 3.4        | 4.1        | 2.8        | 3.6        | 2.1 | 2.5        | 3.4        | 3.6        | 2.3        | 4.1        | 4.7        | 4.0        |
| L049     | 3.4        | 3.3        | 3.4        | 3.2        | 3.7        | 2.1 | 2.1        | 3.6        | 3.0        | 2.0        | 3.5        | 5.2        | 4.5        |
| L050     | 4.1        | 4.1        | 3.0        | 3.0        | 4.4        | 2.6 | 1.9        | 4.2        | 2.8        | 1.8        | 3.3        | 5.9        | 5.4        |
| L051     | 5.6        | 5.6        | 4.4        | 5.1        | 5.3        | 1.8 | 4.1        | 4.2        | 2.8        | 3.0        | 3.1        | 7.2        | 5.4        |
| L052     | 8.6        | 6.9        | 4.8        | 7.1        | 7.2        | 1.8 | 4.1        | 4.4        | 2.7        | 2.7        | 3.0        | 6.9        | 4.5        |
| L053     | 3.7        | 4.2        | 2.8        | 2.9        | 3.6        | 2.0 | 3.1        | 3.1        | 3.0        | 3.2        | 3.5        | 5.3        | 3.7        |
| L054     | 3.9        | 4.3        | 2.3        | 4.7        | 3.9        | 2.4 | 2.3        | 3.0        | 2.1        | 2.2        | 2.4        | 6.1        | 4.3        |
| L055     | 3.0        | 3.4        | 1.9        | 3.6        | 2.8        | 1.8 | 2.1        | 2.4        | 2.0        | 2.2        | 2.3        | 4.7        | 3.2        |
| L056     | 2.7        | 3.3        | 1.8        | 1.7        | 2.6        | 1.3 | 2.0        | 1.8        | 1.9        | 2.1        | 2.2        | 2.7        | 3.0        |
| LU5/     | 3.1        | 3.7        | 2.2        | 2.6        | 3.0        | 1.6 | 2.4        | 2.7        | 2.3        | 2.5        | 2.8        | 3.8        | 5.0        |
| LU58     | 2.4        | 2.8        | 0.6        | 2.1        | 2.0        | 2.0 | 0.8        | 1.7        | 1.0        | 1.0        | 1.1        | 2.0        | 2.3        |
| LU59     | 3.0        | 3.7        | 1./        | 2.2        | 2.8        | 1.4 | 2.2        | 2.2        | 2.4        | 2./        | 2.8        | 2.8        | 3.5        |
| 1000     | 3.8<br>2.1 | 4.0        | 0.9        | 2.5        | 3.1<br>20  | 2.5 | 1.0        | 2.5        | 1.0        | 1.1        | 1.2        | 3.4<br>45  | 4.1<br>47  |
| 1062     | 5.I<br>15  | 4.1<br>10  | 2.9<br>1 2 | 5.5<br>2.0 | 5.8<br>2.0 | 0.9 | 2.ð<br>1.2 | 5.ð<br>15  | 2.2<br>1 1 | 2.3<br>1 1 | ∠.⊃<br>1 ⊃ | 4.0<br>1 2 | 4./        |
| 1002     | 1.5        | 1.9        | 1.5        | 2.0        | 2.0        | 0.0 | 1.5        | 1.5        | 1.1        | 1.1        | 1.2        | 1.5        | 1.0        |

(continued on next page)

Table 3 (continued)

| Location                 | La   | Ce         | Pr   | Nd         | Sm         | Eu   | Gd         | Tb         | Но         | Er         | Tm         | Yb         | Lu         |
|--------------------------|------|------------|------|------------|------------|------|------------|------------|------------|------------|------------|------------|------------|
| L063                     | 2.8  | 3.9        | 2.5  | 3.2        | 3.5        | 1.1  | 2.5        | 3.1        | 2.0        | 2.1        | 2.2        | 3.5        | 4.0        |
| L064                     | 2.5  | 3.4        | 3.0  | 2.9        | 3.1        | 1.1  | 2.5        | 2.4        | 3.2        | 2.8        | 2.2        | 2.9        | 3.3        |
| L065                     | 2.3  | 3.2        | 2.9  | 2.6        | 3.1        | 0.9  | 2.9        | 3.4        | 3.0        | 2.7        | 2.2        | 3.5        | 4.4        |
| L066                     | 2.7  | 3.3        | 4.0  | 2.6        | 2.9        | 0.9  | 3.4        | 3.6        | 2.5        | 2.6        | 2.8        | 4.2        | 4.7        |
| L067                     | 2.3  | 2.8        | 2.0  | 2.3        | 2.4        | 0.7  | 2.1        | 2.3        | 1.6        | 1.7        | 1.8        | 2.7        | 3.0        |
| L068                     | 6.0  | 7.2        | 6.7  | 5.1        | 5.8        | 2.2  | 7.2        | 5.0        | 5.5        | 5.8        | 5.8        | 4.8        | 6.4        |
| L069                     | 2.7  | 3.4        | 4./  | 3.0        | 2.8        | 0.9  | 5.2        | 3.1        | 3.9        | 4.4        | 4.6        | 3.6        | 4.3        |
| L070                     | 4.2  | 5.1        | 3.6  | 4.6        | 4.4        | 1.0  | 3.2        | 4.7        | 2.0        | 2.2        | 2.3        | 6.9<br>2.1 | 7.8        |
| L071<br>1072             | 2.0  | 3.2<br>3.1 | 2.0  | 2.7        | 2.0        | 1.0  | 2.0        | 2.9        | 2.5        | 2.5        | 2.0        | 20         | 3.4<br>3.4 |
| 1072                     | 2.5  | 3.1        | 2.5  | 2.2        | 2.5        | 1.0  | 2.0        | 2.5        | 2.2        | 2.4        | 3.1        | 2.5        | 3.1        |
| 1074                     | 2.4  | 3.0        | 2.6  | 2.3        | 2.5        | 1.1  | 2.4        | 2.5        | 2.9        | 2.4        | 32         | 2.0        | 3.0        |
| L075                     | 2.7  | 3.2        | 3.0  | 2.4        | 2.7        | 1.5  | 2.6        | 2.4        | 3.2        | 2.7        | 3.6        | 2.8        | 3.0        |
| L076                     | 3.3  | 3.8        | 4.1  | 2.3        | 3.1        | 2.5  | 3.2        | 3.0        | 3.4        | 2.8        | 3.8        | 3.5        | 3.9        |
| L077                     | 2.6  | 2.9        | 3.1  | 2.0        | 2.5        | 1.3  | 2.7        | 2.5        | 3.3        | 2.7        | 3.7        | 2.5        | 2.9        |
| L078                     | 2.5  | 3.0        | 2.0  | 2.6        | 2.5        | 1.8  | 1.9        | 2.8        | 1.5        | 1.7        | 1.7        | 2.9        | 3.7        |
| L079                     | 2.6  | 2.9        | 2.2  | 1.8        | 2.5        | 1.5  | 2.2        | 2.4        | 1.9        | 2.0        | 2.1        | 2.9        | 3.1        |
| L080                     | 3.6  | 3.7        | 3.7  | 2.6        | 3.6        | 2.5  | 3.4        | 4.1        | 2.2        | 2.4        | 2.5        | 4.6        | 5.4        |
| L081                     | 4.6  | 5.9        | 3.5  | 4.6        | 4.4        | 2.6  | 3.0        | 5.1        | 2.1        | 2.1        | 2.4        | 7.3        | 7.1        |
| L082                     | 3.6  | 4.1        | 2.7  | 3.1        | 3.4        | 2.3  | 2.5        | 3.7        | 2.1        | 2.1        | 2.4        | 5.0        | 4.3        |
| L083                     | 4.9  | 6.I        | 3.1  | 5.3        | 5.0        | 2.6  | 3.6        | 6.2        | 2.0        | 2.3        | 2.3        | 10.2       | 10.6       |
| L084<br>L085             | 3.5  | 4.0        | 2.5  | 4.0        | 3.3        | 2.3  | 2.7        | 4.1        | 1.0        | 1.8        | 1.8        | 0.5<br>2.2 | 0.1        |
| 1085                     | 3.0  | 3.6        | 2.0  | 2.4        | 2.0        | 2.0  | 2.4        | 2.0        | 1.0        | 1.7        | 1.7        | 3.2        | 3.5        |
| 1087                     | 3.0  | 3.5        | 1.5  | 2.0        | 2.0        | 2.5  | 19         | 2.0        | 1.5        | 13         | 1.0        | 3.4        | 23         |
| L088                     | 3.0  | 3.6        | 1.2  | 3.9        | 2.8        | 1.5  | 1.7        | 2.4        | 1.0        | 1.1        | 1.1        | 3.8        | 3.6        |
| L089                     | 3.0  | 3.6        | 3.1  | 2.7        | 2.6        | 1.7  | 2.9        | 2.4        | 2.0        | 2.3        | 2.4        | 3.9        | 3.9        |
| L090                     | 2.9  | 3.4        | 2.4  | 2.4        | 2.4        | 1.9  | 2.3        | 2.5        | 1.7        | 1.9        | 1.9        | 2.9        | 3.0        |
| L091                     | 5.7  | 5.2        | 5.3  | 6.2        | 5.3        | 2.7  | 5.0        | 9.1        | 2.8        | 3.2        | 3.2        | 8.5        | 7.7        |
| L092                     | 3.1  | 4.0        | 2.2  | 2.9        | 3.0        | 1.9  | 2.3        | 3.1        | 1.8        | 2.0        | 2.1        | 4.7        | 4.3        |
| L093                     | 3.5  | 4.3        | 2.5  | 3.0        | 3.3        | 1.9  | 2.4        | 3.7        | 1.7        | 1.9        | 2.0        | 5.2        | 5.1        |
| L094                     | 2.8  | 3.7        | 2.1  | 2.9        | 2.7        | 2.0  | 2.2        | 2.8        | 1.8        | 1.9        | 2.0        | 3.8        | 3.1        |
| L095                     | 3.2  | 3.7        | 2.8  | 2.2        | 3.0        | 2.5  | 3.2        | 2.5        | 2.9        | 3.1        | 3.3        | 4.0        | 2.2        |
| L096                     | 5.6  | 4.8        | 3.0  | 5.5        | 5.3        | 2.7  | 3.2        | 7.6        | 3.3        | 3.5        | 3.4        | 8.5        | 7.5        |
| 1008                     | 2.8  | 3.4        | 2.3  | 2.2        | 2.0        | 2.2  | 2.4        | 2.0        | 2.1        | 2.2        | 2.3        | 3.3        | 1.8        |
| 1098                     | 20   | 4.0        | 2.5  | 2.7        | 5.4<br>2.4 | 2.4  | 3.U<br>2.3 | 5.1<br>1 Q | 5.0<br>1.0 | 3.3<br>2.1 | 5.4<br>2.1 | 4.0        | 2.0        |
| L000                     | 3.2  | 3.6        | 2.1  | 2.2        | 2.4        | 2.2  | 2.5        | 21         | 2.1        | 2.1        | 2.1        | 3.4        | 21         |
| L100                     | 2.8  | 3.3        | 1.9  | 2.2        | 2.3        | 2.0  | 2.0        | 1.9        | 1.4        | 1.6        | 1.6        | 3.3        | 2.7        |
| L102                     | 3.5  | 4.3        | 2.5  | 2.6        | 3.4        | 2.1  | 2.6        | 2.8        | 1.9        | 2.0        | 2.1        | 5.2        | 5.5        |
| L103                     | 3.3  | 3.8        | 2.4  | 2.8        | 3.1        | 2.0  | 2.5        | 2.4        | 2.0        | 2.2        | 2.3        | 3.1        | 2.0        |
| L104                     | 2.9  | 3.6        | 2.2  | 2.1        | 2.8        | 2.2  | 2.5        | 2.2        | 2.1        | 2.3        | 2.3        | 3.6        | 2.1        |
| L105                     | 2.7  | 3.0        | 2.1  | 2.2        | 2.6        | 2.0  | 2.3        | 2.0        | 1.8        | 2.0        | 2.0        | 3.1        | 2.6        |
| L106                     | 2.8  | 2.9        | 2.1  | 1.7        | 2.7        | 2.1  | 2.4        | 1.0        | 2.0        | 2.2        | 2.3        | 3.1        | 1.8        |
| L107                     | 2.9  | 3.5        | 2.2  | 2.1        | 2.8        | 2.1  | 2.4        | 2.2        | 2.0        | 2.2        | 2.3        | 3.2        | 2.5        |
| L108                     | 2.7  | 3.1        | 1.8  | 2.2        | 2.4        | 2.1  | 1.9        | 1.9        | 1.5        | 1.6        | 1.7        | 2.8        | 2.6        |
| L109                     | 2.5  | 3.1        | 1.9  | 1.9        | 2.3        | 2.0  | 2.0        | 1.7        | 1.5        | 1.7        | 1.7        | 2.6        | 2.5        |
| LI IU<br>1111            | 2.7  | 2.7        | 2.1  | 2.6        | 2.1        | 1./  | 2.3        | 2.4        | 1.8        | 2.0        | 2.1        | 2.9        | 2.4        |
| LIII<br>I112             | 2.9  | 2.0        | 1.0  | 1.9        | 2.5        | 1.1  | 2.0        | 2.0        | 1.5        | 1.0        | 1.7        | 2.5        | 2.2        |
| L112<br>1113             | 2.0  | 2.4        | 1.9  | 2.1<br>1.8 | 2.1        | 1.0  | 2.1        | 1.0        | 1.0        | 1.0        | 1.0        | 2.5        | 2.2        |
| N                        | 113  | 113        | 113  | 113        | 113        | 113  | 113        | 113        | 113        | 113        | 113        | 113        | 113        |
| Min                      | 1.4  | 1.5        | 0.6  | 1.4        | 1.3        | 0.6  | 0.8        | 0.3        | 0.5        | 0.5        | 0.7        | 1.0        | 1.0        |
| Max                      | 16.7 | 12.5       | 15.2 | 11.5       | 19.7       | 3.7  | 12.9       | 15.2       | 12.4       | 8.2        | 14.5       | 15.4       | 13.5       |
| Mean                     | 3.8  | 4.0        | 3.4  | 3.4        | 3.9        | 2.0  | 3.2        | 3.7        | 3.0        | 2.7        | 3.3        | 5.1        | 4.7        |
| Standard error           | 0.2  | 0.1        | 0.2  | 0.2        | 0.2        | 0.1  | 0.2        | 0.2        | 0.2        | 0.1        | 0.2        | 0.3        | 0.2        |
| Variance                 | 4.2  | 2.3        | 4.6  | 3.3        | 5.1        | 0.3  | 3.0        | 4.1        | 3.2        | 1.7        | 4.3        | 7.2        | 6.3        |
| Standard deviation       | 2.1  | 1.5        | 2.1  | 1.8        | 2.3        | 0.6  | 1.7        | 2.0        | 1.8        | 1.3        | 2.1        | 2.7        | 2.5        |
| Median                   | 3.3  | 3.7        | 2.9  | 2.7        | 3.3        | 2.0  | 2.7        | 3.1        | 2.5        | 2.3        | 2.8        | 4.2        | 4.0        |
| 25 percentile            | 2.8  | 3.2        | 2.2  | 2.2        | 2.6        | 1.6  | 2.2        | 2.4        | 1.9        | 1.9        | 2.1        | 3.1        | 2.9        |
| 75 percentile            | 4.1  | 4.6        | 3.8  | 3.8        | 5.0        | 2.3  | 3.6        | 4.5        | 3.3        | 3.3        | 3.8        | 6.9        | 6.1        |
| Coefficient of variation | 53.9 | 37.6       | 62.4 | 54.0       | 57.4       | 29.0 | 54.6       | 55.6       | 60.5       | 47.4       | 62.1       | 52.9       | 53.8       |

$$EF = \frac{\left(\frac{M_{analysis}}{Fe_{analysis}}\right)sample}{\left(\frac{M_{reference}}{Fe_{reference}}\right)MUQ} \tag{1}$$

where  $M_{analysis}$  is the concentration value of interest element in Linggi sediment sample,  $Fe_{analysis}$  is the concentration value of Fe in Linggi sediment sample,  $M_{reference}$  is the concentration value of interest element from reference shale value, (MUQ) and  $Fe_{reference}$  is the concentration value of Fe = 54300 mg/kg from MUQ [3]. EF can be categorised as follows: EF value  $\leq 2.0, 2$  to 3, 3 to 5, 5 to 10, 10 to 25, 25 to 50 and > 50 are no enrichment (shale), minor, moderate, moderately severe, severe, very severe and extreme enrichment, respectively [9,10]. The EF values and summary statistics of REEs are tabulated in Table 3 whilst jitter and box plot of values and mean EF of REEs in Linggi river sediment are shown in Fig. 4. The 25 and 75 percentiles of EF values are shown as the lowest and highest of box plot of REEs, respectively. The values of 25 and 75 percentiles were 2.8, 3.2, 2.2, 2.2, 2.6, 1.6, 2.2, 2.4, 1.9, 1.9, 2.1, 3.1, 2.9) and 4.1, 4.6, 3.8, 3.8, 5.0, 2.3, 3.6, 4.5, 3.3, 3.8, 6.9, 6.1 for La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er, Tm, Yb and Lu, respectively. EF mean values of REEs ranged from 2.0 (Eu) to 5.1 (Yb) indicating Linggi River sediment can be categorised as having minor to moderate enrichment in most of the locations (Table 3).

#### 2. Experimental design, materials and methods

### 2.1. Study area and sampling procedure

A total of 113 sampling locations of sediment samples were selected along the Linggi River (Fig. 5) located between latitude  $2^{\circ} 22'24.77''$  N to  $2^{\circ} 53'55.24''$  N and longitude  $102^{\circ} 06'49.46''$  E to  $102^{\circ}$ 



Fig. 4. The EF value (jitter) and mean (box plot) of REEs in Linggi River sediment.



Fig. 5. Map showing the sampling locations along Linggi River.

12'48.37" E. Sediment samples were collected using grab sampler and transferred into pre-cleaned polyethylene bottles and transported to the laboratory. A portion of sediment samples was kept for particle size analysis and the remaining sediment samples were dried in an oven at 60 °C until constant weight. The dried sediments were ground using agate mortar to achieve a homogenous powder form prior to analysis by neutron activation analysis (NAA) technique and inductively coupled plasma – mass spectrometer (ICP-MS).

#### 2.2. Particle size analysis

Approximately 0.5 g of the sediment sample was mixed with double distilled water and followed by addition of 1 mL of sodium hexametaphosphate as an agent to avoid agglomeration. The sediment samples underwent ultrasonic process for 30 seconds prior to analysis. Analysis of particle size were done by using Honeywell Microtrac (model  $\times$ 100) equipped with laser diffraction capable of measuring sizes ranging from 0.02 to 700 µm to determine the average and distribution of particle size.

#### 2.3. Neutron activation analysis (NAA) technique

Approximately 200 mg of sediment samples, SRM (IAEA SL-1), IAEA Soil-7 and blank were simultaneous irradiated in the PUSPATI TRIGA MARK II Reactor, Malaysian Nuclear Agency for 6 hours at 750 kW power and with a thermal flux of  $4.0 \times 10^{12} \text{ n.cm}^{-2}.\text{s}^{-1}$ . The counting of the sediment sample, blank, SRM (IAEA SL-1), IAEA Soil -7 (as comparator) was done by gamma spectrometer. Calculation of REEs concentration was performed according to procedure as described by Elias et al., 2018 [11].

#### 2.4. Inductively couple plasma – mass spectrometer (ICP-MS) analytical method

Approximately 200 mg of homogenised powder sediment sample and SRM (BHVO-1) were digested using a hot block digester (model Vision). The replicate sediment samples and SRM were digested using a mixture of HNO<sub>3</sub>, H<sub>2</sub>O<sub>2</sub>, and HF. The SRM (BHVO-1) was used as quality assurance and quality control in the analytical method analysis. The SRM (BHVO-1) measurement followed the same procedure as a sample analysis. The reagent blank acid used in digestion process was monitored throughout the analysis and used to correct the analytical results. The method for digestion process of the sediment samples and SRM (BHVO-1) was described by Elias et al., 2018 [12]. The isotopes of <sup>141</sup>Pr, <sup>158</sup>Gd, <sup>165</sup>Ho, <sup>166</sup>Er, and <sup>169</sup>Tm were measured by using ICP-MS (Perkin Elmer model ELAN 6000).

#### 2.5. Enrichment factor (EF) of Linggi sediment

The Linggi river sediments were normalised to mud from Queensland (MUQ). MUQ was used as a reference shale value. Enrichment factor (EF) of Linggi sediment was calculated according to equation (1) to evaluate the enrichment of Linggi River sediment. Enrichment of the Linggi River sediment was then categorised according to the following: no enrichment (background shale), minor, moderate, moderately severe, severe, very severe and extreme enrichment.

#### Acknowledgement

The authors are thankful to the Ministry of Science, Technology and Innovation (MOSTI), Malaysia for their financial support under Science fund research grant (04-03-01-SF0124) and technical support from Industrial Waste Conversion, a Research Entity under Green Technology & Sustainable Development, Community of Research (CORE), Universiti Teknologi MARA (UITM).

#### **Transparency document**

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.103983.

#### References

- R.S.E. Khadijeh, E. Saion, A.K. Wood, A.M. Reza, Rare earth elements distribution in marine sediments of Malaysia coasts, J. Rare Earths 27 (2009) 1066–1071, https://doi.org/10.1016/S1002-0721(08)60390-7.
- [2] A. Ashraf, E. Saion, E. Gharibshahi, H.M. Kamari, C.K. Yap, M.S. Hamzah, M.S. Elias, Distribution of trace elements in core marine sediments of coastal east Malaysia by instrumental neutron activation analysis, Appl. Radiat. Isot. 122 (2017) 96–105, https://doi.org/10.1016/j.apradiso.2017.01.006.
- [3] B.S. Kamber, A. Greig, K.D. Collerson, A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia, Geochem. Cosmochim. Acta 69 (2005) 1041–1058, https://doi.org/10.1016/j.gca. 2004.08.020.
- [4] S.M. McLennan, S.R. Taylor, Archaean sedimentary rocks and their relation to the composition of the archaean continental crust, in: A. Kroner, G.N. Hanson, A.M. Goodwin (Eds.), Archaean Geochemistry the Origin and Evolution of the Archaean Continental Crust, Springer-Verlag Berlin Heidelberg, 1984, pp. 47–72.
- [5] L.P. Gromet, R.F. Dymek, L.A. Haskin, R.L. Korotev, The "North American shale composite ": its compilation, major and trace element characteristics, Geochem. Cosmochim. Acta 48 (1984) 2469–2482.
- [6] K.H. Wedepohl, The composition of the continental crust, Geochem. Cosmochim. Acta 59 (1995) 1217–1232, https://doi. org/10.1016/0016-7037(95)00038-2.
- [7] A. Zahra, M.Z. Hashmi, R.N. Malik, Z. Ahmed, Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah-Feeding tributary of the Rawal Lake Reservoir, Pakistan, Sci. Total Environ. 470–471 (2014) 925–933, https://doi.org/10.1016/j.scitotenv.2013.10.017.
- [8] Z. Mamat, S. Haximu, Z. yong Zhang, R. Aji, An ecological risk assessment of heavy metal contamination in the surface sediments of Bosten Lake, northwest China, Environ. Sci. Pollut. Res. 23 (2016) 7255–7265, https://doi.org/10.1007/ s11356-015-6020-3.

- [9] J. Ayari, Y. Agnan, A. Charef, Spatial assessment and source identification of trace metal pollution in stream sediments of Oued El Maadene basin, northern Tunisia, Environ. Monit. Assess. 188 (2016), https://doi.org/10.1007/s10661-016-5402-4.
- [10] G.M.S. Abrahim, R.J. Parker, Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand, Environ. Monit. Assess. 136 (2008) 227–238, https://doi.org/10. 1007/s10661-007-9678-2.
- [11] M.S. Elias, S. Ibrahim, K. Samuding, S.A. Rahman, Y.M. Wo, Assessment of toxic elements in sediments of Linggi River using NAA and ICP-MS techniques, MethodsX 5 (2018) 454–465, https://doi.org/10.1016/j.mex.2018.05.001.
- [12] M.S. Elias, S. Ibrahim, K. Samuding, S. Ab Rahman, A. Hashim, The sources and ecological risk assessment of elemental pollution in sediment of Linggi estuary, Malaysia, Mar. Pollut. Bull. 137 (2018) 646–655, https://doi.org/10.1016/j.marpolbul.2018.11.006.