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Abstract 

Background:  Colorectal cancer (CRC) is major cancer-related death. The aim of this study was to identify differentially 
expressed and differentially methylated genes, contributing to explore the molecular mechanism of CRC.

Methods:  Firstly, the data of gene transcriptome and genome-wide DNA methylation expression were downloaded 
from the Gene Expression Omnibus database. Secondly, functional analysis of differentially expressed and differen-
tially methylated genes was performed, followed by protein-protein interaction (PPI) analysis. Thirdly, the Cancer 
Genome Atlas (TCGA) dataset and in vitro experiment was used to validate the expression of selected differentially 
expressed and differentially methylated genes. Finally, diagnosis and prognosis analysis of selected differentially 
expressed and differentially methylated genes was performed.

Results:  Up to 1958 differentially expressed (1025 up-regulated and 993 down-regulated) genes and 858 differen-
tially methylated (800 hypermethylated and 58 hypomethylated) genes were identified. Interestingly, some genes, 
such as GFRA2 and MDFI, were differentially expressed-methylated genes. Purine metabolism (involved IMPDH1), cell 
adhesion molecules and PI3K-Akt signaling pathway were significantly enriched signaling pathways. GFRA2, FOXQ1, 
CDH3, CLDN1, SCGN, BEST4, CXCL12, CA7, SHMT2, TRIP13, MDFI and IMPDH1 had a diagnostic value for CRC. In addition, 
BEST4, SHMT2 and TRIP13 were significantly associated with patients’ survival.

Conclusions:  The identified altered genes may be involved in tumorigenesis of CRC. In addition, BEST4, SHMT2 and 
TRIP13 may be considered as diagnosis and prognostic biomarkers for CRC patients.
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Background
Colorectal cancer (CRC) is major cancer-related death 
[1, 2]. Sustained cell proliferation and invasion, enhanced 
angiogenesis and metastasis, and drug resistance are the 

major characteristics of CRC [3, 4]. Various factors are 
related to the development of CRC, such as genetics, 
polyposis, chronic inflammation, inflammatory bowel 
disease, increased body mass index, little physical activ-
ity, cigarette smoking, alcohol abuse and particular die-
tary habits [5–11]. Clinically, main curative treatments 
for CRC are radiotherapy, chemotherapy and surgical 
removal of lesions. The survival outcome of CRC patients 
is worse, with a 5-year survival rate of only 14.0% [12]. 
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Therefore, it is important to understand the pathological 
mechanism of CRC.

Simons CCJM et al. found that the CpG island meth-
ylated phenotype is a major factor contributing to CRC 
carcinogenesis [13]. Furthermore, gene expression 
regulation by aberrant DNA methylation is extensively 
described for CRC. For example, abnormal methyla-
tion of septin 9 (SEPT9) is frequently reported in CRC, 
and the SEPT9 methylation test has been used in early 
screening for CRC [14–16]. In order to further investi-
gate the pathological mechanism of CRC, we performed 
both integrated analysis and DNA methylation analysis in 
the Gene Expression Omnibus database to find potential 
and valuable genes in CRC.

Methods
Datasets retrieval
We searched datasets from the GEO dataset with 
the keywords (Colorectal cancer) AND “Homo 
sapiens”[porgn:__txid9606]. All selected datasets were 
gene transcriptome and genome-wide DNA methylation 
expression data in the CRC tumor tissues and normal 
controls. Finally, a total of 3 datasets of gene transcrip-
tome data (GSE113513, GSE87211 and GSE89076) and 
2 datasets of genome-wide DNA methylation expres-
sion data (GSE101764 and GSE129364) were identified 
(Table 1). Clinical information of above datasets is shown 
in supplementary Table 1.

Identification of differentially expressed and differentially 
methylated genes
Firstly, scale standardization was carried out for the com-
mon genes in 3 datasets of gene transcriptome data. 
The metaMA and limma packages were used to identify 
differentially expressed genes [17]. P values and effect 
sizes from data were calculated either from classical 
or moderated t-tests. These p values were combined by 
the inverse normal method. Benjamini hochberg thresh-
old was used to calculate the false discovery rate (FDR). 

Finally, differentially expressed genes were obtained with 
the criterion of FDR and |Combined.effect size| ≥ 1.5. In 
addition, quantile standardization was performed for the 
common genes in 2 datasets of genome-wide DNA meth-
ylation expression data. Benjamini hochberg threshold 
was used to calculate the FDR. COHCAP package in R 
language was used to identify differentially methylated 
genes under the threshold of |Δβ| > 0.3 and FDR < 0.05.

Functional analysis of differentially expressed 
and differentially methylated genes
To understand the function of differentially expressed 
and differentially methylated genes, we conducted Gene 
Ontology (GO) and the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analysis through David 6.8 
(https://​david.​ncifc​rf.​gov/). FDR < 0.05 was considered as 
significant.

PPI network
The BioGRID database was used to retrieve the predicted 
interactions between top 50 proteins and other proteins. 
In the network, node and edge represents protein and the 
interactions, respectively.

Electronic and in vitro validation of differentially expressed 
and differentially methylated genes
The Cancer Genome Atlas (TCGA) dataset (involved 478 
patients with CRC and 41 normal controls) was used to 
validate the expression of differentially expressed and 
differentially methylated genes. The expression result of 
these genes was shown by box plots.

In vitro validation QRT-PCR was also performed. 
The inclusion criteria of CRC patients was as follows: 
(1) Patients were diagnosed with CRC according to the 
pathological examination; (2) Patients underwent radical 
resection of CRC for the first time and received no chemo-
radiotherapy before; (3) patients had complete clinical data 
including medical history of present illness, personal his-
tory, family history, detailed physical examination data and 

Table 1  Datasets of gene transcriptome data and genome-wide DNA methylation expression data in the GEO dataset

N normal controls, P patients with CRC​

GEO accession Author Platform Samples (N:P) Year Tissue

GSE113513 Jun Peng GPL15207 [PrimeView] Affymetrix Human Gene Expression Array 14:14 2018 Colon and rectal tissue

GSE87211 Yue Hu GPL13497 Agilent-026652 Whole    Human Genome Microarray 
4x44K v2 (Probe Name version)

160:203 2017 Rectal tissue

GSE89076 Kiyotoshi Satoh GPL16699 Agilent-039494 SurePrint G3 Human GE v2 8x60K Micro-
array 039381 (Feature Number version)

39:41 2017 Colon and rectal tissue

GSE101764 Hauke Busch GPL13534 Illumina HumanMethylation450 BeadChip (HumanMeth-
ylation450_15017482)

149:112 2017 Colon and rectal tissue

GSE129364 Yue Hu GPL13534 Illumina HumanMethylation450 BeadChip (HumanMeth-
ylation450_15017482)

3:69 2019 Colon and rectal tissue

https://david.ncifcrf.gov/


Page 3 of 13Wang et al. BMC Cancer          (2022) 22:138 	

postoperative pathological data. The exclusion criteria of 
CRC patients were as follows: (1) patients had other colo-
rectal tumors, carcinoid, malignant melanoma, malignant 
lymphoma and so on; (2) patients had multiple primary 
CRC, familial adenomatous polyposis and concurrent or 
previous malignancy. According to the above criteria, 5 
CRC patients were enrolled. Clinical information of these 
CRC patients was listed in Table 2. The tumor tissue and 
para-carcinoma tissue of these patients was collected. All 
participating individuals provided informed consent with 
the approval of the ethics committee of the local hospital. 
All the experimental protocol for involving humans was in 
accordance to guidelines of national/international/institu-
tional or Declaration of Helsinki.

Total RNA of the tissue and para-carcinoma tissue was 
extracted and synthesized DNA by FastQuant cDNA 
first strand synthesis kit (TIANGEN). Then real-time 
PCR was performed in the SuperReal PreMix Plus (SYBR 
Green) (TIANGEN). ACTB and GAPDH were used for 
internal reference. Relative mRNAs expression was ana-
lyzed by log2 (fold change) method.

Diagnosis and prognosis analysis of differentially 
expressed and differentially methylated genes
We performed the ROC and survival analysis to assess 
the diagnostic and prognostic value of differentially 
expressed and differentially methylated genes in the 
TCGA dataset.

Results
Differentially expressed and differentially methylated 
genes in the GEO dataset
There were 17,323 common genes in 3 datasets of gene 
transcriptome data. After scale standardization and 

differential expression analysis, a total of 1958 differen-
tially expressed genes were identified in CRC. Top 20 
differentially expressed genes were listed in Table 3. The 
heat map of top 100 differentially expressed genes was 
shown in Fig.  1. Additionally, there were 485,511 com-
mon methylation sites in 2 datasets of genome-wide 
DNA methylation expression data. After quantile stand-
ardization and differential methylation analysis, a total 

Table 2  The clinical information of CRC patients in the QRT-PCR

Number Gender Age Tumor
site

Maximum 
tumor
diameter 
(cm)

Degree of tumor 
differentiation

TNM staging Degree of intestinal
wall invasion

Lymph node
metastasis

Operation scheme

1 Male 57 Rectum 5 III, intermediate dif-
ferentiation

T3N0M0 Fat No Laparoscopic radical 
resection of rectal 
cancer

2 Male 64 Rectum 6 II, intermediate dif-
ferentiation

T3N0M0 Fat No Laparoscopic radical 
resection of rectal 
cancer

3 Female 64 Colon 4 II, intermediate dif-
ferentiation

T4N0M0 Serous coat No Laparoscopic left 
hemicolectomy

4 Male 54 Rectum 4 II, intermediate dif-
ferentiation

T3NOMO Fat No Laparoscopic radical 
resection of rectal 
cancer

5 Female 61 Rectum 2.5 II, intermediate dif-
ferentiation

T4N0M0 Serous coat No Laparoscopic radical 
resection of rectal 
cancer

Table 3  Top 20 differentially expressed genes in CRC​

ES effect size, FDR false discovery rate.

ID Symbol Combined.ES P value FDR Up/Down

94234 FOXQ1 4.176557 <0.05 <0.05 Up

144501 KRT80 4.119788 <0.05 <0.05 Up

1001 CDH3 3.932314 <0.05 <0.05 Up

9076 CLDN1 3.90363 <0.05 <0.05 Up

7472 WNT2 3.716528 <0.05 <0.05 Up

2118 ETV4 3.609427 <0.05 <0.05 Up

253152 EPHX4 3.577985 <0.05 <0.05 Up

84962 AJUBA 3.506694 <0.05 <0.05 Up

3624 INHBA 3.443254 <0.05 <0.05 Up

11082 ESM1 3.39956 <0.05 <0.05 Up

766 CA7 -3.36508 <0.05 <0.05 Down

10590 SCGN -3.33078 <0.05 <0.05 Down

443 ASPA -3.19292 <0.05 <0.05 Down

266675 BEST4 -3.12311 <0.05 <0.05 Down

1412 CRYBA2 -3.11485 <0.05 <0.05 Down

5354 PLP1 -3.06112 <0.05 <0.05 Down

114786 XKR4 -3.01472 <0.05 <0.05 Down

6387 CXCL12 -2.97671 <0.05 <0.05 Down

2675 GFRA2 -2.93584 <0.05 <0.05 Down

54738 FEV -2.88959 <0.05 <0.05 Down
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of 2661 differentially methylated sites were screened 
out in CRC. Correspondingly, there were 858 differen-
tially methylated genes (800 hypermethylated genes and 
58 hypomethylated genes) in these differentially meth-
ylated sites. The Manhattan and heat map of all differ-
ential methylated sites was shown in Fig.  2 and Fig.  3, 
respectively. Some differentially expressed genes, such as 
down-regulated GFRA2 was hypermethylated gene. Up-
regulated MDFI was hypomethylated gene.

Biological function of differentially expressed 
and differentially methylated genes
All differentially expressed genes were the most signifi-
cantly enriched in the biological process of DNA repli-
cation (Fig.  4A), cytological component of nucleoplasm 
(Fig.  4B) and molecular function of protein binding 
(Fig.  4C). In addition, cell cycle, DNA replication and 
purine metabolism (involved IMPDH1) were the most 
remarkably enriched signaling pathways of differentially 
expressed genes (Table 4).

Additionally, all differentially methylated genes were 
the most significantly enriched in the biological pro-
cess of homophilic cell adhesion via plasma membrane 
adhesion molecules (Fig.  5A), cytological component 
of plasma membrane (Fig.  5B) and molecular function 
of sequence-specific DNA binding (Fig.  5C). Neuroac-
tive ligand-receptor interaction, calcium signaling path-
way, cAMP signaling pathway, cell adhesion molecules 
(CAMs), PI3K-Akt and Rap1 were the most remarkably 

enriched KEGG signaling pathways of all differentially 
methylated genes (Fig. 5D).

PPI network
PPI networks of top 100 differentially expressed genes 
were shown in Fig.  6. The top 10 proteins with a high 
degree (interaction with other proteins) were SHMT2 
(degree = 44, up-regulation), FOXQ1 (degree = 19, up-
regulation), TRIP13 (degree = 17, up-regulation), MDFI 
(degree = 16, up-regulation), CSE1L (degree = 11, up-
regulation), DPEP1 (degree = 7, up-regulation), CPNE7 
(degree = 7, up-regulation), IMPDH1 (degree = 7, up-reg-
ulation), UBE2C (degree = 6, up-regulation) and SLC7A5 
(degree = 6, up-regulation).

Expression validation of differentially expressed 
and differentially methylated genes
The TCGA dataset was firstly used to validate the expres-
sion of GFRA2, FOXQ1, CDH3, CLDN1, SCGN, BEST4, 
CXCL12, CA7, SHMT2, TRIP13, MDFI and IMPDH1 
(Fig.  7). The expression of FOXQ1, CDH3, CLDN1, 
SHMT2, TRIP13, MDFI and IMPDH1 was up-regulated, 
while GFRA2, SCGN, BEST4, CXCL12 and CA7 were 
down-regulated in CRC. The in  vitro experiment was 
applied to further validate the expression of GFRA2, 
FOXQ1, CDH3, CLDN1, SCGN, BEST4 and CXCL12 in 
5 patients. The expression of FOXQ1, CDH3 and CLDN1 
was significantly up-regulated, while the expression of 
GFRA2, SCGN, BEST4 and CXCL12 was remarkably 

Fig. 1  The heat map of top 100 differentially expressed genes in CRC. Diagram presents the result of a two-way hierarchical clustering of top 100 
differentially expressed genes and samples. Each row and each column represents a differentially expressed gene and a sample, respectively
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down-regulated in CRC (Fig. 8). All the validation result 
was in line with the bioinformatics analysis.

Diagnosis and survival prediction of key differentially 
expressed and differentially methylated genes
Firstly, we performed ROC curve analyses to assess the 
diagnosis ability of GFRA2, FOXQ1, CDH3, CLDN1, 
SCGN, BEST4, CXCL12, CA7, SHMT2, TRIP13, MDFI 
and IMPDH1 in the TCGA dataset (Fig. 9). The AUC of 
these genes was more than 0.7, which suggested that they 
had a diagnostic value for CRC. In addition, we further 
analyzed the potential prognostic value of these genes. 
The result showed that BEST4, SHMT2 and TRIP13 
were considered to be remarkably negatively associated 
with survival (p < 0.05) time with CRC patients. The sur-
vival curves of GFRA2, FOXQ1, CDH3, CLDN1, SCGN, 
BEST4, CXCL12, CA7, SHMT2, TRIP13, MDFI and 
IMPDH1 were illustrated in Fig. 10.

Discussion
GDNF family receptor alpha 2 (GFRA2) plays an impor-
tant role in immune cells and intermediate monocytes 
in cancer [18, 19]. It is reported that ret. proto-oncogene 

(Ret) signaling through the combination of GFRA2 and 
neurturin (NRTN) is associated with the development of 
enteric nervous system [20]. Macartney-Coxson DP et al. 
found that GFRA2 was remarkably down-regulated in 
the process of CRC and possibly related to liver metasta-
sis [21]. In mice, the function inhibition of MyoD family 
inhibitor (MDFI) promotes the regeneration of the gas-
trocnemius muscle after injury [22]. In addition, MDFI 
is over expressed in CRC tumors and high expression of 
MDFI is associated with tumor metastasis [22]. In this 
study, we found that down-regulated GFRA2 and up-
regulated MDFI were differentially expressed-methylated 
genes in CRC. This indicated that gene methylaton may 
be associated with gene expression changes. Moreo-
ver, GFRA2 and MDFI had a diagnostic value for CRC 
patients. Our study further demonstrated the key roles of 
GFRA2 and MDFI in the process of CRC.

Forkhead box Q1 (FOXQ1), a transcription factor, 
activates target mRNA expression to regulate CRC 
cell migration, growth, epithelial-mesenchymal tran-
sition and chemoresistance [23, 24]. It is found that 
FOXQ1 is over expressed in tumor tissues of CRC and 
its high expression is significantly related to the stage 

Fig. 2  The Manhattan of all differential methylation sites in CRC. The x-axis represents the chromosome, the y-axis represents the -log10 (FDR) of 
differential methylation sites
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and lymph node metastasis of CRC [25]. In addition, 
knock-down of FOXQ1 gene reduces the activity of 
Wnt signaling pathway [25]. These reports suggest that 
FOXQ1 can be considered as a potential therapeutic 
target for CRC. Cadherin 3 (CDH3), involved in cell–
cell adhesion, is used to detect lymph nodes metastatic 

in patients with CRC [26, 27]. It has been demonstrated 
that hypomethylation is associated with CRC [28]. Fur-
thermore, CDH3 is more frequently demethylated in 
advanced CRC [29]. In CRC, silencing the CDH3 genes 
lead to a remarkable decrease in tumor cell viability 
and proliferation [30]. Claudin 1 (CLDN1) is associated 

Fig. 3  The heat map of all differentially methylated sites in CRC. Diagram presents the result of a two-way hierarchical clustering of all differentially 
methylated sites and samples. Each row and each column represents a differentially methylated site and a sample, respectively

Fig. 4  A Top 15 significantly enriched biological processes of differentially expressed genes. The x-axis and y-axis represents the count of 
differentially expressed genes and terms of biological process, respectively. B Top 15 significantly enriched cytological components of differentially 
expressed genes. The x-axis and y-axis represents the count of differentially expressed genes and terms of cytological component, respectively. 
C Top 15 significantly enriched molecular functions of differentially expressed genes. The x-axis and y-axis represents the count of differentially 
expressed genes and terms of molecular function, respectively
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with CRC tumor invasion, lymph node metastasis and 
tumor grade and stage [31]. High expression of CLDN1 
has been found in primary and metastatic CRC, and 
CRC cell lines [32–35]. Additionally, CLDN1 is remark-
ably hypomethylated in tumor samples of CRC [31]. 
CLDN1 targeting with the anti-CLDN1 monoclonal 
antibody reduces growth and survival of CRC cells, 
which suggest that CLDN1 can be a potential new 

therapeutic target for CRC [36]. Herein, we found that 
expression FOXQ1, CDH3 and CLDN1 were top 10 up-
regulated genes in CRC. Furthermore, FOXQ1, CDH3 
and CLDN1 had a diagnostic value for CRC patients. 
Our findings may provide new insight into the cancer 
biology of CRC.

Secretagogin, EF-hand calcium binding protein 
(SCGN) expresses in normal endocrine tissues, such as 

Table 4  The most remarkably enriched signaling pathways of differentially expressed genes

ID Term Count P value Genes FDR

hsa04110 Cell cycle 39 4.93E-09 E2F1, E2F3, CDC14A, TTK, PRKDC, PTTG2, CHEK1, CHEK2, CCNE1, CDC45, MCM7, TFDP2, BUB1, 
ORC5, ORC6, CCNA2, MYC, TFDP1, ANAPC1, CDK1, RBL1, SKP2, ESPL1, CDC20, MCM2, CDK4, 
CDC25C, MCM3, MCM4, CDK2, MCM6, CDC25B, CCNB1, CCND1, HDAC2, CCNB2, MAD2L1, 
PLK1, BUB1B

6.54E-06

hsa03030 DNA replication 19 1.10E-08 SSBP1, LIG1, POLA1, MCM2, RNASEH2A, MCM3, MCM4, RNASEH2B, MCM6, PRIM1, POLD4, 
RFC3, RFC4, MCM7, RFC2, POLD1, PRIM2, POLD2, FEN1

1.46E-05

hsa00230 Purine metabolism 40 2.78E-05 ADCY3, XDH, ADCY5, PNPT1, POLA1, POLR2D, HPRT1, PPAT, CANT1, PDE6A, PRIM1, NUDT9, 
ENTPD8, PRIM2, ENTPD5, ENTPD3, PDE8A, PRPS1L1, TWISTNB, IMPDH1, PAPSS2, NUDT16, 
ADSSL1, POLR1E, POLR1D, PDE3A, POLR1B, AMPD2, GMPS, GART, AMPD1, POLD4, PDE7B, 
ADCY9, ADK, POLD1, POLD2, PDE5A, PGM1, PAICS

0.036956

Fig. 5  A Top 10 significantly enriched biological processes of differentially methylated genes. The x-axis and y-axis represents the count of 
differentially methylated genes and terms of biological process, respectively. B Top 10 significantly enriched cytological components of differentially 
methylated genes. The x-axis and y-axis represents the count of differentially methylated genes and terms of cytological component, respectively. 
C Top 10 significantly enriched molecular functions of differentially methylated genes. The x-axis and y-axis represents the count of differentially 
methylated genes and terms of molecular function, respectively. D Top 6 significantly enriched KEGG signaling pathways of differentially 
methylated genes. The x-axis and y-axis represents the count of differentially methylated genes and KEGG terms, respectively. The KEGG source has 
been obtained the permission from the Kanehisa laboratories (www.​kegg.​jp/​feedb​ack/​copyr​ight.​html)

http://www.kegg.jp/feedback/copyright.html
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neuroendocrine cells of gastrointestinal tract [37]. In 
mice, Scgn gene deficient leads to colitis, which highlights 
the role of Scgn in intestinal immune homeostasis [38]. 
The expression of bestrophin 4 (BEST4) is decreased in 
colon tumor, colon adenocarcinoma and rectal adenocar-
cinoma and CRC [39–42]. In addition, BEST4 expression 

is remarkably negatively related to the survival prob-
ability of patients with CRC after surgery [42]. C-X-C 
motif chemokine ligand 12 (CXCL12) plays impor-
tant roles in the immune system. CXCL12 is associated 
with promotes CRC tumor cell growth, liver migration, 
survival rate and recurrence rate [43, 44]. It is reported 

Fig. 6  PPI networks. The red and green colors represent up-regulated and down-regulated genes, respectively. Circular with black border represent 
top 10 up-regulated and down-regulated genes, respectively
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that the CXCL12 gene polymorphism could contribute 
to CRC by mediating tumor angiogenesis, progression, 
metastasis and leukocyte migration [45]. It is assumed 
that the CXCL12-G801A polymorphism can be used to 

indicate and detect stage T2 CRC [46]. In addition, acti-
vation of the CXCL12/C-X-C motif chemokine receptor 
4 (CXCR4) axis renders CRC cell less sensitive to radio-
therapy [47]. Carbonic anhydrase 7 (CA7) is expressed in 

Fig. 7  Expression box plots of GFRA2, FOXQ1, CDH3, CLDN1, SCGN, BEST4, CXCL12, CA7, SHMT2, TRIP13, MDFI and IMPDH1 in the TCGA dataset

Fig. 8  The in vitro QRT-PCR validation of GFRA2, FOXQ1, CDH3, CLDN1, SCGN, BEST4 and CXCL12 in CRC. Log2 (fold change) > 1 and log2 (fold 
change) < 1 represents up-regulation and down-regulation, respectively. *p < 0.05; **p < 0.01; ***p < 0.001
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various normal tissues including colon [48]. Decreased 
expression of CA7 has been found in rectal cancer, rectal 
adenocarcinoma and CRC [49–51]. It is worth mention-
ing that CRC patients with lower CA7 expression had a 
remarkable shorter disease-specific survival in early stage 
tumors [51]. In the present study, we found that SCGN, 
BEST4, CXCL12 and CA7 were top 10 down-regulated 
genes in CRC. Both of them had a diagnostic value for 
patients with CRC. Interestingly, BEST4 was significantly 
related to survival time of CRC patients. Our result indi-
cated that SCGN, BEST4, CXCL12 and CA7 could be 
involved in the development of CRC.

According to the PPI analysis, we found several high 
degree proteins encoded by differentially expressed 
genes, such as serine hydroxymethyltransferase 2 
(SHMT2) and thyroid hormone receptor interactor 13 
(TRIP13). SHMT2, a key regulator in the serine/glycine 
metabolism pathway, is involved in cancer prolifera-
tion [52, 53]. It is revealed that SHMT2 is up-regulated 

in colon cancer [54]. It is noted that SHMT2 is associ-
ated with the occurrence and development of CRC [55]. 
Moreover, SHMT2 regulation by acetylation plays a cru-
cial role in colorectal carcinogenesis [56]. TRIP13 pro-
motes CRC cell growth, proliferation, invasion, migration 
and subcutaneous tumor formation [57]. It is found that 
high expression of TRIP13 is related to poor prognosis in 
CRC [57]. Additionally, TRIP13 is involved in colorectal 
adenoma-to-carcinoma progression [58]. In our study, 
the expression of SHMT2 and TRIP13 was increased 
in CRC. Significantly, both SHMT2 and TRIP13 had a 
remarkable diagnostic and prognostic value for CRC.

In addition, we found some significantly enriched 
signaling pathways of identified genes, including 
purine metabolism (involved up-regulated inosine 
monophosphate dehydrogenase 1, IMPDH1), cell 
adhesion molecules and PI3K-Akt signaling pathway. 
Spurr IB et  al. found that the targeting of de novo 
purine metabolism was a viable strategy to block 

Fig. 9  The ROC curves of GFRA2, FOXQ1, CDH3, CLDN1, SCGN, BEST4, CXCL12, CA7, SHMT2, TRIP13, MDFI and IMPDH1 between CRC and normal 
controls. The ROC curves were used to show the diagnostic ability of these genes with 1-specificity and sensitivity
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tumor growth in dividing cancer cells [59]. It has been 
demonstrated that purine metabolism is associated 
with the tumorigenesis of CRC [60]. The over expres-
sion of IMPDH1 has been found in CRC [61]. Some 
cell adhesion molecules such as selectins and immu-
noglobulin superfamily proteins play necessary roles in 
the CRC metastasis [62]. Ngan CY and Zlobec I et al. 
found that some cell adhesion molecules including 
E-cadherin and CD44v6 were lost at the invasive front 
of CRC [63, 64]. The PI3K/Akt signaling pathway plays 
an important role in CRC and inhibition of the path-
way is a potential therapeutic strategy of CRC [65, 66].

Conclusions
In summary, we have obtained numerous differentially 
expressed and differentially methylated genes in CRC. 
Among which, GFRA2 and MDFI, were differentially 
expressed-methylated genes. It is suggested that DNA 
methylation may affect the expression changes of gene. 
Interestingly, GFRA2, FOXQ1, CDH3, CLDN1, SCGN, 

BEST4, CXCL12, CA7, SHMT2, TRIP13, MDFI and 
IMPDH1 were considered as the potential diagnostic 
biomarkers for CRC. In addition, BEST4, SHMT2 and 
TRIP13 could be used for prognostic detection molecule 
in CRC patients. However, there are limitations to our 
study. Firstly, the larger numbers of samples are further 
needed; Secondly, pyrosequencing and the QRT-PCR of 
gene methylation are further needed to respectively vali-
date the methylation status and investigate the expression 
changes of methylated genes. Thirdly, the deeper mecha-
nism study of the CRC is also explored.
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