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SUMMARY

Effective countermeasures against the recent emer-
gence and rapid expansion of the 2019 novel corona-
virus (SARS-CoV-2) require the development of data
and tools to understand and monitor its spread and
immune responses to it. However, little information
is available about the targets of immune responses
to SARS-CoV-2. We used the Immune Epitope Data-
base and Analysis Resource (IEDB) to catalog
available data related to other coronaviruses. This
includes SARS-CoV, which has high sequence simi-
larity to SARS-CoV-2 and is the best-characterized
coronavirus in terms of epitope responses. We iden-
tified multiple specific regions in SARS-CoV-2 that
have high homology to the SARS-CoV virus. Parallel
bioinformatic predictions identified a priori potential
B and T cell epitopes for SARS-CoV-2. The indepen-
dent identification of the same regions using two
approaches reflects the high probability that these
regions are promising targets for immune recognition
of SARS-CoV-2. These predictions can facilitate
effective vaccine design against this virus of high
priority.

INTRODUCTION

On December 31, 2019, the Chinese Center for Disease Control

(China CDC) reported a cluster of severe pneumonia cases of un-

known etiology in the city of Wuhan in the Hubei province of

China. Shortly thereafter, public health professionals identified

the likely causative agent to be a novel Betacoronavirus

(SARS-CoV-2). The current outbreak, COVID-19, has 81,109

confirmed cases worldwide with 2,718 deaths, as of February

26, 2020, according to the World Health Organization (WHO) in

collaboration with the China CDC and public health centers in

other countries. Although the majority of cases have occurred

in China, a small number have been confirmed in 24 other coun-

tries, including Japan, Thailand, South Korea, Singapore, Viet-
Cell H
nam, India, the United States, Canada, Germany, France, Italy,

and the United Arab Emirates. These numbers are changing

rapidly. For up-to-date information about COVID-19, see the

WHO website at https://www.who.int/emergencies/diseases/

novel-coronavirus-2019.

The Immune Epitope Database and Analysis Resource (IEDB)

is a repository of epitope-related information curated from the

scientific literature in the context of infectious disease, allergy,

and autoimmunity (Vita et al., 2019). The IEDB also provides bio-

informatic tools and algorithms that allow for the analysis of

epitope data and prediction of potential epitopes from novel se-

quences. The Virus Pathogen Resource (ViPR) is a complemen-

tary repository of information about human pathogenic viruses

that integrates genome, gene, and protein sequence information

with data about immune epitopes, protein structures, and host

responses to virus infections (Pickett et al., 2012).

Limited information is currently available on which parts of the

SARS-CoV-2 sequence are recognized by human immune re-

sponses. Such knowledge is of immediate relevance and would

assist vaccine design and facilitate the evaluation of vaccine

candidate immunogenicity, as well as monitoring of the potential

consequences of mutational events and epitope escape as the

virus is transmitted through human populations.

Although no epitope data are yet available for SARS-CoV-2,

there is a significant body of information about epitopes for co-

ronaviruses in general, and in particular for Betacoronaviruses

like SARS-CoV and MERS-CoV, which cause respiratory dis-

ease in humans (de Wit et al., 2016; Song et al., 2019). Here,

we used the IEDB and ViPR resources to compile known epitope

sites from other coronaviruses, map corresponding regions in

the SARS-CoV-2 sequences, and predict likely epitopes. We

also used validated bioinformatic tools to predict B and T cell

epitopes that are likely to be recognized in humans and to assess

the conservation of these epitopes across different coronavirus

species.

RESULTS

A Wealth of Data Related to Coronaviruses Is Available
in the IEDB
Coronaviruses belong to the family Coronaviradae, order Nido-

virales, and can be further subdivided into four main genera
ost & Microbe 27, 671–680, April 8, 2020 ª 2020 Elsevier Inc. 671
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Figure 1. Comparison of SARS-CoV-2 (Wuhan-Hu-1) Genome Structure with Its Closest Bat Relative (bat-SL-CoVZXC21), Tor2 SARS-CoV,
and HCoV-EMC MERS-CoV

Above: Coding sequence (CDS) regions corresponding to homologous proteins between the four viruses are filledwith the same color in the genome schematic to

indicate homology; regions with no homology to the predicted SARS-CoV-2 proteins are colored white. Below: Table of pairwise protein similarities (expressed as

% identity) between SARS-CoV-2 and the other three viruses.
(Alpha-, Beta-, Gamma-, and Deltacoronaviruses). Several

Alpha- and Betacoronaviruses cause mild respiratory infections

and common cold symptoms in humans, whereas others are

zoonotic and infect birds, pigs, bats, and other animals. In addi-

tion to SARS-CoV-2, two other coronaviruses, SARS-CoV and

MERS-CoV, caused large disease outbreaks that had high

(10%–30%) lethality rates and widespread societal impact

upon emergence (Figure 1) (deWit et al., 2016; Song et al., 2019).

The immune response to SARS-CoV-2 in humans awaits

characterization, but human immune responses against other

coronaviruses have been investigated. As of January 27,

2020, the IEDB has curated 581 linear, and 81 as discontin-

uous, B cell epitopes that have been reported in the peer-

reviewed literature. In addition, 320 peptides have been re-

ported as T cell epitopes (Table 1). The vast majority of these

epitopes are derived from Betacoronavirues, and more specif-

ically from SARS-CoV, which alone accounts for over 60% of

them. In terms of the host in which the various B and T cell epi-

topes were recognized (Table 2), most epitopes (either B or T)

were defined in humans or murine systems. Notably, all but 2 of
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the 417 B and T cell epitopes described in humans are from

Betacoronaviruses, with 398 of them coming from SARS-CoV.

SARS-CoV-2 Similarity to Other Betacoronaviruses
Comparison of a consensus SARS-CoV-2 protein sequence to

sequences for SARS-CoV, MERS-CoV and bat-SL-CoVZXC21

revealed a high degree of similarity (expressed as% identity) be-

tween SARS-CoV-2, bat-SL-CoVZXC21, and SARS-CoV, but a

more limited similarity with MERS-CoV (Figure 1). This is in

agreement with a recent paper published on February 7, 2020

that shows the highest similarity between SARS-CoV-2 and

SARS or SARS-like CoVs (Wu et al., 2020). Further, SARS-Cov

is the closest related virus to SARS-CoV-2 for which a significant

number of epitopes have been defined in humans (and other

species) and that also causes human disease with lethal out-

comes. Accordingly, in the following analyses, we focused on

comparing known SARS-CoV epitope sequences to the SARS-

CoV-2 sequence.

We first assessed the distribution of SARS-CoV-derived epi-

topes as a function of the protein of origin (Table 3). In the context



Table 1. IEDB Inventory of Coronavirus B and T Cell Epitopes

Epitope set Type Coronavirus Total

Alpha Beta Gamma

SARS-CoV MERS-CoV Other

B cell Conformational 18 27 23 2 11 81

Linear 81 405 5 60 30 581

T cell 61 164 25 54 16 320
of B cell responses, most of the 12 antigens in the SARS-CoV

proteome are associated with epitopes, with the greatest num-

ber derived from spike glycoprotein, nucleoprotein, and mem-

brane protein (Table 3). The paucity of B cell epitopes associated

with the other proteins is likely because, on average, B cell

epitope screening studies to date have probed regions consti-

tuting less than 20% of each respective sequence, including

<1% of the Orf 1ab polyprotein. By comparison, the complete

span of the spike glycoprotein, nucleoprotein, and membrane

protein sequences have been probed at least to some extent

in B cell assays.

A similar situation was observed in the case of T cell epitopes.

Here, we only considered epitopes whose recognition is

restricted by human leukocyte antigen (HLA) major histocompat-

ibility complex (MHC), because MHC polymorphism typically re-

sults in different epitopes being recognized in humans and mice.

Defining Immunodominant Regions within the SARS-
CoV Genome
B cell epitopes derived from SARS-CoV were mapped back to a

SARS-CoV reference sequence using the IEDB’s Immuno-

browser tool (Dhanda et al., 2018). This tool combines all records

available along a reference sequence and produces a response

factor (RF) score that accounts for the positivity rate (how

frequently a residue was found in a positive epitope) and the

number of records (howmany independent assays are reported).

Dominant regions were identified considering residues stretches

where the RF score was R0.3.

Analyses of the spike glycoprotein, membrane protein, and

nucleoproteins are shown in Figure 2. In the case of the spike

glycoprotein (Figure 2A), we identify five regions of potential in-

terest (residues 274–306, 510–586, 587–628, 784–803, and
Table 2. IEDB Inventory of Coronavirus B and T Cell Epitopes

Epitope set Host Coronavirusb

Alpha Beta

SARS-CoV

B cella Humans 0 306

Mice 62 154

Other 42 142

Tg mice 0 0

T cell Humans 2 92

Mice 16 99

Other 46 1

Tg mice 0 29
aB cell includes both conformational and linear epitipes.
bTotals between Tables 1 and 2 may not be equal as several epitopes are r
870–893), all representing regions associated with high immune

response rates. Three of these immunodominant regions are

located in the S1 subunit in the CTD2 and CTD3 (C-terminal

domain), whereas the other two are in the HR1 domain of the

S2 subunit.

Next, we aligned the SARS-CoV B cell epitope region se-

quences to the SARS-CoV-2 sequence to calculate the percent-

age identity between each of the SARS-CoV-dominant regions

and SARS-CoV-2 (Table 4). Of the 10 regions identified, 6 had

90% or more identity with SARS-CoV-2, 2 were between

80%–89% identical, and 2 had lower but still appreciable homol-

ogy (69% and 78%).

In a similar analysis, T cell epitopes were also found to be pre-

dominantly associated with spike glycoprotein and nucleopro-

tein (Table 3). Table 5 shows a listing of the most dominant

SARS-CoV individual epitopes identified to date in humans.

We also aligned the SARS-CoV T cell epitope sequences and

calculated for each epitope the percentage identity to SARS-

CoV-2. For each T cell epitope, Table 5 shows the antigen of

origin, the epitope sequence, the homologous SARS-CoV-2

sequence, and the corresponding percentage of sequence

identity. Overall, the nucleocapsid phosphoprotein and mem-

brane-derived epitopes were most conserved (8/10 and 2/3,

respectively, hadR 85% identity with SARS-CoV-2). The Orf1ab

and surface glycoprotein epitopes were moderately conserved

(3/7 and 10/23, respectively, had R85% identity with SARS-

CoV-2), and Orf 3a epitopes were the least conserved.

Prediction of SARS-CoV-2 B Cell Epitopes
To define potential B cell epitopes by an alternative method, we

used the predictive tools provided with the IEDB. B cell epitope

predictions were carried out using the SARS-CoV-2 surface
Total

Gamma

MERS-CoV Other

16 0 0 322

9 58 20 303

5 6 23 218

0 0 0 0

0 1 0 95

25 53 1 194

0 0 15 62

0 0 0 29

ecognized in multiple species.
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Table 3. IEDB Inventory of Coronavirus B and T Cell Epitopes

SARS-CoV Proteins B Cell T Cell

Spike glycoprotein 279 48

Nucleoprotein 113 33

Membrane protein 20 4

Replicase polyprotein 1ab 8 9

Protein 3a 2 7

Envelope small membrane protein 2 0

Non-structural protein 3b 2 0

Protein 7a 2 0

Protein 9b 2 0

Non-structural protein 6 1 0

Protein non-structural 8a 1 0

T cell epitope total includes epitopes recognized in humans and/or trans-

genic mice.
glycoprotein, nucleocapsid phosphoprotein, and membrane

glycoprotein sequences, which, as described above, were found

to be the main protein targets for B cell responses to other coro-

naviruses. In parallel, we performed predictions for linear B cell

epitopes with Bepipred 2.0 (Jespersen et al., 2017) and for

conformational epitopes with Discotope 2.0 (Kringelum et al.,

2012). Both prediction algorithms are available on the IEDB

B cell prediction tool page (http://tools.iedb.org/main/bcell/). A

full list of B cell epitope prediction results per amino acid position

per protein is provided in Table S1.

Using Bepipred 2.0 and a cutoff of R0.55 (corresponding to

a specificity cutoff of 80%) (Jespersen et al., 2017), the sur-

face glycoprotein had the highest number of predicted

B cell epitopes, followed by membrane glycoprotein and

nucleocapsid phosphoprotein (Table S2). To predict and

map conformational B cell epitopes, we used the recently

submitted SARS-CoV-2 spike glycoprotein structure (PDB:

6VSB). A list of surface glycoprotein amino acid positions hav-

ing a high probability of being included in predicted B cell epi-

topes, based on analysis with the Discotope 2.0 algorithm, is

shown in Table S1 (cutoff of R�2.5, corresponding to 80%

specificity). We then localized the relevant amino acid posi-

tions onto the model structure, which allowed the identifica-

tion of seven predicted epitope residue/regions (491–505,

558–562, 703–704, 793–794, 810, 914, and 1140–1146) in

the surface glycoprotein (Figure 3).

Prediction of SARS-CoV-2 T Cell Epitopes
To predict CD4 T cell epitopes, we used the method described

by Paul and co-authors (Paul et al., 2015a), as implemented in

the Tepitool resource in IEDB (Paul et al., 2016). This approach

was designed and validated to predict dominant epitopes inde-

pendently of ethnicity and HLA polymorphism, taking advantage

of the extensive cross-reactivity and repertoire overlap between

different HLA class II loci and allelic variants. Here, we selected

peptides that have a median consensus percentile %20, a

threshold associated with epitope panels responsible for about

50% of target-specific responses. Using this threshold, we

identified 241 candidates in the SARS-CoV-2 sequence (see

Table S3).
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In previous experiments, we showed that pools based on

similar peptide numbers can be generated by sequential lyoph-

ilization (Carrasco Pro et al., 2015). These peptide pools (or

megapools) incorporate predicted or experimentally validated

epitopes and allow measurement of magnitude and character-

ization of the phenotype of human T cell responses in infectious

disease indications such as Bordetella pertussis, Mycobacteria

tuberculosis, Dengue, and Zika viruses (Carrasco Pro et al.,

2015; da Silva Antunes et al., 2018; Grifoni et al., 2017, 2018).

The SARS-CoV-2 CD4 megapool covers all 10 predicted pro-

teins, with the number of potential epitopes proportional to the

size of each protein (Table S4).

In parallel, we also sought to define likely CD8 epitopes. Here,

a different approach was required because the overlap between

different HLA class I allelic variants and loci is more limited to

specific groups of alleles, or supertypes (Sidney et al., 2008).

Following a previously validated approach (Weiskopf et al.,

2013), we assembled a set of the 12 most prominent HLA class

I alleles that have been shown to allow broad coverage of the

general population, as described in the STAR Methods (see

also Table S5). We then performed HLA class I binding predic-

tions using the Net MHC pan 4.0 EL algorithm (Jurtz et al.,

2017) available at the IEDB. For each allele, we selected the

top 1% scoring peptides in the SARS-CoV-2 sequence, as

ranked based on prediction. After eliminating redundancies

and nested peptides, we obtained a final ‘‘in silico’’ megapool

of 628 unique predicted epitopes. Table S6 lists those unique

predicted epitopes per protein, indicating for each their respec-

tive HLA restriction(s).

Correspondence between the Epitopes Identified by the
Two Different Approaches
The epitopes identified by homology to the experimentally

defined SARS-CoV epitopes shown in Tables 4 and 5 were

next compared with the epitopes identified by epitope predic-

tions shown in Tables S2, S3, and S6. The epitopes indepen-

dently identified in both approaches are presumed to be the

most valuable leads.

We first compared B cell immunodominant regions identi-

fied in SARS-CoV and mapped to the homologous SARS-

CoV-2 proteins (Table 4), with the predicted linear (Table S2)

and conformational (Table S1) B cell epitopes. Out of the

five B cell immunodominant regions from the SARS spike

glycoprotein that were mapped to SARS-CoV-2, three regions

overlapped with those identified by BebiPred 2.0, and two

overlapped with regions predicted by Discotope 2.0 (Figure 3;

Table S1). No overlap was observed for the five regions of

SARS-CoV membrane protein and nucleoprotein that mapped

to SARS-CoV-2 and those predicted by BebiPred 2.0. As

stated above, no Discotope 2.0 prediction was available for

those two proteins.

The prediction analysis performed with Discotope 2.0 based

on the SARS-CoV-2 spike glycoprotein PDB structure indepen-

dently confirms two of the likely epitope regions defined on the

basis of SARS-CoV data. Specifically, one dominant epitope

corresponds to the 524–598 epitope from Table 5, which over-

laps with the 558–562 predicted epitope, and the 802–819 region

is also predicted (cf., the predicted 810 residue is in themiddle of

this region). Finally, the 888–909 region is narrowly missed,

http://tools.iedb.org/main/bcell/
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Figure 2. B Cell Immunodominant Regions Based on SARS-Specific Epitope Mapping

RF score for each amino acid position was calculated (see STAR Methods) and plotted over the SARS-CoV consensus sequence of spike glycoprotein (A),

membrane protein (B), and nucleoprotein (C).
because residue 914, which is predicted, is right outside of the

epitope.

When we compared the SARS-CoV T cell epitopes that map-

ped to SARS-CoV-2 (Table 5) with the predicted CD4 and CD8

T cell epitopes (Tables S3 and S6, respectively), we found that

12 of 17 SARS-CoV-2 T cell epitopes with high sequence identity

(R90%) to the SARS-CoV were independently identified by the

two methods. Another 7 of 16 epitopes with moderate sequence

identity (70%–89%), and 6 of 12 epitopes with low sequence

identity (<70%) were also identified by both methods. The lack

of absolute correspondence is not surprising, given that the

experimental data are derived from a skewed set of HLA restric-

tions (largely HLA A*02:01) and that our HLA class I prediction
strategy targeted a more limited set of alleles selected to repre-

sent the most frequent worldwide variants; at the same time, the

class II predictions are expected to cover 50% of the class II re-

sponses (Paul et al., 2015b).

DISCUSSION

The present study identifies likely targets of the human immune

response to SARS-CoV-2, encompassing both the B and T cell

arms of the adaptive immune response. This is of relevance in

the face of the ever growing medical and societal urgency sur-

rounding COVID-19, especially given the current scarcity of

experimental data regarding any corresponding immune
Cell Host & Microbe 27, 671–680, April 8, 2020 675



Table 4. Dominant SARS-CoV B Cell Epitope Regions

SARS-CoV SARS-CoV-2

Sequence Max RF Sequence Proteina Mapped Start–End Identity (%)

DAVDCSQNPLAELKCSVKSFEIDK

GIYQTSNF

0.504 DAVDCALDPLSETKCTLKS

FTVEKGIYQTSN

S 287–317 69

VCGPKLSTDLIKNQCVNFNFNGL

TGTGVLTPSSKRFQPFQQFGRD

VSDFTDSVRDPKTSEILDISPCSF

GGVSVIT

0.745 VCGPKKSTNLVKNKCVNFNFN

GLTGTGVLTESNKKFLPFQQF

GRDIADTTDAVRDPQTLEILDI

TPCSFGGVSVI

S 524–598 80

GTNASSEVAVLYQDVNCTDVSTA

IHADQLTPAWRIYSTGNN

0.709 GTNTSNQVAVLYQDVNCTEVPVA

IHADQLTPTWRVYSTGS

S 601–640 78

FSQILPDPLKPTKRSFIED 0.365 FSQILPDPSKPSKRSFIE S 802–819 89

FGAGAALQIPFAMQMAYRFNGIG 0.367 FGAGAALQIPFAMQMAYRFNGI S 888–909 100

MADNGTITVEELKQLLEQWNLVIG 0.460 MADSNGTITVEELKKLLEQWNLVI M 1–24 92

PLMESELVIGAVIIRGHLRMA 0.457 PLLESELVIGAVILRGHLRI M 132–151 90

PQGLPNNTASWFTALTQHGKEE 0.537 RPQGLPNNTASWFTALTQHGK N 42–62 95

NNAATVLQLPQGTTLPKGFYA 0.543 NNNAATVLQLPQGTTLPKGF N 153–172 95

KHIDAYKTFPPTEPKKDKKKKTDEAQ

PLPQRQKKQPTVTLLPAADMDD

0.82 NKHIDAYKTFPPTEPKKDKKKKTD

EAQPLPQRQKKQPTVTLLPAADM

N 355–401 90

S, surface glycoprotein; M, membrane protein; N, nucleocapsid phosphoprotein
response. The approach we followed is based on establishing

several lines of evidence that clearly pinpoint SARS-CoV as a

relevant model to extrapolate likely targets of responses to

SARS-CoV-2, the virus associated with COVID-19.

The first line of evidence pertains to the fact that of coronavi-

ruses known to infect humans, SARS-CoV is the most similar

in phylogenetic terms to SARS-CoV-2. The second line of evi-

dence is that SARS-CoV-2 is the most (and highly) similar to

SARS-CoV at the level of sequence identity. Third, when we crit-

ically reviewed the knowledge related to the precise epitopes

recognized by adaptive responses in the context of coronavi-

ruses in aggregate, it was apparent that all but 2 of the 417

B and T cell epitopes described in humans to date are from

Betacoronaviruses, with 398 of them coming from SARS-CoV.

Our analysis showed that certain SARS-CoV regions were

dominant for B cell responses and that those regions were well

conserved in terms of sequence with SARS-CoV-2. Five regions

contain epitopes recognized by neutralizing antibodies in SARS

convalescent sera (Guo et al., 2004; Shichijo et al., 2004). Among

those, of particular interest is the 587–628 region nesting the

604�625 peptide, which was identified in a SARS convalescent

patient and found to have the capacity to elicit antibodies that

efficiently prevent infection in non-human primates (Hu et al.,

2005; Wang et al., 2016).

Two regions were identified from membrane protein (1–25

and 131–152) (Figure 2B), and three regions were identified

for nucleoprotein (43–65, 154–175, and 356–404) (Figure 2C).

The two regions in the membrane protein have been shown

to elicit marked IgM and IgG responses and a broad spectrum

of recognition, highlighting them as potential diagnostic candi-

dates (Chow et al., 2006; Wang et al., 2003). Of the three re-

gions identified in the nucleoprotein, 156–175 has shown

strong reactivity against SARS patient sera and immunogenicity

in multiple species, including mice, monkeys, and humans (Liu

et al., 2006).
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Because of the overall high level of sequence similarity of

SARS-CoV and SARS-CoV-2, we infer that the regions dominant

in SARS-CoV have a high likelihood to also be dominant in

SARS-CoV-2, even if the actual sequences are different. This

hypothesis is in agreement with the recent cryoelectron micro-

scopy (cryoEM) structure of the spike glycoprotein of SARS-

CoV-2, showing a high resemblance in the overall structure

with the SARS-CoV spike protein (Wrapp et al., 2020). In the

same study, however, the authors do not observe cross-recog-

nition of SARS-CoV monoclonal antibodies with the SARS-

CoV-2. Indeed, they observed no reactivity with SARS-CoV

antibodies that recognize the SARS-CoV-2 spike receptor bind-

ing domain (RBD), despite the fact that SARS-CoV-2 retains the

same capability to bind the ACE2 receptor of SARS-CoV (Wrapp

et al., 2020). This suggests that the B cell prediction performed

on the RBD domain will require further studies.

We also analyzed the SARS-CoV T cell epitopes. In these

cases, epitopic regions and individual epitopes were more

widely dispersed throughout the respective proteins, which

made the identification of discrete, dominant epitopic regions

more difficult. This outcome is not unexpected given that

T cells recognize short peptides generated from cellular pro-

cessing of viral antigens that can be derived from any segment

of the protein.

It is generally expected that CD8 T cell epitopes will be derived

fromboth structural and nonstructural proteins (Tian et al., 2019),

because both types of proteins are endogenously processed by

infected cells. In the case of class II epitopes, structural proteins

would be of particular interest, as they are most likely to provide

help by cognate interaction (Sette et al., 2008). When examining

the homologous regions of SARS-CoV, it has been found that the

likely T cell epitopes are positive in assays such as ELISPOT,

intra-cellular staining (ICS), and multimer/tetramer staining

(see, e.g., Cheung et al., 2007, 2008; Kohyama et al., 2009;

Tsao et al., 2006; Yang et al., 2009).



Table 5. Dominant SARS-CoV T Cell Epitopes

SARS SARS-CoV-2

Sequence RF Score HLA Restrictiona Sequence Protein Mapped Start–End Identity (%)

VRGWVFGSTMNNKSQSVI 0.15 DRB1*04:01 IRGWIFGTTLDSKTQSLL S 101–118 50

CTFEYISDAFSLD 0.21 DRB1*04:01 CTFEYVSQPFLMD S 166–178 62

DAFSLDVSEKSGN 0.62 DRB1*04:01 QPFLMDLEGKQGN S 173–185 38

TNFRAILTAFSPAQDIW 0.32 DRB1*04:01 TRFQTLLALHRSYLTPGD

SSSGW

S 236–258 17

KSFEIDKGIYQTSNFRVV 0.40 DRB1*04:01,

DRB1*07:01

KSFTVEKGIYQTSNFRVQ S 304–321 78

STFFSTFKCYGVSATKL 0.50 DRB1*07:01, DR8 SASFSTFKCYGVSPTKL S 371–387 82

KLPDDFMGCV 0.55 A*02:01 KLPDDFTGCV S 424–433 90

NIDATSTGNYNYKYRYLR 0.29 Class II NLDSKVGGNYNYLYRLFR S 440–457 56

YLRHGKLRPFERDISNVP 0.16 DRB1*04:01 YLYRLFRKSNLKPFERDI S 451–468 58

RPFERDISNVPFS 0.36 DRB1*04:01 KPFERDISTEIYQ S 462–474 54

KSIVAYTMSLGADSSIAY 0.15 DRB1*04:01,

DRB1*07:01

QSIIAYTMSLGAENSVAY S 690–707 72

SIVAYTMSL 0.29 A*02:01 SIIAYTMSL S 691–699 89

TECANLLLQYGSFCTQL 0.50 DR8 TECSNLLLQYGSFCTQL S 747–763 94

VKQMYKTPTLKYFGGFNF 0.20 DRB1*04:01 VKQIYKTPPIKDFGGFNF S 785–802 78

ESLTTTSTALGKLQDVV 0.42 DRB1*04:01 DSLSSTASALGKLQDVV S 936–952 71

ALNTLVKQL 0.29 A*02:01 ALNTLVKQL S 958–966 100

VLNDILSRL 0.29 A*02:01 VLNDILSRL S 976–984 100

LITGRLQSL 0.42 A*02:01 LITGRLQSL S 996–1004 100

QLIRAAEIRASANLAATK 0.20 DRB1*04:01 QLIRAAEIRASANLAATK S 1011–1028 100

SWFITQRNFFSPQII 0.60 DRB1*04:01 HWFVTQRNFYEPQII S 1101–1115 73

RLNEVAKNL 0.42 A*02:01 RLNEVAKNL S 1185–1193 100

NLNESLIDL 0.29 A*02:01 NLNESLIDL S 1192–1200 100

FIAGLIAIV 0.80 A*02:01 FIAGLIAIV S 1220–1228 100

RFFTLGSITAQPVKI 0.18 B*58:01 RIFTIGTVTLKQGEI Orf 3a 6–20 40

SITAQPVKI 0.29 B*58:01 TVTLKQGEI Orf 3a 12–20 22

TLACFVLAAV 0.59 A*02:01 TLACFVLAAV M 61–70 100

GLMWLSYFV 0.59 A*02:01 GLMWLSYFI M 89–97 89

HLRMAGHSL 0.40 Class I HLRIAGHHL M 148–156 78

ALNTPKDHI 0.29 A*02:01 ALNTPKDHI N 138–146 100

LQLPQGTTL 0.29 A*02:01 LQLPQGTTL N 159–167 100

GETALALLLL 0.38 B*40:01 GDAALALLLL N 215–224 80

LALLLLDRL 0.29 A*02:01 LALLLLDRL N 219–227 100

LLLDRLNQL 0.42 A*02:01 LLLDRLNQL N 222–230 100

RLNQLESKV 0.42 A*02:01 RLNQLESKM N 226–234 89

TKQYNVTQAF 0.29 Class I TKAYNVTQAF N 265–274 90

GMSRIGMEV 0.42 A*02:01 GMSRIGMEV N 316–324 100

MEVTPSGTWL 0.42 B*40:01 MEVTPSGTWL N 322–331 100

QFKDNVILL 0.50 A*24:02 NFKDQVILL N 345–353 78

CLDAGINYV 0.42 A*02:01 CLEASFNYL Orf 1ab 2139–2147 56

WLMWFIISI 0.42 A*02:01 WLMWLIINL Orf 1ab 2292–2300 67

ILLLDQVLV 0.42 A*02:01 ILLLDQALV Orf 1ab 2498–2506 89

LLCVLAALV 0.42 A*02:01 SACVLAAEC Orf 1ab 2840–2848 56

ALSGVFCGV 0.42 A*02:01 SLPGVFCGV Orf 1ab 2942–2950 78

TLMNVITLV 0.42 A*02:01 TLMNVLTLV Orf 1ab 3639–3647 89

SMWALVISV 0.42 A*02:01 SMWALIISV Orf 1ab 3661-3669 89

S, surface glycoprotein; M, membrane protein; N, nucleocapsid phosphoprotein.
aRestrictions defined only in HLA-transgenic mice are indicated by the italicized font.
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Figure 3. SARS-CoV-2 Spike Glycoprotein

(PDB: 6VSB)

The calculated surface of the top 13 amino acid

residues predicted to be B cell epitopes based on

ranking performed with Discotope 2.0 are shown

in red. The monomer is shown in the upper left.

The upper right and lower center present the

trimer in two different orientations. 3D-rendering

was performed using YASARA (Krieger and

Vriend, 2014).
We also sought to address potential SARS-CoV-2 epitopes by

a completely different method, namely utilizing the epitope pre-

dictions hosted by the IEDB (Dhanda et al., 2019; Vita et al.,

2019). For B cell epitopes, we used methods that predict linear

epitopes (Jespersen et al., 2017), and in the case of the spike

glycoprotein where a reliable structure recently became avail-

able (Wrapp et al., 2020), the Discotope 2.0 (Kringelum et al.,

2012) method that also predicts epitopes based on protein

conformation and residue exposure. The Discotope prediction

independently confirmed two of the likely epitope regions

defined on the basis of SARS-CoV data.

In the case of T cell epitopes, we utilized predictive algo-

rithms (Jurtz et al., 2017; Paul et al., 2016) to map hundreds

of potential human epitopes to account for HLA polymorphism

and for the fact that T cell epitopes are typically derived from

both structural and non-structural proteins and not limited to

exposed regions. Here, as an independent validation of the

predictions, we asked whether the predictions effectively iden-

tified the relatively few epitopes identified experimentally in

SARS-CoV, restricted by human HLA, and conserved in

SARS-CoV-2. Indeed, we found that 12 of 17 SARS-CoV-2

T cell epitopes with high sequence identity (R90%) to the

SARS-CoV were independently identified by the epitope pre-

dictions based on SARS-CoV-2 sequences.

In conclusion, the use of available information related to

SARS-CoV epitopes in conjunction with bioinformatic predic-

tions points to specific regions of SARS-CoV-2 that have a

high likelihood of being recognized by human immune re-

sponses. The observation that many B and T cell epitopes are

highly conserved between SARS-CoV-2 and SARS-CoV is

important. Vaccination strategies designed to target the immune

response toward these conserved epitope regions could
678 Cell Host & Microbe 27, 671–680, April 8, 2020
generate immunity that is not only cross-protective across Beta-

coronaviruses but also relatively resistant to ongoing virus

evolution.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

SARS-CoV-2 spike glycoprotein 3D-

structure

Wrapp et al., 2020 PDB ID: 6VSB

Wuhan-Hu-1 RNA isolate NCBI nuccore database GenBank:MN908947

ORF10 protein NCBI protein database NCBI: YP_009725255.1

Nucleocapsid phosphoprotein NCBI protein database NCBI: YP_009724397.2

ORF8 protein NCBI protein database NCBI: YP_009724396.1

ORF7a protein NCBI protein database NCBI: YP_009724395.1

ORF6 protein NCBI protein database NCBI: YP_009724394.1

membrane glycoprotein NCBI protein database NCBI: YP_009724393.1

envelope protein NCBI protein database NCBI: YP_009724392.1

ORF3a protein NCBI protein database NCBI: YP_009724391.1

surface glycoprotein NCBI protein database NCBI: YP_009724390.1

orf1ab polyprotein NCBI protein database NCBI: YP_009724389.1

Software and Algorithms

YASARA Krieger and Vriend, 2014 http://www.yasara.org

IEDB Vita et al., 2019 https://www.iedb.org

BebiPred 2.0 Jespersen et al., 2017 http://tools.iedb.org/bcell/

Discotope 2.0 Kringelum et al., 2012 http://tools.iedb.org/bcell/

NetMHCpan EL 4.0 Jurtz et al., 2017 http://tools.iedb.org/mhci/

Tepitool Paul et al., 2016 http://tools.iedb.org/tepitool/
LEAD CONTACT AND MATERIALS AVAILABILITY

Please contact A.S. (alex@lji.org) for aliquots of synthesized sets of peptides identified in this study. There are restrictions to the avail-

ability of the peptide reagents due to cost and limited quantity.

METHOD DETAILS

IEDB Analysis of Coronavirus T and B Epitopes
T and B cell epitopes for coronaviruses were identified by searching the IEDB at the end of January 2020. Queries were performed

broadly for coronaviruses (taxonomy ID no. 11118), selecting positive assays in T cell, B cell and/or ligand contexts. Characteristics of

each unique epitope (i.e., species, protein of provenance, positive assay type(s), MHC restriction) were tabulated, as well as the total

number of donors tested and corresponding total number of donors with positive responses in B or T cell assays, and as a function of

host. Finally, T or B cell assay specific response frequency scores (RF) were calculated broadly (i.e., any host), or for specific contexts

(e.g., T cell assays in humans). Specifically, RF = [(r – sqrt(r)]/t, where r is the total number of responding donors and t is the total

number of donors tested (Carrasco Pro et al., 2015)).

SARS-CoV (tax ID no. 694009) sequence epitope density was visualized with the IEDB Immunobrowser tool (Dhanda et al., 2018).

To identity contiguous dominant regions, RF scores for each residue were recalculated to represent a sliding 10 residue window.

Comparison of Coronavirus Sequences to SARS-CoV-2
All full-length protein sequences fromSARS-CoV andMERS-CoVwere retrieved fromViPR (https://www.viprbrc.org/brc/home.spg?

decorator=corona) on 31 January 2020. In order to exclude sequences of experimental strains, sequences from ‘‘unknown,’’ mouse,

and monkey hosts were excluded from analysis. Remaining sequences were aligned using the MUSCLE algorithm in ViPR.

Sequences causing poor alignments in a preliminary analysis were removed before computing the final alignment. The consensus

protein sequences of each virus group were determined from the final alignments using the Sequence Variation Analysis tool in

ViPR. Protein sequences from natural virus isolates with sequences identical to the SARS-CoV and MERS-CoV consensus were

selected for use in epitope sequence analysis.
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Determination of SARS-CoV-2 Sequence Conservation
Each Wuhan-Hu-1 (GeneBank: MN908947) protein sequence was compared against the consensus protein sequences from SARS-

CoV and MERS-CoV and the protein sequences from closest bat relative (bat-SL-CoVZXC21) using the BLAST algorithm (ViPR;

https://www.viprbrc.org/brc/blast.spg?method=ShowCleanInputPage&amp;decorator=corona) to compute the pairwise identity

between Wuhan-Hu-1 proteins and their comparison target.

SARS-CoV-2 B Cell Epitope Prediction
Linear B cell epitope predictions were carried out on three different coronavirus proteins: surface glycoprotein (S), nucleocapsid

phosphoprotein (N) and membrane glycoprotein (M) (NCBI: YP_009724390.1, YP_009724397.2 and YP_009724393.1, respectively)

as the homologous versions of these proteins are the primary targets of B cell immune responses for SARS-CoV. We used the

BebiPred 2.0(Jespersen et al., 2017) algorithm embedded in the B cell prediction analysis tool available in IEDB (Zhang et al.,

2008). For each protein, the epitope probability score for each amino acid and the probability of exposure was retrieved. Potential

B cell epitopes were predicted using a cutoff of 0.55 (corresponding to specificity greater than 0.81 and sensitivity below 0.3) and

considering sequences having more than 7 amino acid residues. Structure-based antibody prediction was performed by using

Discotope 2.0 (Kringelum et al., 2012), available in IEDB (Zhang et al., 2008) and a positivity cutoff greater than �2.5 was applied

(corresponding to specificity greater than or equal to 0.80 and sensitivity below 0.39), using the SARS-CoV-2 spike glycoprotein

structure (PDB ID: 6VSB).

SARS-CoV-2 T Cell Epitope Prediction
Epitope prediction was carried out using the ten proteins predicted for the reference SARS-CoV-2 isolate, Wuhan-Hu-1. The corre-

sponding protein accession identification numbers are: NCBI: YP_009725255.1 (Orf 10), NCBI: YP_009724397.2 (N), NCBI:

YP_009724396.1 (Orf 8), NCBI: YP_009724395.1 (Orf 7a), NCBI: YP_009724394.1 (Orf 6), NCBI: YP_009724393.1 (M), NCBI:

YP_009724392.1 (Envelope protein, E), NCBI: YP_009724391.1 (Orf 3a), NCBI: YP_009724390.1 (S), and NCBI: YP_009724389.1

(Orf 1ab).

For CD4 T cell epitope prediction, we applied a previously described algorithm that was developed to predict dominant HLA class II

epitopes, using amedian consensus percentile of prediction cutoff% 20 as recommended (Paul et al., 2015b). For CD8 T cell epitope

prediction, we selected the 12most frequent HLA class I alleles in the worldwide population (Middleton et al., 2003; Paul et al., 2013),

using a phenotypic frequency cutoff R 6%. The specific alleles included were: HLA-A*01:01, HLA-A*02:01, HLA-A*03:01,

HLA-A*11:01, HLA-A*23:01, HLA-A*24:02, HLA-B*07:02, HLA-B*08:01, HLA-B*35:01, HLA-B*40:01, HLA-B*44:02, HLA-B*44:03.

The SARS-CoV-2 protein sequences were run against this set of alleles using the NetMHCpan EL 4.0 algorithm and a size range

of 8-14mers (Jurtz et al., 2017). For each HLA class I allele analyzed, we selected the top 1% epitopes ranked based on prediction

score. To generate a final set for synthesis, duplicate peptides (i.e., those selected formultiple alleles) were reduced to a single occur-

rence, and nested peptides were ensconced within longer sequences, up to 14 residues in length, before assigning the multiple cor-

responding HLA restrictions for each region.

QUANTIFICATION AND STATISTICAL ANALYSIS

No statistical analyses were utilized in the present theoretical study, based on data in the published literature and publicly available

databases. Calculations of % identity and response factor scores were performed as described in the Method Details, above.

DATA AND CODE AVAILABILITY

All data presented and analyzed in the present studywas retrieved from the IEDB and PDB, as described above. The published article

includes all data generated or analyzed during this study, and summarized in the accompanying tables, figures and Supplemental

Materials. Text files of data downloaded from the IEDB are available from the corresponding author on request.
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