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Abstract: MicroRNAs (miRNAs) are small noncoding RNAs that function as epigenetic modulators
regulating almost any gene expression. Similarly, other noncoding RNAs, as well as epigenetic
modifications, can regulate miRNAs. This reciprocal interaction forms a miRNA-epigenetic feedback
loop, the deregulation of which affects physiological processes and contributes to a great diversity of
diseases. In the present review, we focus on miR-615, a miRNA highly conserved across eutherian
mammals. It is involved not only during embryogenesis in the regulation of growth and development,
for instance during osteogenesis and angiogenesis, but also in the regulation of cell growth and the
proliferation and migration of cells, acting as a tumor suppressor or tumor promoter. It therefore serves
as a biomarker for several types of cancer, and recently has also been found to be involved in reparative
processes and neural repair. In addition, we present the pleiad of functions in which miR-615 is
involved, as well as their multiple target genes and the multiple regulatory molecules involved in its
own expression. We do this by introducing in a comprehensible way the reported knowledge of their
actions and interactions and proposing an integral view of its regulatory mechanisms.

Keywords: microRNAs; cancer; miR-615; miR-615-5p; miR-615-3p; cell growth; cell differentiation;
tumor suppressor; tumor promoter; neural repair; oncogene

1. Introduction

Homeobox genes encode transcription factors that regulate the expression of several genes during
embryogenesis [1]. Among them, Hox genes are very well described as specifying the anteroposterior
pattern as well as the development of many organs [2], for example during neurodevelopment as well
as in malignant glial tumors and as gliomas and glioblastomas [3]. Within this gene cluster, introns
represent a hypothetically rich source of microRNAs (miRNAs). miRNAs are single stranded noncoding
18–25 nucleotide RNAs that post-transcriptionally attenuate gene expression [4]. Among them is
miR-615, which is located within the intron of the Hoxc5 gene (12q13.13). miR-615 has a restricted
phylogenetic distribution and is absent in non-mammalian tetrapods but highly conserved across
eutherian mammals [5], which allows it to contribute in eutherian evolution and development [6].

While miR-615 expression can be coupled to HOXC5 expression, it can also be transcribed
independently using an intragenic promoter [6]. A human miR-615 sequence obtained from miRbase
is 96 nucleotides long (Figure 1A) and constitutes a highly conservative sequence, which can be seen in
the consensus sequence obtained from several vertebrates (Figure 1B). These contain two different
segments (miR-615-3p and miR-615-5p of 21 nucleotides each) which can perform interference activities
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and function as regulatory miRNAs. This sequence forms a hairpin or stem-loop (Figure 1C) where the
two sides of the stem contain the corresponding sequences miR-615-3p and miR-615-5p [7].
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During embryonic development in rats, the expression of miR-615-3p was detected from the 
fourteenth day and was significantly reduced during osteogenic and adipogenic differentiation in a 
time-dependent manner. In bone marrow mesenchymal stem cells (BMSCs) induced with 
chondrogenic differentiation, the mRNA expression of specific related genes COL2A1, COL10A1, 
ACAN and MATN3 was significantly decreased following miR-615-3p overexpression. In addition, 
the expression of SOX9, a transcription factor promoting chondrogenesis, was also significantly 
decreased, while knockdown of miR-615-3p obtained the opposite result. This indicates that miR-
615-3p inhibits the expression of chondrogenic-specific genes and may inhibit chondrogenic 
differentiation [8]. 

On the other hand, some studies on cancer cell lines have involved this miRNA in the regulation 
of cell growth, proliferation and migration [9], with it acting as a tumor suppressor [6] or as a tumor 
promoter [10–12]. 
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2. Functions of miR-615

At present, more is known about the involvement of miRNA-615 in various pathologies than
about its physiological function. miR-615 is highly expressed in the mouse embryo and has therefore
been involved during embryogenesis in the regulation of growth and development, as suggested by
target prediction and transcriptomic analyses. After analyzing miR-615 expression in several human
cell lines and tissues, only very few cell lines lacked its expression [6]. The gonads, the kidney and the
cerebellum are among the principal tissues in various species in which miR-615 expression occurs.

During embryonic development in rats, the expression of miR-615-3p was detected from the
fourteenth day and was significantly reduced during osteogenic and adipogenic differentiation in a
time-dependent manner. In bone marrow mesenchymal stem cells (BMSCs) induced with chondrogenic
differentiation, the mRNA expression of specific related genes COL2A1, COL10A1, ACAN and MATN3
was significantly decreased following miR-615-3p overexpression. In addition, the expression of SOX9,
a transcription factor promoting chondrogenesis, was also significantly decreased, while knockdown
of miR-615-3p obtained the opposite result. This indicates that miR-615-3p inhibits the expression of
chondrogenic-specific genes and may inhibit chondrogenic differentiation [8].

On the other hand, some studies on cancer cell lines have involved this miRNA in the regulation
of cell growth, proliferation and migration [9], with it acting as a tumor suppressor [6] or as a tumor
promoter [10–12].

3. miR-615 Targets Under Physiological and Pathological Conditions

Although the same miRNA can regulate several genes, it can also be regulated by several genes,
and one gene can be targeted by multiple miRNAs. Therefore, it is very important to be able to identify
the specific targets of each miRNA in order to understand their participation in different pathologies
and identify new therapeutic targets. miR-615-3p has mainly been involved in the inhibition of cell
differentiation during osteogenesis, chondrogenesis and alveolar epithelial cells, in addition to its
participation in the cirrhotic process derived from hepatitis both in the liver and in the spleen through
targeting different genes (Table 1).
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Table 1. miR-615-3p interacting genes.

Target
Gene Description Gene Action

or Effect Cell Line Interaction Effect Ref.

LCoR
Ligand-dependent
nuclear receptor

corepressor
Suppress PPARδ THP-1 cells/splenic

macrophages

At the 3’UTR of
LCoR, located at

the 193 bp
downstream of
the stop codon

Downregulated [13]

CHOP
C/EBP

homologous
protein

A proapoptotic
transcription factor

Mouse hepatocytes/
hepatoma cell line

A single predicted
binding site in the
3´UTR, located at

195 bp

Upregulated [14]

FOXO1 Forkhead box
protein O1

A transcription
factor regulating
insulin signaling

pathway, and
played roles in
adipogenesis,

gluconeogenesis
and glycogenolysis

hBMSCs/ hFOB1.19
human osteoblast

cell line
n.d. Downregulated [15]

GDF5
Growth/

differentiation
factor 5

A member of the
TGF-β superfamily
and closely related

to the bone
morphogenetic
proteins (BMPs)

hBMSCs/hFOB1.19
human osteoblast

cell line
n.d. Downregulated [15]

OCLN Occludin Major component of
tight junction MSCs/ATII cells n.d. Downregulated [16]

CK18 Cytokeratin 18

Component of
cytoskeleton
intermediate

filaments

MSCs/ATII cells n.d. Downregulated [16]

PICK1
Protein

interacting with
C kinase 1

Regulation of traffic
between surface

receptors

Human breast
cancer cell lines

Targeting the
3′-UTR Downregulated [17]

IGF2 Insulin-like
growth factor 2

Growth factor has
growth-regulating,

insulin-like and
mitogenic activities

MKN28, MKN45,
SGC7901 and GES-1

cell lines; NSCLC
cell lines.

Directly binds to
the 3´-UTR Downregulated [18,

19]

hTERT
Telomerase

reverse
transcriptase

A catalytic subunit
of the enzyme

telomerase

56 different NCI-60
cell lines

Targeting its
3′UTR Downregulated [20]

CELF2 CUGBP Elav-like
family member 2

A tumor suppressor
RNA-binding

protein implicated
in the regulation of

several
post-transcriptional

events

MKN28, MKN45,
SGC7901 and GES-1

cell lines
n.d. Downregulated [11]

HMGB3 High mobility
group box 3

Multifunctional
protein with various

roles in different
cellular

compartments

Human normal
bronchial epithelial

cell line
16HBE/NSCLC cell

lines (A549 and
H1299)

n.d. Downregulated [21]

JunB

JunB
proto-oncogene,

AP-1
transcription
factor subunit

Transcription factor
involved in

regulating gene
activity following

the primary growth
factor response

Human ESCC cell
lines (Eca-109, TE-1

and KY-SE) and
human normal

esophageal cell line

Downregulated by
NORAD Upregulated [22]

AP-1 Transcription
factor subunit

Involved in several
cellular processes

(cell growth,
differentiation and

apoptosis)

Human ESCC cell
lines (Eca-109, TE-1,

and KY-SE) and
Human normal

esophageal cell line

Downregulated by
NORAD Upregulated [22]
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Table 1. Cont.

Target
Gene Description Gene Action

or Effect Cell Line Interaction Effect Ref.

Ywhag

14-3-3-δ, protein
kinase C

inhibitor protein
1

An abundant,
cytosolic and
brain-specific

protein, which
mediates signal

transduction

Mice cerebral
anterior cortex Downregulated [23]

LINGO-1

LRR and Ig
domain

containing
NOGO receptor

interacting
protein 1

Transmembrane
protein selectively

expressed in
neurons and

oligodendrocytes in
CNS and the spinal

cord, mediating
axon growth

NSCs fetal brain
14th E.D.

Bind with the
target sites

(GGACCCC) in
the 3′-UTR located

in 202-223bp

Downregulated [24]

n.d., not defined; PPARδ, peroxisome proliferator-activated receptor gamma; TGF-β, transforming growth factor
beta; CNS, central nervous system; NSC, neural stem cells.

The involvement of miR-615-3p during osteoblastogenesis and skeletal development has been
reported [15], as its expression has been deregulated during glucocorticoid-mediated bone loss.
It has been determined that overexpression of miR-615-3p significantly reduces the expression of
the FOXO1 and GDF5 proteins, two genes related to osteogenesis, while inhibition of miR-615-3p
increases their expression. Therefore, miR-615-3p negatively regulates osteogenic differentiation by
post-transcriptional suppression of osteogenic regulators.

It is interesting that miR-615-3p also promotes osteoarthritis (OA), most probably by inhibiting
the chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Overexpression of
miR-615-3p significantly reduced SOX9 expression and increased the expression of proinflammatory
cytokines like IL-1, IL-6, IL-8 and TNF-α, which were significantly reduced following miR-615-3p
knockdown. Since SOX9 could regulate chondrogenic differentiation, miR-615-3p promotes the
expression of inflammatory cytokines by inhibiting the chondrogenic differentiation of BMSCs [8].

miR-615-3p and inflammatory factors (IL-1, IL-6, IL-8 and TNF-α) are overexpressed in peripheral
blood of patients with neonatal acute respiratory distress syndrome (ARDS). Therefore, it has been
suggested that miR-615-3p participates in the progression of ARDS by inhibiting the differentiation of
BMSCs to alveolar type II epithelial cells (ATII) through inhibiting the Wnt/β-catenin pathway [16],
given that under some circumstances, BMSCs can differentiate to ATII [25].

miR-615-3p has been noted to regulate hypersplenism (portal hypertension related to cirrhosis) of
splenic macrophages in cirrhosis related to the hepatitis B virus [26]. In addition, it improves their
phagocytic ability by acting on the ligand-dependent nuclear receptor corepressor (LCoR), which in
turn may suppress the peroxisome proliferator-activated gamma receptor (PPARγ) [13]. Therefore,
an overexpression of miR-615-3p decreases LCoR expression, which reduces the expression of PPARγ,
decreasing the phagocytic capacity of splenic macrophages.

In nonalcoholic fatty liver disease (NAFLD), palmitate, a lipotoxic saturated free fatty acid, induces
apoptosis and requires maximal expression of CHOP (C/EBP homologous protein), a proapoptotic
transcription factor. This is achieved by inducing endoplasmic reticulum stress and a concomitant
downregulation of repressive miR-615-3p, promoting hepatocyte lipoapoptosis. Thus, the reduction of
miR-615-3p by palmitate-induced ER stress derepresses the expression of one of its targets, the CHOP
protein, and defines its sensitivity to cell death without contributing to its basal regulation [14].

On the other hand, the involvement of miR-615-5p in the reparative processes and angiogenesis
has been demonstrated in various contexts. In human liver tissue, miR-615-5p is found to be moderately
upregulated in cirrhotic liver [27], as well as in plasma from patients with different degrees of liver
fibrosis [28]. Therefore, the authors suggested that it may be relevant as a biomarker in the liver
repair process.
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In patients with diseases associated with vascular dysfunction, such as acute coronary syndrome
(ACS), diabetes mellitus (DM) or systemic arterial hypertension (SAH), miR-615-5p is overexpressed in
peripheral blood [29,30]. In experimental models of vascular dysfunction and tissue damage, including
wounds in diabetic mice and human skin organoids, miR-615-5p significantly inhibits VEGF, AKT
and eNOS signaling, which could suppress the angiogenic signals and restorative processes such
as granulation tissue formation and wound healing. This effect is achieved by directly targeting
IGF2 (insulin-like growth factor 2) and RASSF2 (Ras association domain family member 2), as an
accumulative effect [29]. The IGF-axis is also modulated by miR-615-5p in NK cells of hepatocellular
carcinoma (HCC) patients, in which upregulation of miR-615-5p directly represses IGFR1 signaling
and reduces the cytotoxic markers NKG2D, TNF-a and perforins. This triggers an anti-cytotoxic effect
in NK cells and potentially attenuates their anti-tumor activity [31].

Ischemic retinopathies like diabetic retinopathy and oxygen-induced retinopathy of prematurity
are characterized by vascular dysfunction and pathological angiogenesis with capillary degeneration,
altered permeability and inflammation [32]. In human umbilical vein endothelial cells (HUVEC) and
mouse models of retinal vasculature damage, overexpression of miR-615-5p partially rescues endothelial
cells (ECs) from hyperglycemic and hypoxic stress-induced cell apoptosis, suppresses pathological
angiogenesis and increases the viability, cell migration and tube formation of ECs. These effects are
mediated by the inhibition of Myocyte-specific enhancer factor 2A (MEF2A), Tyrosine-protein kinase
receptor Tie-2 (Tie2) and IGF2 [33], all three of which are involved in proliferation and the angiogenesis
process [34–36]. These observations show clinical correlation in the retinas and plasma of diabetic
patients, as well as in patients with ACS and SAH. Therefore, modulation of miR-615-5p signaling may
be considered a potential therapeutic target in diseases with defects in angiogenesis such as diabetic
retinopathy, coronary artery disease or peripheral vasculopathy. On the other hand, the anti-angiogenic
effect of miR-615-5p has been documented as part of its ability to suppress tumor growth (see below).

Therefore, miR-615 has been related to the inhibition of cell differentiation during osteogenic or
chondrogenic processes, and to immune, inflammatory, and reparative responses in macrophages,
splenocytes, hepatocytes, BMSCs and endothelial cells. However, it also participates in the development
or suppression of many tumors.

4. mir-615-3p Dual Role as Oncogene and Tumor Suppressor in Cancer

miRNAs act primarily by regulating gene expression by binding to the 3-UTR of the target mRNA.
Derived from this mechanism of action, they can participate both as tumor promoters and suppressors
in the development of various types of cancer [37–39] (Table 1).

miR-615-3p has been identified as a tumor suppressor in cancers including lung [18],
esophageal [22] and renal [19]. In contrast, overexpression of miR-615-3p is involved in other
cancers, such as hepatocellular cancer [10], gastric cancer [11] and prostate cancer [12].

In non-small cell lung cancer (NSCLC), decreased expression of miRNA-615-3p has been
described [40]. In vitro overexpression of this miRNA significantly inhibits cell proliferation and
migration, as well as tumor growth and metastasis. This is mediated by the binding of miRNA-615-3p
to the 3’-UTR insulin-like growth factor 2 (IGF2) [18]. In addition, overexpression of IGF2 has been
shown to rescue the inhibitory effect of miR-615-3p on cell proliferation, migration and invasion,
confirming that it is a direct functional target in NSCLC [18].

In most human somatic cells, when cell differentiation is induced, hTERT (a subunit of telomerase)
is suppressed and eventually silenced [41,42]. However, increased telomerase expression has been
observed in more than 85% of cancers [43], which can be dramatically reduced by overexpression of
HOXC5 and miR-615-3p. This is the case both in human cancer cell lines and during differentiation of
pluripotent cells [20], in which the expression of HOXC5 and miR-615-3p is suppressed but significantly
activated during cell differentiation [44,45] compared to the expression of hTERT in differentiated cells.
Both can suppress hTERT through an upstream enhancer region (transcriptional pathway) and 3′UTR
(post-transcriptional pathway), respectively, forming a feed loop to negatively regulate hTERT mRNA
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expression, telomerase activity and telomere elongation. The key role in hTERT suppression, however,
is played by HoxC5, while miR-615-3p plays a secondary role in the negative regulation of hTERT by
binding to its 3′UTR [20].

The first evidence of the oncogenic functions of miR-615-3p came from findings in malignant
mesotheliomas [46]. Subsequently, its overexpression in poorly differentiated colorectal cancer (CRC)
has been detected [47] in a differentially regulated manner between the right and left colon, in both
normal and cancerous tissue [48], and it has been proposed as a biomarker of prognosis [49].

The expression of miR-615-3p in hepatocellular carcinoma (HCC), on the other hand, is higher
in the recurrence group than in the non-recurrence group, where it increases proliferative activity
and promotes invasiveness. Additionally, miR-615-3p has been associated with HCC recurrence by
inducing chemoresistance and the acquisition of the epithelial-mesenchymal transition (EMT) [10].
Overexpression of miR-615-3p has also been described as leading to a poor prognosis in metastatic
kidney cancer [50]. These studies do not, however, reveal a mechanism or target gene for these actions.

The oncogenic function of miR-615-3p in gastric cancer has been reported recently [11]. In gastric
cancer cells (cell line SGC7901), overexpression of miR-615-3p promotes proliferation and migration by
suppressing CELF2 (tumor suppressor CUGBP- and ETR-3-like family 2) expression. More recently,
elevated miR-615-3p expression has also been implicated in poor prognosis of postoperative biochemical
recurrence (PBR) and prostate cancer (PC) specific survival. Since it increases the viability, proliferation
and migration of PC3M prostate cancer cells [12] and is associated with a worse prognosis in PC,
miR-615-3p is indicated as an oncogenic driver of this cancer.

Moreover, in breast cancer tissues and breast cancer cell lines, miR-615-3p level is also upregulated,
and promotes metastatic ability by targeting 3’-UTR of PICK1, inhibiting it, and thus increasing TGF-β
signaling. By contrast, PICK1 expression exerts the opposite effect, acting as a negative feedback
loop for TGF-β signaling by inhibiting the binding of DICER1 to Smad2/3 and the processing of
pre-miR-615-3p to mature miR-615-3p [17].

In summary, while the role miR-615-3p plays in different types of cancers appears to be somewhat
contradictory and misleading, it may simply be indicative of its function in a highly cell- and
disease-type-specific manner. For this reason, it is imperative that there be further investigation of
miR-615-3p’s targets (Table 1), which will be critical in accurately understanding the role of miR-615-3p
in cancer.

5. miR-615-5p as a Tumor Suppressor in Several Types of Cancer

Cumulative evidence indicates that miR-615-5p functions as a tumor suppressor through a
post-transcriptional inhibition of oncogenes involved in essential biological processes. It does so
mainly by preventing invasiveness and metastasis, the main causes of tumor reappearance. With the
exception of some examples of HCC [27,51], a downregulation of this miRNA has been documented
in several malignancies of different lineages such as carcinomas [28,52,53], lymphomas [54] and
glioblastomas [55], with an indirect relationship between the level of expression of miR-615-5p and
the tumor cell capacity for proliferation, invasion, migration and angiogenesis. Their target genes are
summarized in Table 2 and Figure 2.

Similarly to its 3p counterpart, miR-615-5p suppresses the transcription of numerous oncogenes
through specific binding to sequences in the 3’-UTR region, such as AKT [9,29,56,59,60], CCND2 [62]
and IGFR1/IGF2-axis [27,31,56–58,64]. In pancreatic adenocarcinoma (PAC), miR-615-5p has reduced
expression in malignant cells compared to adjacent normal pancreatic acinar cells. The overexpression
of miR-615-5p in PAC murine models is associated with a significant reduction in tumor growth rate,
weight and volume compared to negative controls. Similarly, it alleviates the rate of proliferation and
the metastatic potential while promoting tumor cell apoptosis. These effects are carried out through
negative regulation of AKT2 by miR-615-5p [9,59]. This mechanism of gene expression silencing also
applies to AKT1, AKT2, IGF2 and SHMT2 in NSCLC tissues [56,60]. In the case of IGF2, it has also
been demonstrated in ESCC [58], PAC [57] and HCC tissues [27,64]. The inhibitory effect on AKT is
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not limited to the repression of translation, but also to phosphorylation [9], although the mechanism of
this effect has not been elucidated.

Table 2. Targets directly downregulated by miR-615-5p in cancer.

Target
Gene Description Gene Action

or Effect Model Status in
Cancer Cells

3′-UTR
Targeting
Sequence

Effect Ref

IGF2
Insulin-like

growth
factor 2

Growth factor
NSLCC,

ESCC, HCC,
PAC

Upregulated 5’GGACCCCA3’

Good prognosis
(clinically);
↓ cell motility,
migration, cell

proliferation and
tumor growth

[9,27,56–58]

AKT1
AKT2

Serine/threonine
protein kinase

B 1 and 2

Regulation of
metabolism,

apoptosis, cell
cycle and

transcription

LUAD, PAC Upregulated 5’GACCCCA3’
5’GACCCCU3’

↓ tumor growth
and metastasis
in vivo and cell

proliferation,
migration and

invasion in vitro.
↑ apoptosis

[56,59,60]

SHMT2
Serine

Hydroxymethy
ltransferase 2

Cellular energy
metabolism,
proliferation

and migration

NSLCC,
HCC Upregulated 5’GGACCCC3’

↓ proliferation,
migration, and

prevented growth
of HCC cells

[51,56]

IGFR1
Insulin-like

growth factor
type 1 receptor

Receptor
tyrosine kinase HCC Downregulated 5’GGACCC3’

Tumor suppressor
effect;

↓ downstream
mediators like

mTOR

[31]

DDR2

Discoidin
Domain
Receptor
Tyrosine
Kinase 2

Receptor
tyrosine kinase

T-cell
lympho-blastic
lymphoma

Upregulated 5’GACCCCAA3’ ↑ apoptosis;
↓ cell viability [54]

EGFR
Epidermal

growth factor
receptor

Receptor
tyrosine kinase Glioblastoma Upregulated 5’CCACGAGC3’

Good prognosis
(clinically);
↓ cell growth,
migration and

invasion

[55]

NF-kB2
Nuclear factor
NF-kappa-B
p100 subunit

Transcription
factor related to

immunity,
differentiation,

cell growth,
tumorigenesis
and apoptosis

Ovarian
cancer Upregulated 5’GGACCCC3’

↓ viability, cell
migration and

invasion;
↑ apoptosis

[53]

MEF2C
Myocyte-specific

enhancer
factor 2C

Transcription
factor, role in
myogenesis,
neurogenesis

and
vasculogenesis

NSLCC Upregulated n.d.

↓ cell proliferation,
survival, tumor

growth, migration
and invasion

[61]

JUNB JunB
Proto-Oncogene

Transcription
factor, AP-1

transcription
factor subunit

PAC Upregulated n.d.

↓ cell motility,
migration and cell

proliferation
↓ HRas/Raf/MAPK

and PI3/Akt
cascades;

↓ AKT and ERK
phosphorylation

[9]

CCND2 Cyclin D2 Cell cycle
regulator

Prostate
cancer Upregulated 5’GGACCCC3’

↓ proliferation,
migration and

invasion of cancer
cells in vitro and

in vivo

[62]

SF3B3 Splicing Factor
3b Subunit 3

Forms small
nuclear

ribonucleoproteins
complex

NSLCC Upregulated 5’GACCCC3’

↓ cell proliferation,
survival, tumor

growth, migration
and invasion

[61]
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Table 2. Cont.

RAB24 Ras-related
protein 24

Cytoskeletal
remodeling,
motility and

adhesion

HCC Upregulated 5’GGACCCC3’

↓ EMT process
promotion (↑
E-cadherin, ↓

vimentin, ICAM
and β-integrin);
↓ proliferation,

survival, motility,
adhesion and
angiogenesis
in vitro and

in vivo

[63]

FIBRO-NECTIN-1 ECM protein LUAD Upregulated 5′GUGGACCCC3′
↓MMP2 and

MMP9;
↓migratory and

invasive capability

[52]

ECM, extracellular matrix; EMT, epithelial mesenchymal transition; ESCC; esophageal squamous cell carcinoma;
HCC, hepatocellular carcinoma; LUAD, lung adenocarcinoma; NF- κB, nuclear factor kappa B; n.d., not defined;
NSLCC, non-small cell lung carcinoma, PAC, pancreatic adenocarcinoma; RTK, receptor tyrosine kinase.
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miR-615-5p expression was also markedly lower than normal cells and tissue in prostatic
adenocarcinoma, in which CCND2 mRNA (cyclin D2) was upregulated in the absence of the inhibitory
effect of miR-615-5p, promoting cell cycle progression [62].

Additionally, multiple receptor tyrosine kinase (RTK) have proven to be molecular targets of
miR-615-5p. This is also the case in epidermal growth factor receptor (EGFR), which is overexpressed
in human tissues and cell cultures of glioblastoma multiforme (GBM). In this setting, there is a negative
correlation between miR-615-5p and EGFR, so the overexpression of miR-615-5p induces the repression
of EGFR and its downstream effects on growth, proliferation, invasion and migration of the tumor
cells [55]. IGFR1, the IGF2-receptor, is also an RTK and a target of miR-615-5p [31]. In metastatic
HCC tissues and cell lines [64] and in non-metastatic conditions [31], the IGF2/IGFR1/mTOR axis is
overexpressed, which in turn correlates to the low level of miR-615-5p. The low expression was also
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recently documented in plasma from HCC patients [28]. This evidence is consistent with its negative
role in cell proliferation, invasiveness and migration [31]. By contrast, other studies conducted on HCC
tissues have documented an increase in miR-615-5p compared to control tissues [27,51]. However, the
tumor suppressor effect related with its overexpression is preserved, while establishing a negative
association with metastases and TNM stage [51]. In parallel, knockdown of miR-615-5p remarkably
derepresses the proliferation and migration in human HCC cell lines, while overexpression reverses
these effects [27,51]. The mechanism is achieved by direct and negative inhibition of miR-615-5p on its
downstream targets IGF2 [27] and SHMT2 (Serine hydroxymethyltransferase 2) [51]. This enzyme
participates in cell metabolism by converting serine to glycine, and its suppression has been associated
with blocking growth and migration of neoplastic cells [65].

6. Competing Endogenous RNAs, Like lncRNAs and circRNAs, Act as a Regulatory Sponge
of miR-615

It is now recognized that the noncoding portion of the genome plays an important role in a
wide variety of physiological and pathological processes [66]. Various types of microRNAs compete
with mRNA transcripts to form an expression-regulating mechanism [67]. These RNAs have been
called competing endogenous RNAs (ceRNAs) and include lncRNAs and circRNAs that crosstalk with
mRNAs and their respective miRNAs and have the ability to regulate gene expression by sequestering
and competing with miRNAs [68,69] to protect mRNAs from interference. In this way, they act as
molecular sponges and modulate the repressor effect of miRNAs on their target. The regulatory
molecules of miR-615 are summarized in Table 3.

Table 3. Inhibitory molecules of miR-615 3p and 5p.

Molecule Description Effect Cell Line Status in
Cancer Cells

Axis
Documented

Effects Associated
with Inhibition of

miR-615
Ref.

circ-CAMK2A Circular
RNA

Sponge
miR-615-5p

LUAD cell
lines, HBE Upregulated

circ-CAMK2A/
miR-615-5p/

fibronectin-1/MMP

Metastasis,
advanced TNM
stage and poor

prognosis;
↑migration, and

invasion

[52]

circPUM1 Circular
RNA

Sponge
miR-615-5p

Ovarian cancer
cell lines and

human
peritoneal

mesothelial cell
line

Upregulated circPUM1/
miR-615-5p/NF-κB

Associated with
FIGO stage

(poor prognosis);
↑ proliferation,

survival, migration,
tumor growth and

metastasis

[53]

circ-LAMP1 Circular
RNA

Sponge
miR-615-5p

T-LBL cells
Jurkat,

CCRF-CEM and
SUP-T1

Upregulated circ-LAMP1/
miR-615-5p/DDR2

↑ cell proliferation
and viability;
↓ apoptosis

[54]

circRNA-100146 Circular
RNA

Sponge
miR-615-5p

and 3p

16HBE, LUAD
cell line Upregulated

circRNA-
100146/

miR-615-5p and
3p/MEF2C and

SF3B3

Poor clinical
prognosis;

↑ cell proliferation,
survival, tumor

growth, migration
and invasion

[61]

LINC00324
Long

noncoding
RNA

Sponge
miR-615-5p

LUAD cell lines
and 16HBE Upregulated LINC00324/

miR-615-5p/AKT1

↑ cell proliferation,
migration and

invasion
↓ apoptosis

[60]

lncRNA
Gm15290

Long
noncoding

RNA

Sponge
miR-615-5p

HBE and
NSCLC cell

lines
Upregulated

Gm1529/
miR-615-5p/AKT2,

IGF2 and
SHMT2

↑ proliferation and
invasion;
↓ apoptosis

[56]
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Table 3. Cont.

Molecule Description Effect Cell Line Status in
Cancer Cells

Axis
Documented

Effects Associated
with Inhibition of

miR-615
Ref.

HOTTIP
HOXA

transcript at
the distal tip

Sponge
miR-615-3p

16HBE/NSCLC
cell lines.

Human RCC
cell lines,

normal renal
epithelial cells

HK-2, 293T.

Upregulated

HOTTIP/
miR-615-3p/

HMBG3
HOTTIP/

miR615-3p/IGF2

Endogenous
sponge;

promotion of
glycolysis under

hypoxic conditions
in LUAD;

lead to suppression
of IGF-2 in RCC

[19,21]

NORAD
(LIN-C00657)

Noncoding
RNA

Activated by
DNA

Damage

Sponge
miR-615-3p

Human ESCC
cell lines and

HEEC
Upregulated NORAD/

miR-615-3p/JunB

Upregulated after
DNA damage

Oncogenic
[22]

KDM4B Histone
demethylase

Lysine
demethylase HCC cell lines Downregulated KDM4/miR-615-5p/

RAB24

Demethylation of
the miR-615-5p

promoter;
↑ proliferation,

motility, adhesion
and angiogenesis

[63]

CDX2 Caudal type
homeobox 2

Transcriptional
activator

Pancreatic
adenocarcinoma Downregulated CDX2/

miR-615-5p/IGF2

Induction of
transcription of

miR-615-5p;
neoplastic cell

growth.

[57]

PU.1 Transcription
factor

Transcriptional
activator

HCC cell lines
(Hep3B,

MHCC97L and
MHCC97H).

Downregulated
(in metastatic

HCC)

PU.1/
miR-615-5p/IGF2

Induction of
transcription of

miR-615-5p;
↑migration and

invasion

[64]

FIGO, International Federation of Gynecology and Obstetrics; HCC, hepatocellular carcinoma; LUAD, lung
adenocarcinoma; NF-κB, nuclear factor kappa B; NSLCC, non-small cell lung carcinoma; RCC, renal cell carcinoma;
TNM, tumor nodes metastasis.

In the case of miR-615-3p, a number of lncRNAs were very recently discovered with the capacity
to modulate its actions by sponging it. Firstly, this is the case for a HOXA transcript at the distal tip
(HOTTIP). This regulates cell growth, differentiation, apoptosis and cancer progression by directly
binding to miR-615-3p and acting effectively as an endogenous sponge to modulate the suppression
of IGF-2 in renal carcinoma [19] or the expression of high mobility group box 3 (HMGB3) in NSCLC
cells [21]. The HOTTIP oncogenic functions are mediated through negative regulation by a reciprocal
repression of miR-615-3p which in turn regulates IGF-2 expression, with this molecule being a direct
target gene of HOTTIP and of miR-615-3p, at least in renal cell carcinoma [19]. In NSCLC cells, on the
other hand, HOTTIP acts as a molecular sponge by sequestering miR-615-3p and later regulating
HMGB3, itself a direct target of miR-615-3p which promotes hypoxia-induced glycolysis. By restoring
the expression of miR-615-3p or reducing the expression of HOTTIP, hypoxia-induced glycolysis is
suppressed. This happens because hypoxia increases the expression of HOTTIP and suppresses the
level of miR-615-3p by targeting the miR-615-3p/HMGB3 axis in NSCLC cells [21].

Another lncRNA that is an upstream regulator for miR-615-3p is LINC00657 (NORAD by
noncoding RNA activated by DNA damage), that can be upregulated following DNA damage [70].
An oncogenic function for LINC00657 has been reported in several cancers such as breast [71],
colorectal [72] and hepatocellular carcinoma [73]. In squamous cell carcinoma (SCC) of the esophagus
cells, LINC00657 significantly increased after irradiation treatment and miR-615-3p was able to suppress
proliferation and migration. In addition, LINC00657 increases the expression of JunB by suppressing
the expression of miR-615-3p, and the decrease of LINC00657 may inhibit the invasion, migration and
viability of ESCC cells. By analyzing the miR-615-3p target genes in common with the expression
genes regulated by LINC00657 decline, JunB, a subunit of AP-1 transcription factor, was identified [22].
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In non-small cell lung carcinoma (NSCLC), miR-615-5p expression is downregulated because
of the decoy effect exerted by different ceRNAs, namely circ-CAMK2A [51], circRNA 100146 [61],
LINC00324 [60] and lncRNA Gm15290 [56]. The overexpression of these ceRNAs (in tumor tissues and
cancer cell lines) leads to a potent inhibition of miR-615-5p, while the suppression of ceRNAs produces
the opposite effect. Positive regulation of the sponge molecules increases the expression of miR-615-5p
target genes such as IGF2, AKT1/2 and SHMT2 [56,60], which nullifies the tumor suppressor effect of
miR-615-5p and leads to cell proliferation, invasion, migration and inhibition of apoptosis. More recently,
Du et al. (2019), documented the inhibition of miR-615-5p in lung adenocarcinoma through a circular
RNA (cir-CAMK2A) with up-regulation of fibronectin-1. This protein is an extracellular matrix protein
(ECM) and a target of miR-615-5p, which in turn promotes the activation of MMP-2 and MMP-9
matrix metalloproteases, whose activation has been associated with lymph node metastasis, distant
metastasis, advanced clinical stage and poor prognosis [52]. A similar mechanism mediated by circular
RNA 100146 was also described in NSCC cell lines and tissues. By capturing miR-615-5p and 3p,
overregulation of multiple downstream target genes of miR-615 such as SF3B3, NFAT5, COL1A1 and
MEF2C is induced. These proteins are related to the modulation of gene expression [74], cellular
immune response [75], ECM proteins [76] and differentiation [77], respectively. All of them are involved
in fundamental processes of tumor biology [61].

Another model employed to demonstrate the interaction between CeRNAS and miRNAS is
ovarian cancer. In these patients, circPUM1 expression was positively related with poor prognosis.
In vitro, overregulation of this circRNA produces sponging inhibition of miR-615-5p, which in turn
derepresses the expression of miR-615 target genes such as NF-kB2 [53]. This leads to the expression of
a wide range of genes related to inflammation but also to survival, angiogenesis and repair, such as
MMP2, IL-8 and VEGF [78]. Thus, the sponging of miR-615-5p generates a tumorigenic phenotype.
Finally, in a T-lymphoblastic lymphoma model, circ-LAMP1 (a circular RNA) produces a similar
tumorigenic effect. In this model, the overexpression of circ-LAMP1 leads to the specific capture of
miR-615-5p and therefore to the disinhibition of DDR2 (miR-615-5p target) [54]. Discoidin domain
receptor tyrosine kinase 2 (DDR2) is an RTK related to a tumor growth promoting effect, similar to that
described for the other ceRNAS [54]. The inhibitory ceRNAs of miR-615-5p are summarized in Table 3
and Figure 3.
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Figure 3. miR-615-5p can be negatively regulated under three different paradigms, according to the
evidence available at present. It is possible to block the action of the molecule by ceRNAs, either
circRNAs or lncRNAs. It is also susceptible to repression by hypermethylation of its intragenic
promoter, which has been related to deficiencies in the action of demethylases such as KDM4. Finally,
the expression of this miRNA is positively and independently regulated by transcription factors which,
when repressed, cease to induce the expression of miR-615-5p. The functional consequence of this
inhibition is the abolition of its tumor suppressor effect, which finally leads to the oncogenic effect
associated with the decrease in miR-615-5p concentration.
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7. Other miR-615-5p Repressor Mechanisms Which Contribute to the Promotion of Tumor Growth

As previously mentioned, miR-615 can be transcribed independently by regulation of its intragenic
promoter [6]. It has been documented that this regulation can be influenced by transcription factors or
by epigenetic mechanisms (Figure 3). CDX2 (caudal-type homeobox 2) is a transcription factor that
has a role in embryonic development [79]. It is useful as a marker for carcinomas originating in the
digestive tract [80], where it could act as a tumor suppressor [81]. Among its downstream targets
are the Hox genes. Jiang et al. demonstrated under different pancreatic adenocarcinoma paradigms,
that CDX2 binds specifically to the miR-615-5p promoter site, inhibiting its expression. In this tumor,
negative modulation of the CDX2/miR-615-5p/IGF2 axis was associated with increased tumor size and
weight in animal models, as well as increased expression of tumor progression markers such as Ki-67,
cyclin D1, c-MYC and Bcl-2 [57]. The same suppressive effect was documented in metastatic HCC cell
lines, through the modulation of the PU.1/miR-615-5p/IGF2 axis [64]. In this case, PU.1, a transcription
factor with documented tumor suppressor activity in hematopoietic and lymphoid neoplasms [82,83],
was shown to exert a negative regulation on miR-615-5p, which in turn was related to the invasive
capacity of the neoplastic cells [64].

Finally, it has been suggested that there are epigenetic mechanisms that repress the expression of
miR-615-5p through the hypermethylation of its promoter. The first such evidence was presented by
Gao et al. who demonstrated that the CpG islands in the miR-615-5p promoter region are intensely
hypermethylated in a tumor-dependent manner. Such repression generates a loss of inhibitory
effects on IGF2 and JUNB, which in turn contributes to tumorigenesis, invasion and migration [9].
More recently, Chen et al. confirmed epigenetic silencing of miR-615-5p in an HCC model by
correlating hypermethylation of the miR-615-5p promoter with downregulation of KDM4B [63],
a histone demethylase, induced by p53 in response to DNA damage [84]. Secondary repression of
miR-615-5p derepresses RAB24 (Ras-Related Protein 24), which in turn promotes EMT regulation
by influencing the action of proteins related to cell migration and adhesion such as β1-integrin.
The modulation of the axis KDM4B/miR-615-5p/RAB4/β1-integrin induced a greater capacity to
migrate, proliferate, invade and generate angiogenesis in neoplastic cells [63].

8. miR-615 Involvement in Neural Plasticity

It worth noting that although miR-615 expression in brain tissue during embryo development
is comparable to several other tissues previously mentioned in this review (consulted in mESAdb
form [85]), any information regarding a possible role for this miRNA in the central nervous system
(CNS) is extremely scarce.

One initial piece of evidence comes from the analysis of miR-615-3p expression in brain ischemic
injuries. Following hypoxic damage in the peri-infarct region of mouse brains, miR-615-3p was
downregulated in the cerebral cortex. In addition, miR-615-3p could regulate YWHAG (or 14-3-3γ),
which in turn interacted with cPKCβII, γ and nPKCε-interacting protein isoforms, involved in hypoxic
preconditioning induced neuroprotection [23]. Interestingly, miR-615-3p is one of five Hox cluster
miRNAs significantly upregulated in the prefrontal cortex in patients with Huntington’s Disease (HD)
and is related to age at death, with practically zero expression in control brains [86]. It is also one of
several miRNAs with altered expression in the cerebral cortex of patients with Alzheimer’s disease
(AD) [87]. Additionally, results have shown that miR-615-3p, HOXC5, PBX4, MEIS1 and MEIS2 are
upregulated during the differentiation of human embryonic stem cells into neural precursors [20].

A second indication involves two works demonstrating that miR-615-5p acts as a tumor suppressor
or protects against neurodegeneration in CNS related cells. Firstly, in glioblastoma (GBM) it targets
EGFR expression [55], making this miRNA a novel biomarker for the early diagnosis of GBM.
Intriguingly, miR-615-5p is one of multiple miRNAs upregulated after retinoic acid treatment in vitro
during neural differentiation of neuroblastoma cells [88]. Secondly, miR-615-5p has also been involved in
the regulation of retinal neurodegeneration, where cZNF609 acted as sponge to inhibit miR-615 activity,
leading to increased METRN and rescuing its inhibitory effects on retinal glial cell proliferation [30].
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A third and very recent piece of evidence comes from the demonstration that miR-615-5p directly
inhibits the translation of LINGO-1 by binding to its 3’-UTR region during the differentiation of neural
stem cells (NSCs) in 14-day-old brains. In this way, it facilitates neuronal differentiation in vitro and
prevents the formation of astrocytes. In addition, inhibition of LINGO-1 by miR-615 promotes axonal
regeneration and functional recovery in spinal cord injured rats, suggesting a possible role for miR-615
in the repair of traumatic CNS damage [24].

Taken together, this scarce but solid evidence indicates that miR-615 (both miR-615-3p and
miR-615-5p) are involved in neural differentiation in the CNS during embryonic development.
In adulthood, they are somehow involved in neural plasticity as a consequence of damage, such as in
brain ischemia or following a spinal injury. Moreover, miR-615 seems to also be involved to a certain
degree in neurodegenerative diseases such as Huntington’s [86] and Alzheimer’s [87], and most likely
in others. Further research is therefore warranted.

9. Future Challenges

The versatility in the action of miRNAs as powerful regulators of gene expression makes them
a therapeutic tool with great potential for the treatment of diverse diseases, including cancer and
neurodegenerative diseases [89,90]. In this regard, the most studied strategies are: (1) the restitution
of the concentration of a repressed miRNA, thus restoring its inhibitory effects on other molecules;
(2) the inhibition of an overexpressed miRNA that is pathologically inhibiting some signaling pathway.
However, there are still many challenges to be solved, among them, how to deliver the miRNAs to the
cell of interest and how to control side effects in the context of a systemic application. Recent work has
addressed this issue extensively [89,91]. So far, there is no experimental evidence of manipulation of
miR-615 for therapeutic purposes.
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