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Abstract

Background: Massively parallel cDNA sequencing (RNA-seq) experiments are gradually superseding microarrays in
quantitative gene expression profiling. However, many biologists are uncertain about the choice of differentially
expressed gene (DEG) analysis methods and the validity of cost-saving sample pooling strategies for their RNA-seq
experiments. Hence, we performed experimental validation of DEGs identified by Cuffdiff2, edgeR, DESeq2 and
Two-stage Poisson Model (TSPM) in a RNA-seq experiment involving mice amygdalae micro-punches, using
high-throughput qPCR on independent biological replicate samples. Moreover, we sequenced RNA-pools and
compared their results with sequencing corresponding individual RNA samples.

Results: False-positivity rate of Cuffdiff2 and false-negativity rates of DESeq2 and TSPM were high. Among the
four investigated DEG analysis methods, sensitivity and specificity of edgeR was relatively high. We documented
the pooling bias and that the DEGs identified in pooled samples suffered low positive predictive values.

Conclusions: Our results highlighted the need for combined use of more sensitive DEG analysis methods and
high-throughput validation of identified DEGs in future RNA-seq experiments. They indicated limited utility of
sample pooling strategies for RNA-seq in similar setups and supported increasing the number of biological
replicate samples.

Keywords: Gene expression, Next-generation RNA Sequencing, Predictive value of tests, Quantitative real-time
polymerase chain reaction, Sensitivity and specificity

Background
Massively parallel cDNA sequencing (RNA-seq) is grad-
ually superseding microarrays in quantitative gene expres-
sion profiling [1]. Apart from its ability to detect novel
transcripts, splicing events, and sequence variations,
RNA-seq offers unparalleled precise detection of gene ex-
pression over a wide dynamic range [2]. Due to declining
costs of sequencing, further increase in the use of RNA-
seq is expected. However, several methodological [3] and
statistical [4] issues in the design and analyses of RNA-seq
experiments remain unresolved. Biologists, who plan

RNA-seq experiments, often pose questions on sample
size requirements, cost-effective strategies for sample
pooling, and on the choice of data analysis software.
Current literature on this topic [4–10] do not provide un-
equivocal answers to these important questions [1].
Diverse methods are available to align RNA-seq reads

[7], summarize read counts, assemble transcripts [8], and
to detect differential expression between biological condi-
tions [11]. Differentially expressed gene (DEG) analysis
methods differ on their normalisation procedures, detec-
tion of differential isoform expression, statistical model-
ling, variance estimation, and corrections for multiple
testing [4]. This research focussed on four commonly used
DEG analysis methods, Cuffdiff2 [12], edgeR [13], DESeq2
[14], and Two-stage Poisson Model (TSPM) [15]. It mini-
mised the variations, secondary to read alignment and
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counting, by employing the same spliced aligner (Tophat2)
[16] and counting algorithm (HTSeq 0.5.4) [17] for all
methods, except for Cuffdiff2 that requires a unique quan-
tification method, Cufflinks [18]. We analysed data, derived
from a RNA-seq experiment including RNA samples, ex-
tracted from amygdalae micro-punches of a genetically
modified mouse strain (Brd1+/−) and of their wild-type
(WT) littermates (8 biological replicates/group), with Cuff-
diff2, edgeR, DESeq2 and TSPM. Validation using inde-
pendent biological replicates is preferred over in silico
analyses, using online databases or simulated datasets, as
well as technical validation, using the same RNA samples,
to confirm true-positive DEGs between two or more bio-
logical conditions [19, 20]. Hence, we validated the differ-
ential expression of 115 genes, randomly selected from the
list of DEGs that were identified by the four methods,
using independent biological replicates and high-
throughput quantitative reverse-transcription PCR (qPCR).
Pooling biological replicate RNA samples, such as

those derived from a number of experimentally similar
animals, may retain the biological information, while re-
ducing the cost of sequencing. Validity and utility of
sample pooling for gene expression analyses using mi-
croarrays have been evaluated extensively [21–23]. Bio-
logical averaging hypothesis suggests reduced biological
variability and increased power to detect DEGs [21], but
a pooling bias, that is the difference between the value
measured in the pool and the mean of the values mea-
sured in the corresponding individual replicates, can occur
[24]. Although several RNA-seq experiments, based on
pooled samples of RNA, have identified DEGs [25], the
validity of pooling for RNA-seq experiments to detect
DEGs has not been systematically evaluated so far. Hence,
we evaluated the validity of two pooling strategies (3 or 8
biological replicates/pool; two pools/group) against the
reference standard of sequencing the corresponding indi-
vidual samples (3 or 8 samples/group) to detect DEGs.

Results
Validity of DEG analysis methods
We performed differential gene expression analysis of
data from a RNA-seq experiment using Cuffdiff2, edgeR,
DESeq2 and TSPM. After Benjamini-Hochberg false dis-
covery correction, genes with adjusted p values less than
0.05 were considered as DEGs for all methods. Figure 1
presents the agreement between the four analysis
methods. 199 DEGs were identified in total. Cuffdiff2
detected more DEGs than the other methods, while
DESeq2 identified only Brd1 as a DEG. None of the
DEGs was identified by any three of these methods
(Fig. 1a). Spearman correlation coefficients between the
logarithmic (base 2) fold changes in expression (LFC),
estimated by these methods, ranged from 0.680 to 0.932
(p < 0.0001 for each correlation) (Fig. 1b-g). However,

the range of estimated fold changes varied, especially for
the genes that were expressed in only one group
(Fig. 1b-g). Cuffdiff2 assigned infinite values for the LFC
of the genes, expressed in only one group, while the
other three methods estimated values ranging from 0
to ±20 for them. The digital expression count matrix
[Additional file 1] and complete Cuffdiff2 [Additional
file 2], DESeq2 [Additional file 3] and TSPM [Additional
file 4] analyses are included as additional data files with
the online version of this paper. edgeR results will be pub-
lished elsewhere. Among 115 randomly selected genes
from the list of 199 DEGs, detected by Cuffdiff2, edgeR,
DESeq2 and TSPM, 60 were replicated in biological inde-
pendent RNA samples by qPCR, while other 55 failed rep-
lication [Additional file 5]. Table 1 presents the sensitivity,
specificity, predictive values and likelihood ratios of Cuff-
diff2, edgeR, DESeq2 and TSPM, assuming qPCR as the
reference standard. DESeq2 was the most specific (100 %),
but the least sensitive method (1.67 %). Cuffdiff2 identified
more than half (51.67 %) of the true-positive DEGs, but
contributed 87 % of the false positive DEGs. edgeR dis-
played the best sensitivity (76.67 %) and overall agreement
with a false positivity rate of 9 %. TSPM had specificity,
comparable to edgeR (90.91 %), but showed a false nega-
tivity rate of 95 %. Positive predictive values of Cuffdiff2,
DESeq2, edgeR, and TSPM were 39.24 %, 100 %, 90.20 %,
37.50 %, respectively. Combining edgeR and Cuffdiff2 ana-
lyses in parallel enhanced sensitivity to 88.72 %, but their
net specificity was only 11.57 %. Spearman correlation co-
efficients between the LFCs, estimated by qPCR, and
those estimated by edgeR, Cuffdiff2, DESeq2 and TSPM
were 0.541, 0.524, 0.453 and 0.511, respectively (p < 0.001)
[Additional file 6]. Root-mean-square deviation accuracies
of edgeR, Cuffdiff2, DESeq2 and TSPM with reference to
qPCR LFC were 1.88, 2.11, 1.18 and 2.50, respectively.

Validity of RNA pooling for DEG analyses
RNA-seq data from RNA-pools were analysed by edgeR
[Additional file 7] and the results were compared with
edgeR analyses of RNA-seq data from the corresponding
individual RNA samples. Figure 2 presents this compari-
son. Analyses detected 4175 and 2513 DEGs in 3-sample
and 8-sample pools of RNA, respectively. Differential ex-
pression of most of these genes was not corroborated by
the analyses of corresponding individual samples. Agree-
ment between the analyses of RNA-pools and of corre-
sponding individual samples was weak (Cohen’s κ < 0.05).
Table 2 presents the sensitivity, specificity and predictive
values of the two pooling strategies, assuming the edgeR
analyses of the corresponding individual samples as the ref-
erence standard. Despite having good sensitivity (93.75 %
and 90.24 %, respectively) and specificity (81.27 % and
86.59 %, respectively), both pooling strategies displayed
poor positive predictive values (0.36 % and 2.94 %,
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Fig. 1 (See legend on next page.)
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respectively), which undermined their ability to predict
true-positive DEGs. Adding eight (Spearman ρ = 0.517;
p < 0.0001), instead of three (Spearman ρ = 0.380;
p < 0.0001), biological replicates to the RNA-pool
significantly improved the correlation between the LFC,
estimated by the analyses of pooled and the corre-
sponding individual samples (Z = 17.25; p < 0.0001). We
repeated similar analyses with Cuffdiff2 [Additional
file 8], and replicated poor positive predictive values of
both pooling strategies [Additional file 9].

Discussion
Our findings revealed that false positivity rate of Cuffdiff2
and false negativity rates of DESeq2 and TSPM were high.
Contrary to previous studies that supported the validity of
RNA sample pooling for microarray based analyses of
gene expression [21, 26], we documented the pooling bias
in estimating differential gene expression, and high false
positivity rate to detect DEGs for RNA-seq experiments
employing pooling of low amount RNA samples from
brain micro-punches. Our results corroborated previous
studies, which indicated low sensitivity of DESeq [5, 27],
high false positivity of Cuffdiff [4], and high sensitivity of
edgeR [5]. False positivity and false negativity rates of
TSPM have been reported to be dependent on the

number of replicates [5, 6, 15]. This study did not evaluate
the issues concerning read alignment [7], read counting
[27], transcript assembly [8], and many novel DEG ana-
lysis methods [5, 28]. It included RNA samples, expected
to be highly variable on their gene expression profiles,
since amygdalae comprise multiple functionally distinct
nuclei [29], and micro-punching of such regions in mouse
brain is inherently imprecise.
Differences between the DEG analysis methods begin

with their normalisation procedures [9]. edgeR uses a
model, which incorporates normalisation factors as offsets
that are estimated by trimmed mean of M values for each
contig [30]. DESeq2 employs a relative log expression
method [27]. Normalisation procedures for Cuffdiff2 con-
sider total number of reads, gene length, variability within
and between the conditions, and differential isoform ex-
pression [12, 18]. TSPM can accommodate various nor-
malisation procedures, but works without normalisation
by default [15]. It assumes Poisson distribution for the
genes that are not over-dispersed. edgeR and DESeq2
model negative binomial distribution, while Cuffdiff2
follow beta negative binomial model to accommodate am-
biguously mapped reads [12]. Principal source of variabil-
ity between these methods is their dispersion estimation
procedures [27]. DESeq2 is stringent to detect outliers
and excludes genes with extreme read counts by default
[31]. It considers the maximum a posteriori dispersion es-
timates, while edgeR moderates its dispersion estimates by
their dispersion-mean relationship [32]. Cuffdiff2 includes
covariances between different isoforms [12]. TSPM differs
by its per-gene dispersion estimation without considering
the information across genes [15]. Several unique correc-
tion procedures, such as multi-read correction, bias cor-
rection and effective length correction, are incorporated
only in Cufflinks2 and Cuffdiff2 [33]. edgeR, DESeq2 and
Cuffdiff2 calculate their p values by the generalized linear
model (GLM) likelihood ratio test [32], GLM Wald test
[31] and t-test [12], respectively. TSPM employs quasi or
standard likelihood ratio tests, based on whether a gene is
over-dispersed or not. Cuffdiff is more likely to estimate
false positive statistically significant p values, when the
gene expression is detected in only one group [4].
Our results favour the use of edgeR, among the four

investigated methods, and discourage using RNA pool-
ing in future RNA-seq experiments. Pooled samples do
not represent the population variations in gene

(See figure on previous page.)
Fig. 1 Agreement between four different methods for DEG analysis of RNA-seq data. a Intersections between DEGs, which were detected by
Cuffdiff2, edgeR, DESeq2 and Two-stage Poisson Model (TSPM), after Benjamini-Hochberg false discovery correction at 5 %. b-g Pairwise
comparisons of logarithmic (base 2) fold changes (LFC) in expression that were estimated by Cuffdiff2, edgeR, DESeq2 and TSPM: b edgeR and
Cuffdiff2; c edgeR and DESeq2; d edgeR and TSPM; e Cuffdiff2 and TSPM; f Cuffdiff2 and DESeq2; g TSPM and DESeq2; Spearman correlation
coefficients (Rho) are included in each graph. RNA samples were obtained from amygdalae micro-punches of female mice, heterozygous for a
targeted deletion in the Brd1 gene on a congenic C57BL/6NTac background and of their WT littermates (8 biological replicates/group)

Table 1 Validation of four differential gene expression analysis
methods for RNA-Seq

Parametersa edgeR Cuffdiff2 TSPM DESeq2

Total number of identified DEGsb 82 136 8 1

Number for DEGs selected for
qPCR validation

51 79 8 1

Sensitivity (True positivity rate) (%) 76.67 51.67 5.00 1.67

Specificity (True negativity rate) (%) 90.91 12.73 90.91 100.00

False positivity rate (%) 9.09 87.27 9.09 0.00

False negativity rate (%) 23.33 48.33 95.00 98.33

Positive predictive value (%) 90.20 39.24 37.50 100.00

Negative predictive value (%) 78.13 19.44 46.73 48.25

Positive likelihood ratio 8.43 0.59 0.55 ∞

Negative Likelihood ratio 0.26 3.80 1.05 0.98

Overall agreement (%) 83.48 33.04 46.09 48.70
aReplication of differential expression by quantitative Polymerase Chain
Reaction (qPCR) was the reference standard
bDifferentially Expressed Genes, after Benjamini-Hochberg false discovery cor-
rection at 5 %; TSPM: Two-stage Poisson Model
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expression levels, and they cannot estimate within popu-
lation variation [21]. Within-group variances of the
pooled samples are less than true within-group variances
of the individual samples. This leads to erroneously long
DEG lists with low positive predictive values that limit
practical use. If researchers plan RNA pooling because
of saving costs or of limited starting material, stringent
false discovery corrections and high-throughput valid-
ation of as many identified DEGs as possible should be
considered. If the validation targets are chosen by
random sampling from the list of identified DEGs, false
discovery rates can be estimated cost-effectively [34]. An
increase in the number of biological replicates, added
into each pool, may help to minimise the pooling bias in
estimating differential gene expression. Increasing the num-
ber of replicates is more effective to improve the power to

detect DEGs than increasing sequencing depth above 10
million reads per sample [4, 35]. Limiting sequencing depth
to 10 million reads per sample can reduce the costs and
can help the biologists to sequence more replicates. Hetero-
geneity of biological variance among RNA samples may be
larger than the dispersion, estimated by edgeR [36], and
most contemporary RNA-seq experiments have been esti-
mated to be under-powered by their design [10]. Hence, re-
ducing the number of replicates by pooling will decrease
the power and the ability to estimate within population
variation further, and will increase pooling bias as well as
false discovery rates (FDR).
Although edgeR was the most sensitive among these four

methods, it did not detect differential expression of Brd1
that was genetically modified in these mice. Employing two
or more DEG analysis methods in parallel can enhance the

Fig. 2 Agreement between sequencing RNA-pools and sequencing corresponding individual RNA samples. a Intersection between differentially
expressed genes (DEGs), detected by edgeR, in RNA-seq data from pooled RNA (3 samples/ pool; two pools/ group) and of data from corresponding
individual samples of RNA (3 samples/group). Rectangle represents all expressed genes. b Correlation between the logarithmic (base 2) fold changes
(LFC) in expression that were estimated by sequencing RNA-pools (3 samples/ pool) and by sequencing corresponding individual samples (3 samples/
group). c Intersection between the DEGs, detected by edgeR, in RNA-seq data from pooled RNA (8 samples/ pool; two pools/ group) and of data from
corresponding individual samples of RNA (8 samples/group). Rectangle represents all expressed genes. d Correlation between the LFC in expression
that were estimated by sequencing RNA-pools (8 samples/pool) and by sequencing corresponding individual samples (8 samples/ group)
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overall sensitivity to detect true-positive DEGs [37], but
consequent rise in the FDR will further increase the need
for high-throughput validation of identified DEGs. In a
hypothetical RNA-seq experiment with 10000 expressed
genes, 100 DEGs, 5 % FDR 80 % power, minimum average
read count of 1, and maximum dispersion of 0.5, 99 repli-
cates need to be sequenced to detect a DEG with two-fold
differential expression [10]. Sample size requirement will be
more, if a DEG has low expression, less differential expres-
sion, and high dispersion. Until such large RNA-seq experi-
ments become a reality, we cannot overemphasise the need
for combined use of more sensitive DEG analysis methods
and of high-throughput validation of identified DEGs.

Conclusions
Among the four investigated methods for RNA-seq differ-
ential expression analyses using brain micropunches,
edgeR detected more true-positive DEGs with high specifi-
city. Moreover, we demonstrated limited utility of sample
pooling strategies for RNA-seq in our setup. Pooled sam-
ples identified DEGs with high false positivity rates and
low positive predictive values. On the basis of our results,
we conclude that combined use of more sensitive DEG
analysis methods and high-throughput validation of iden-
tified DEGs is desired for future RNA-seq experiments.

Methods
RNA samples
RNA samples were obtained from female mice, hetero-
zygous for a targeted deletion of exon 3–5 of the Brd1

gene (Brd1+/−) on a congenic C57BL/6NTac background,
and from their WT littermates. 8–10 weeks old Brd1+/−

(n = 8) and WT mice (n = 8) were sacrificed. Their brains
were snap frozen in 2-methylbutane and sectioned
(1 mm) coronally using a slicer matrix (Zivic Instruments,
Pittsburgh, USA) at −20 °C. Amygdalae were identified
[38] and punched by a needle (1 mm diameter). Total
RNA was extracted using Maxwell-16 system and LEV
simplyRNA Tissue Kit (Promega, Madison, USA). Quan-
tity of RNA was measured by NanoDrop 1000 version
3.7.1 (Thermo Fisher Scientific, Waltham, MA, USA) and
their quality was assessed using Agilent 2100 Bioanalyzer
(Agilent technologies, SantaClara, USA). All animal proce-
dures were approved by the Danish National Committee
for Ethics in Animal Experimentation.

RNA-seq analysis
16 individual RNA samples (264 ng RNA/sample; 8/group,
mean RNA Integrity Number (RIN) 7.53 (SD 0.31) [39]), 4
pools (2/group) that combined three individual samples
(88 ng RNA/sample; 264 ng/pool) and 4 pools (2/group)
that combined eight individual samples (33 ng RNA/sam-
ple; 264 ng/pool) were included. Each pool of the two
pools/group was prepared by pooling equal amounts of the
same three or eight RNA samples [Additional file 10].
cDNA was synthesised from all 24 RNA samples using
random hexamer primers and libraries were prepared by
TruSeq RNA sample preparation kit (Illumina, San Diego,
USA). RNA-seq (50 bp; single-end; minimum 10 million
clean reads/sample) was performed using Illumina
HiSeq2000 (Illumina, San Diego, USA).

DEG analyses
Reads that passed quality control (more than 90 % bases
had less than 1 % sequencing error; no ambiguous bases)
were aligned to the mouse genome (Mus_musculus.GRC
m.38.72) with corresponding gene model annotation
(Mus_musculus.GRCm38.72.gtf ) by TopHat 2.0.6 [16].
Overall read alignment rates were above 90 % for all li-
braries. Aligned reads were counted by HTSeq 0.5.4 with
“intersection-nonempty” overlap resolution mode [17].
DEG analyses with edgeR 3.2.4 [13, 27], Cuffdiff 2.1.1
[12, 18], DESeq2 1.0.19 [27, 31] and TSPM [15] followed
previously published protocols using default parameters
(unless stated differently). edgeR employed generalized
linear models with tag-wise dispersion. As Cuffdiff2
do not work with count matrix, Tophat2 aligned
reads were assembled into transcripts using Cufflinks
2.1.1 [18] with quartile normalisation, bias correction,
multi-read correction, and with reference gene model an-
notation (Mus_musculus.GRCm.38.72.gtf). After combin-
ing all transcripts by Cuffmerge 2.1.1 [18] with reference
gene model annotation (Mus_musculus.GRCm.38.72.gtf),
Cuffdiff2 identified DEGs with geometric library

Table 2 Validation of two pooling strategies for RNA-Seq

Parametersa Pooling 3
samples

Pooling 8
samples

Total number of identified DEGsb 4175 2513

Sensitivity (True positivity rate) (%) 93.75 90.24

Specificity (True negativity rate) (%) 81.27 86.59

False positivity rate (%) 18.73 13.41

False negativity rate (%) 6.25 9.76

Positive predictive value (%) 0.36 2.94

Negative predictive value (%) 99.99 99.95

Agreement between identified DEGsc 0.006 0.049

Correlation between reported LFCd 0.380 0.517

Root-mean-square deviation of LFCe 1.198 0.518
aSequencing corresponding individual biological samples was the reference
standard
bDifferentially Expressed Genes (DEGs), after Benjamini-Hochberg false discovery
correction at an expected rate of 5 %
cInter-rater agreement Cohen’s kappa between sequencing individual samples
(3 or 8/group) and sequencing pooled samples (3 or 8 biological replicates/pool;
2 pools/group) to identify DEGs
dSpearman correlation coefficient between the logarithmic fold changes (LFC),
which were estimated by sequencing individual samples and by sequencing
pooled samples
eStandard deviation of the differences between the LFC, estimated by
sequencing individual samples and by sequencing pooled samples
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normalisation and per-condition dispersion estimation.
Adjusted p values were calculated by Benjamini-
Hochberg false discovery correction (5 %) for all
methods. Genes with adjusted p values less than 0.05
were considered as DEGs. Codes for the analysis
methods were provided in the Additional file 11.

Validation of DEGs by qPCR
16 RNA samples were obtained by the procedures, de-
scribed above, from another batch of female Brd1+/− and
WT mice (8/group). 180 ng total RNA was reverse tran-
scribed by iScript Select cDNA Synthesis Kit (Bio-Rad,
Hercules, USA). All eight DEGs, detected by DESeq2 and
TSPM, were selected for validation. 107 more genes were
randomly selected for validation from the list of remaining
191 DEGs, detected by Cuffdiff2 and edgeR. After 10–20
cycles of specific target amplification with PreAmp master
mix (Fluidigm, San Francisco, USA), high-throughput
qPCR was performed on the BioMark HD (Fluidigm, San
Francisco, USA), using 48.48 dynamic arrays (Fluidigm,
San Francisco, USA) and SsoFast EvaGreen Low ROX kit
(Bio-Rad, Hercules, USA) [Additional files 12 & 13]. A
DEG, detected by the RNA-seq DEG analysis methods,
was considered as a true-positive DEG, if it satisfied the
following criteria, (i) Both RNA-seq and qPCR showed
same direction (upregulation or down-regulation) of dif-
ferential expression, (ii) Differential expression fold
change, estimated by qPCR, was either above 1.25 or
below 0.80 (LFC cut-off was ±0.3219) [34]. Spearman cor-
relation coefficients, root-mean-square deviations and
kappa statistics were calculated using STATA 13.1 (Stata-
Corp LP, Texas, USA).

Availability of supporting data
Digital expression count matrix of our RNA-seq data is
available as the Additional date file 1 with the online
version of this paper.

Additional files

Additional file 1: A digital expression count matrix of RNA-seq data
from amygdalae of female Brd1+/− mice (n = 8) and female wild-type
(WT) littermates (n = 8).

Additional file 2: A table presenting Cuffdiff2 analyses of RNA-seq
data from amygdalae of female Brd1+/− mice (n = 8) and female WT
littermates (n = 8).

Additional file 3: A table presenting DESeq2 analyses of RNA-seq
data from amygdalae of female Brd1+/− mice (n = 8) and female WT
littermates (n = 8).

Additional file 4: A table presenting TSPM analyses of RNA-seq
data from amygdalae of female Brd1+/− mice (n = 8) and female WT
littermates (n = 8).

Additional file 5: Presents the results of Reverse-transcription
quantitative Polymerase Chain Reaction (qPCR) validation of 115
differentially expressed genes (.xlsx file). This workbook has three
worksheets. Third worksheet presents relevant data labels.

Additional file 6: A figure, “Comparisons of logarithmic fold
changes (LFC), estimated by qPCR, with LFC, estimated by Cuffdiff2,
DESeq2, edgeR, and TSPM” (.jpeg image). (A) qPCR and Cuffdiff2; (B)
qPCR and DESeq2; (C) qPCR and edgeR; (D) qPCR and TSPM.

Additional file 7: Presents the results of edgeR analyses of RNA-seq
data from 8-sample as well as 3-sample pools of RNA and from three
corresponding individual samples (.xlsx file). This workbook has three
worksheets. First worksheet is a table presenting edgeR analyses of RNA-seq
data of 8-sample pools of RNA from amygdalae of female Brd1+/− mice
(n = 2) and female WT littermates (n = 2). Second worksheet is a table pre-
senting edgeR analyses of RNA-seq data of 3-sample pools of RNA from
amygdalae of female Brd1+/− mice (n = 2) and female WT littermates (n = 2).
Third worksheet is a table presenting edgeR analyses of RNA-seq data of
three corresponding individual RNA samples from amygdalae of female
Brd1+/− mice (n = 3) and female WT littermates (n = 3).

Additional file 8: Presents the results of Cuffdiff2 analyses of
RNA-seq data from 8-sample as well as 3-sample pools of RNA
and from three corresponding individual samples (.xlsx file). This
workbook has three worksheets. First worksheet is a table presenting
Cuffdiff2 analyses of RNA-seq data of 8-sample pools of RNA from
amygdalae of female Brd1+/− mice (n = 2) and female WT littermates
(n = 2). Second worksheet is a table presenting Cuffdiff2 analyses of
RNA-seq data of 3-sample pools of RNA from amygdalae of female
Brd1+/− mice (n = 2) and female WT littermates (n = 2). Third worksheet
is a table presenting Cuffdiff2 analyses of RNA-seq data of three
corresponding individual RNA samples from amygdalae of female
Brd1+/− mice (n = 3) and female WT littermates (n = 3).

Additional file 9: A figure, “Agreement between Cuffdiff2 analyses
of pooled RNA samples and of corresponding individual samples of
RNA”. (A & C) Intersections between the DEGs, detected by Cuffdiff2, in
RNA-seq data from pooled RNA (two pools/ group) and of data from
three (A) or eight (C) corresponding individual samples of RNA; Rectangle
represents all expressed genes: (A) Three RNA samples/pool; (C) Eight
RNA samples/pool, (B & D) Correlation between the logarithmic (base 2)
fold changes (LFC) in expression that were estimated by sequencing
RNA-pools (two pools/group) and by sequencing three (B) or eight (D)
corresponding individual samples of RNA: (B) Three RNA samples/ pool;
(D) Eight RNA samples/pool.

Additional file 10: A figure, “RNA-seq analysis of 16 individual and
8 pooled RNA samples” (.jpeg image). It presents the details of our
pooling strategy.

Additional file 11: Presents the codes and the Galaxy web tools for
DESeq2, TSPM, edgeR, and Cuffdiff2.

Additional file 12: A table presenting overview of RNA extraction,
cDNA synthesis, specific target amplification and high-throughput
qPCR procedures.

Additional file 13: A table presenting forward and reverse primer
sequences for qPCR validation of 115 differentially expressed and 7
normalising (reference) genes (.xlsx file). This workbook has two worksheets.
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