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Abstract

Motivation: Analysis of co-expressed gene sets typically involves testing for enrichment of differ-

ent annotations or ‘properties’ such as biological processes, pathways, transcription factor binding

sites, etc., one property at a time. This common approach ignores any known relationships among

the properties or the genes themselves. It is believed that known biological relationships among

genes and their many properties may be exploited to more accurately reveal commonalities of a

gene set. Previous work has sought to achieve this by building biological networks that combine

multiple types of gene–gene or gene–property relationships, and performing network analysis to

identify other genes and properties most relevant to a given gene set. Most existing network-based

approaches for recognizing genes or annotations relevant to a given gene set collapse information

about different properties to simplify (homogenize) the networks.

Results: We present a network-based method for ranking genes or properties related to a given

gene set. Such related genes or properties are identified from among the nodes of a large, hetero-

geneous network of biological information. Our method involves a random walk with restarts, per-

formed on an initial network with multiple node and edge types that preserve more of the original,

specific property information than current methods that operate on homogeneous networks. In

this first stage of our algorithm, we find the properties that are the most relevant to the given gene

set and extract a subnetwork of the original network, comprising only these relevant properties.

We then re-rank genes by their similarity to the given gene set, based on a second random walk

with restarts, performed on the above subnetwork. We demonstrate the effectiveness of this algo-

rithm for ranking genes related to Drosophila embryonic development and aggressive responses

in the brains of social animals.

Availability and Implementation: DRaWR was implemented as an R package available at veda.cs.il-

linois.edu/DRaWR.

Contact: blatti@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A common task in bioinformatics is to characterize co-expressed

gene sets using enrichment methods, such as Hypergeometric tests

or gene set enrichment analysis (GSEA) (Subramanian et al., 2005),

associating the gene set with other previously annotated sets. These

pre-existing gene sets may be defined from many diverse types of

biological knowledge, such as shared protein domains, evolutionary

origins, biological processes, etc. Public databases of curated
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annotations that enable this paradigm of gene set characterization

are highly diverse and rapidly increasing. This work addresses the

challenge of incorporating heterogeneous data from multiple public

resources into the task of characterizing the shared properties of a

given gene set and identifying additional genes that are important

and related.

One broad approach employed to perform gene set analysis with

these different public resources is to represent the data as a biolo-

gical network. Rather than using each data source one at a time to

analyze a co-expressed gene set, sources may be integrated within a

network and simultaneously leveraged to identify related genes. This

idea was tested in the ‘MouseFunc’ challenge (Pena-Castillo et al.,

2008), where nine algorithms for integrating heterogeneous genomic

evidence on mouse genes were evaluated for their ability to discover

genes related to a set of co-functional genes. Network-based algo-

rithms have also been applied to other important bioinformatics

tasks such as understanding causes of diseases and effects of thera-

pies (Chen et al., 2012; Greene et al., 2015; Hou and Ma, 2014;

Jacquemin and Jiang, 2013; Vaske et al., 2010). Network-based

analysis of gene sets in particular has been designed to extend and

annotate gene functions and modules (Reimand et al., 2008; Wang

et al., 2015), quantify gene set enrichment for functional molecular

networks (Cornish and Markowetz, 2014; Tarca et al., 2009), iden-

tify subnetworks affected in or shared across diseases (Leiserson

et al., 2015; Shen et al., 2012), or cluster and find signatures of can-

cer subtypes (Hofree et al., 2013; Liu et al., 2014).

Most gene set analyses performed on a biological network en-

compassing heterogeneous data types lose a significant portion of

the data during network construction. Frequently, the rich and di-

verse public datasets are converted to homogeneous gene–gene net-

works containing only nodes representing genes of a single species

and unweighted edges of a single type (Cornish and Markowetz,

2014; Hofree et al., 2013; Hou and Ma, 2014). In these homogen-

ous networks, an edge only represents a relationship between a pair

of genes, but details about the different types of evidence for that re-

lationship are lost. Algorithms that rely on these networks assume

that all relationships in the network are as reliable as any other.

Other algorithms rely on improved, weighted networks of gene–

gene interactions that estimate the confidence of each edge by inte-

grating the strengths and types (i.e. source database or experimental

assay) of the evidences for each relationship (Cornish and

Markowetz, 2014). There are also some studies that utilize biolo-

gical networks containing more than one edge or node type (Chen

et al., 2012; Li and Patra, 2010). However, the networks in these

studies usually have a structure specific to their system of interest,

most often containing nodes of two different types and three types

of edges capturing similarity within each type of node sets and the

known relationships between them. Although they construct hetero-

geneous networks, these studies strictly rely on the structure of the

problem and do not attempt to incorporate data from all possible

sources.

GeneMANIA (Warde-Farley et al., 2010) is a popular, network-

based gene ranking algorithm that performed well in the

MouseFunc evaluations. Its approach specifically integrates data

from many different sources without sacrificing the edge source in-

formation. Data from each source informs the creation of its own

‘affinity’ network of gene–gene interactions. Different affinity net-

works are up- or down- weighted based on their relevance to the ori-

ginal functional gene set before being combined into a single

composite and homogeneous network (Mostafavi and Morris,

2012). While the GeneMANIA approach works well and considers

the types of sources that are most important to the ranking task, it

still discards the specific details about the gene–gene relationships

when constructing each affinity network. For example, the edges

within a Pfam protein domain affinity network indicate that a pair

of genes share a protein domain sequence, but does not preserve

which domain(s) it may have been.

We developed the DRaWR (‘Discriminative Random Walk with

Restarts) method to rank genes for their relatedness to a given gene

set, using biological networks that maintain detailed information

from public data sources. Our algorithm is explicitly designed to

work on heterogeneous networks with multiple node types that are

able to represent a complete collection of public, genomic know-

ledge. We believe that DRaWR is the first method of its genre with

this ability. We utilized the algorithm to perform the gene ranking

task and simultaneously return the most relevant network features.

Like many other network-based algorithms that rely on ‘guilt-by-as-

sociation’ approaches (Hofree et al., 2013; Hou and Ma, 2014; Ivan

and Grolmusz, 2011), our algorithm implements a modified random

walk with restart (RWR). However, unlike other methods, we em-

ployed two rounds of RWR: a first round of RWR on the large,

noisy network of all public data, which reports the network nodes

related to the given (‘query’) gene set, and a second stage RWR on a

smaller network that includes only the query-relevant nodes from

the original network. We evaluated our method’s ability to recover

left out genes from the expression domain gene sets of Drosophila

embryonic development. We showed that our gene ranking method

improves when multiple data sources are combined and when data

from additional species are added to the original network. We also

found that the novel ‘two-round’ RWR approach performs better

than the more common single-round RWR. We finally applied the

DRaWR algorithm to a multi-species study of intruder response in

social animals (Rittschof et al., 2014) to identify subtle and shared

genetic ‘toolkits’ that underlie aggressive behavior.

2 Methods

2.1 Building a heterogeneous network
Our first task was to construct a heterogeneous network of biolo-

gical knowledge, which represents prior information from multiple

public resources. Our network was composed of ‘gene’ nodes repre-

senting the corresponding gene and proteins from each of eight dif-

ferent species (Supplementary Table S1) and ‘feature’ nodes that

represent experimentally or computationally derived characteristics

or properties of genes or proteins. The first type of edge we added to

the network was an undirected ‘homology’ edge. These edges con-

nect a pair of gene nodes with significant protein sequence similarity

(BLAST e-value score<0.01). Additionally, we assigned weights to

the homology-based edges that are calculated from the z-transform

of their e-value significance (maximum value is set to a z-score of 8).

The other edge types we created connect feature nodes to gene

nodes with undirected edges and weights proportional to the reli-

ability of the feature annotation. To incorporate protein structure

data into our network, we included �3700 feature nodes

(Supplementary Table S2) representing different protein domains

from Pfam (Finn et al., 2014). We then connected each such feature

node (called ‘prot_domain’ nodes) to all of the gene nodes whose

protein contained that domain, as identified by HMMER (Finn

et al., 2011) scans (e-value<0.01). The weight of the new edge was

the z-transform of the HMMER e-value score of that domain in that

gene. Homology and protein domain information was included for

every species included in the network.
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Additionally, in our application to Drosophila gene sets, we

introduced hundreds of ‘motif’ feature nodes that represent distinct

binding specificities of fruitfly transcription factors (TFs). A motif

node was connected to all genes whose 5 kb upstream regulatory re-

gion contain the motif, i.e. if the regulatory region includes one of

the top 0.5% of the highest scoring 500 bp windows genome-wide

for that motif, as scored by the Stubb program (Sinha et al., 2006).

The weights on these edges were the z-transform of that window’s

empirical P-value (see Supp Methods SM1, Supplementary Table

S3). Also for the D.melanogaster study, we incorporated 75 ‘ChIP’

feature nodes, representing TF occupancy obtained from separate

ChIP-seq experimental datasets corresponding to the early fruit fly

embryo (SM2, Supplementary Table S4). Each ‘ChIP’ feature node

represented an experimental assay and was connected to a gene

node if the TF binds to the gene’s 5 kb upstream regulatory region in

the developmental stage assayed. Edge weights were assigned in the

same way as ‘motif’-gene edges mentioned above.

For the network used to study aggression across species, we

defined 1827 ‘Gene Ontology’ feature nodes, each one representing

a term from Gene Ontology (Ashburner et al., 2000). GO annota-

tions for three species (human, mouse and fly) were downloaded

from Ensembl (Cunningham et al., 2014) and only terms with at

least 20 annotated genes in each of the three species became feature

nodes and were connect to their annotated genes in the three species

(Supplementary Table S5). GO-gene edges had weight 2 if the GO

annotation was curated and weight 1 if it was inferred computation-

ally. Also for the aggression study, we added 12 mouse-specific

‘brain atlas’ feature nodes derived from gene expression information

produced as part of the Allen Brain Atlas (Lein et al., 2007)

(Supplementary Table S6). Each ‘brain atlas’ node corresponded to

a specific region of the mouse brain and was connected with an edge

of weight 1 to the 100 genes that are most specifically expressed in

that region.

For each application of our algorithm, we created a weighted,

undirected network, choosing some or all of the above-mentioned

components, as appropriate (described in Section 3). Our initial net-

work was constructed with gene nodes G and sets of feature nodes

for each different type, F1;F2; . . . Fk, (e.g. ‘motif’, ‘brain atlas’, etc.).

We represented the edges of this network with an adjacency matrix

with the form

M ¼

MGG MGF1

MF1G
. .

.

� � � MGFk

..

.

..

.

MFkG � � �

. .
. ..

.

� � � MFkFk

2
6666666664

3
7777777775

(1)

where all of the homology edges were contained in the submatrix

MGG, while MFiG and MGFi
were the submatrices that represent

(weights of) edges between all feature nodes of type i and gene nodes

in G. There were no edges between feature nodes, meaning MFiFj

¼ 0 for all i, j.

2.2 Functional annotation from two-stage random walk
Given a heterogeneous biological network M, a gene set Q referred

to as the ‘query’ set, and the universe U of all genes to rank (U �G),

we employed a two-stage algorithm based on a modified random

walk with restart (RWR) approach (Tong et al., 2006) to rank the

gene nodes of U. The algorithm additionally ranks the feature nodes

in the network M by their relevance to the query set Q. The intuition

of how an RWR algorithm works is often understood with a

‘walker’ that traverses the nodes of a network. With probability (1-

c), where c is the restart parameter, the walker follows an outgoing

edge to a neighboring node and with probability c, the walker resets

the walk by transporting directly to one of the genes in the ‘restart

set’, defined as the query set Q in our algorithm. In properly formed

networks in the long run, the probability distribution of the walker

over all nodes will converge to a stationary distribution. This distri-

bution produces a ranking on all nodes that incorporates the con-

nectedness of the node in the network as well as the proximity of the

node to the query set. In the first stage of our DRaWR algorithm,

we applied RWR to find the highest-ranking feature nodes related to

the query set Q to extract a relevant subnetwork (those feature

nodes, all gene nodes G and edges involving them) of the initial net-

work. The results of the second stage RWR on the subnetwork pro-

vide us the final rankings of gene nodes in U. Both stages are

described in detail below and summarized in Figure 1.

2.2.1 Algorithm design

Before applying our DRaWR algorithm, we first must normalize the

edge weights in the initial heterogeneous, biological network. We

normalized the weights of all edges of the same type (e.g. all hom-

ology edges, or all edges connecting genes to feature nodes of a par-

ticular type) to create the normalized adjacency matrix N. In terms

of our notation in Equation 1, all the entries of each non-zero sub-

matrix MXY are normalized to sum to 1:

ðNXYÞi;j ¼ ðMXY Þi;j
.P

i;j
ðMXY Þi;j

(2)

We did this to equalize the global probability of the walker fol-

lowing a specific edge type. For example, even though edges con-

necting genes to motif nodes might account for 10 times the total

weight as edges involving prot_domain nodes, this heuristic adjusted

the edge weights so the walker takes motif edges as often as prot_do-

main edges overall.

Next we normalized each of the columns the matrix N to form a

transition probability matrix, A.

Ai;j ¼ Ni;j
�P

i
Ni;j

(3)

The value Ai;j is the probability that the walker following an

outgoing edge will transition from node j to node i.

We define vt to be the probability distribution of the walker over

all nodes in the network after t steps of the RWR algorithm. We ini-

tialized this probability distribution, v0; to be the uniform distribu-

tion over all nodes by default. A single step of the random walk

follows the equation:

vtþ1 ¼ 1� cð ÞAvt þ ca (4)

where c is the restart probability and a reflects the probability of

jumping to a gene in the restart set. When the restart set is defined as

the set of query genes Q, then

a
Q
i ¼

1
�

Qj j for gene nodes in Q

0 otherwise

(
(5)

As the random walk is irreducible and aperiodic, the iterative up-

date of this procedure is guaranteed to converge to the stationary

distribution of the random walk regardless of the initial probability

distribution v0. We ran iterations of the RWR with the query set

defining the restart set (a ¼ aQ) until the vector vt converged
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( vtþ1 � vt
�� �� < 0:05). We notate this converged probability distribu-

tion as ~vQ (see Fig. 1B). The ranking of all nodes of M by the proba-

bilities of ~vQ is referred to as the ‘stage 1 query ranking’.

We wanted the ranking from the first stage to discriminate fea-

ture nodes that are related to the query set Q from those feature

nodes that have high ranking in ~vQ simply due to their high connect-

ivity in the network. To do this, we must also produce a ranking of

nodes that does not depend on the query set. Therefore, in the first

stage of DRaWR, we repeated the RWR procedure using the uni-

verse set U of all genes as the restart set (in place of set Q above).

We thus arrived at a second converged relevance vector ~vU (see

Fig. 1A) and refer to the ranking it induces on all nodes as the ‘stage

1 baseline ranking’. Note, ~vU captures the overall relevance/import-

ance of each node in the network without regard to the query set,

whereas ~vQ incorporates overall network structure as well as prox-

imity to the query set. Therefore, to find the feature nodes most spe-

cifically relevant to the query genes, we examined the difference

between these vectors, ~vQ � ~vU .

For the second stage of our two-stage RWR, we selected the 50

� k (k is the number of feature types) most query-specific feature

nodes, defined as having the greatest values in ~vQ � ~vU , and created

a subnetwork M’ from the initial matrix M by removing all other

feature nodes and their adjacent edges. Thus,

M0 ¼

MGG MGF
0
1

MF
0
1
G

. .
.

� � � MGF
0
k

..

.

..

.

MF
0
k
G � � �

. .
. ..

.

� � � MF
0
k
F
0
k

2
666666666664

3
777777777775

(6)

where F
0
i represented only the selected feature nodes of feature type

i. Using the same normalization procedure as above, we renormal-

ized M’ by type and converted it to the transition probability matrix

A’. We repeated the random walk using A’ and aQ (restart set

defined from the query set Q) until we converged to the new

relevance vector ~v
0

Q (see Fig. 1C). The ranking of all nodes induced

by this new relevance vector was called the ‘stage 2 query ranking’.

2.2.2 Evaluation of two stage RWR algorithm

We employed a cross validation scheme to evaluate the results of

our ranking method. For each given query gene set, we held out

10% of the genes for testing, QTe, and the remaining 90% of the

gene set are supplied to the algorithm as the query set QTr. With a

query set QTr, we produced the ‘stage 1 query rankings’, identified

the relevant features nodes, extracted the query-specific subnetwork,

and repeated the RWR to produce the stage 2 query ranking. From

the calculated rankings and the held out test sets QTe, we produced

receiver operating characteristic (ROC) curves and quantified the

performance of our algorithm with the area under these curves

(AUROC).

3 Results

3.1 Applications to Drosophila developmental genes
We first applied the DRaWR algorithm to sets of genes defined

based on in situ hybridization images of gene expression in

Drosophila embryos from BDGP (Tomancak et al., 2002). For this

analysis, we focused on 92 spatio-temporal expression patterns (or

‘domains’) that contained between 100 and 1200 genes with the spe-

cific expression pattern. We applied the DRaWR algorithm to genes

of each expression domain separately and evaluated gene rankings

with the AUROC on the held out test set. In this application, we

tested the feasibility of our algorithm to find additional genes related

to each query set (using the AUROC measures described above).

This application is important in instances where experimental anno-

tation of genes has a non-trivial cost (as with constructing and imag-

ing in situ hybridizations). Predicting other genes that share the

expression pattern of the query set can provide investigators a man-

ageable number of additional genes to assay.

We began by creating a Drosophila-specific heterogeneous net-

work that contained gene nodes connected by ‘homology’ edges as

Fig. 1. Illustration of DRaWR Method. Given a set of genes called the query set, Q¼ {G3, G4}, DRaWR will rank all remaining genes from the query species,

U¼ {G1, G2, . . ., G5}, based on their relevance from a random walk with restart (RWR) in a heterogeneous network of biological knowledge. In this example, the

heterogeneous network contains gene nodes from two species (circles) and feature nodes from two public resources (squares) which are connected by gene–

gene sequence homology and by feature-gene annotations (edges). First, DRaWR will find the subset of feature nodes that are specific to Q, (P2, P3, P4 in this ex-

ample), by comparing the relevance (shading) of the nodes between (a) a ‘baseline’ RWR on the entire network with U as the restart set and (b) a ‘stage 1’ RWR

on the entire network with Q as the restart set. A subnetwork is created using only the feature nodes that are specific to Q and (c) a ‘stage 2’ relevance is calcu-

lated from a RWR on this subnetwork with Q as the restart set. DRaWR finally ranks the genes in U for their similarity to the initial query set, Q, based on the

‘stage 2 ’relevance scores
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well as three types of feature nodes with their corresponding edges,

‘prot_domain’, ‘motif’ and ‘ChIP’, as described in Section 2.1.

Nodes and edges derived from Gene Ontology were excluded since

they include information on the cell types corresponding to the 92

expression domains. Overall, this network had 17 482 nodes and

580 270 edges (Supplementary Table S7). For each of the 92 expres-

sion domain gene sets, we ranked the 13 609 gene nodes in this net-

work and reported on where the held out genes fall in this ranking.

We also noted the most relevant feature nodes for each gene set.

3.1.1 Results on Drosophila networks

Our first observation was that the rankings produced by two-stage

RWR are better than those from the query-specific RWR in the first

stage (Fig. 2 and Supplementary Table S8). For instance, the

AUROC of the two-stage procedure is >0.6 for 76 of the 92 gene

sets, while that of the first stage alone is >0.6 for only 66 gene sets.

The improvement in the second stage RWR presumably resulted

from removing features unrelated to the query gene set and perform-

ing the random walk on a more ‘relevant’ network. Since we do not

know a priori which features may be important to any given set, this

two-stage approach allows us to begin with all known data encoded

in the network, reduce to a relevant subnetwork and produce better

rankings. This is an important improvement over a majority of

RWR algorithms that only produce rankings from the original net-

works that contain a large number of edges potentially irrelevant to

the query gene set.

We next tested if and found that rankings are better due to our

use of a heterogeneous network that combines data from multiple

sources. Instead of the heterogeneous network (with four different

edge types) that was used in the tests reported above, we produced

four separate networks each with edges of a single type. We ran our

two-stage algorithm on the 92 expression domain gene sets on each

network and found that the heterogeneous network provides the

highest AUROC on average (0.656). In general, the heterogeneous

network outperformed the homogeneous ‘prot_domain’ and homo-

genous ‘ChIP’ networks, which were much better than the homogen-

ous ‘motif’ network (Fig. 3 and Supplementary Table S9). For

instance, the heterogeneous network leads to AUROC>0.65 for 47

expression domains, significantly more than the 32 that the homo-

genous ‘prot_domain’ network achieves (32). The ‘ChIP’ only net-

work was expected to outperform the ‘motif’ only network because

the ChIP data was from the corresponding developmental stage.

Interesting, the ‘prot_domain’ network is able to achieve very high

AUROC values (>0.8) for four expression domains, while the het-

erogeneous network leads to this high level of accuracy only for one

expression domain.

We performed several tests to evaluate different components of

the DRaWR method. First, we observed that when we remove the

normalization procedure that equalizes the global probability that a

walker follows a particular edge type, the average AUROC results

of our two-stage method on the heterogeneous network are some-

what worse (0.646) (Supplementary Table S10). We also examined

the main parameter of the RWR method, the restart parameter, c.

We ran the two-stage procedure on the heterogeneous network with

six different values of the restart probability between 0 and 1. We

found the best performance with the relatively high restart probabil-

ity of 0.7 (Supplementary Fig. S1). The restart probability controls

the influence of the network structure and the proximity of the

query set on the final relevance vector. A high restart probability

may be needed in the first stage to select relevant feature nodes that

are more proximal to the query set than those functioning as hubs in

the network. Finally, we tested whether incorporating additional

gene–gene edges into the heterogeneous network (including protein

and genetic interactions from BioGRID (Chatr-Aryamontri et al.,

2015), DIP (Salwinski et al., 2004) and IntAct (Orchard et al.,

2014)) affected the outcome (Supplementary Methods SM3,

Supplementary Table S11). As before, we found that adding add-

itional edge types to the network overall improved the performance

(average AUROC of 0.69, Supplementary Fig. S2).

3.1.2 Two stage RWR on multi-species networks

Our algorithm is designed to work with large, heterogeneous net-

works built from many public databases of biological knowledge.

With improving high throughput sequencing techniques, the number

of publicly available genomes is rapidly growing. We next sought to

test whether including additional genomes in our biological network

would improve ranking performance on the developmental gene

sets. To this end, we constructed a ‘5 Insect’ network with gene

nodes representing genes from the fruit fly D.melanogaster, the mos-

quito A.gambiae, the honeybee A.mellifera, the jewel wasp

Fig. 3. Comparison of RWR on Different Drosophila Networks. We compared

the stage 2 rankings produced by our algorithm when the initial network was

defined by single (‘Domain’, ‘ChIP’, ‘Motif’) or ‘Heterogeneous’ feature types.

We calculated the stage 2 AUROCs for each of the 92 expression domains

and then plot the number of domains (y-axis) that were above each possible

AUROC threshold (x-axis). The inset shows more detail for the chart region of

high AUROC

Fig. 2. Comparison of Stage 1 and 2 Rankings on Drosophila Heterogeneous

Network. We compared the rankings produced at the end of the first stage

random walk to the second stage random walk on query specific networks.

We calculated the average stage 1 and stage 2 AUROCs for each of the 92 ex-

pression domains and then plot the number of domains (y-axis) that were

above each possible AUROC threshold (x-axis)
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N.vitripennis and the beetle T.castaneum. As described in Section

2.1, the gene nodes within and between the five species were con-

nected with weighted ‘homology’ edges when they share high pro-

tein sequence similarity according to BLAST. Additionally, all

‘prot_domain’ and ‘motif’ feature nodes were connected to gene

nodes in all five species in the manner described in Section 2.1. Since

the ChIP experiments were only available for Drosophila, the ‘ChIP’

feature nodes only connect to fruit fly gene nodes. The new network

had five times the number of species, but thirteen times the number

of edges (Supplementary Table S12). This was mostly due to the

homology edges, which account for 78% of the edges in the ‘5

Insect’ network.

Although there were 58 147 gene nodes, spanning five species, in

this new network, our task was still to rank the 13 604 gene nodes

in Drosophila for their relatedness to a specific developmental gene

set; genes from the other species were included in the network only

to improve accuracy. For this reason, we calculated the stage one

‘baseline’ probabilities by defining the restart set as only the fruit fly

genes and therefore identifying the relevance of the features nodes

with respect to the network and the Drosophila genes. This careful

construction of the baseline ranking prevents features like the ‘ChIP’

nodes that are Drosophila specific from always being selected as

relevant features for the second stage simply because they are only

connected to genes from the same species as the query genes. Apart

from this modification, the two-stage RWR ranking algorithm and

its evaluations were run on the ‘5 Insect’ network in the same man-

ner as the Drosophila network discussed above. Because of the

increased size of the data, number of iterations required to converge

and computational demands to perform the algorithm on the ‘5

Insect’ network, we focused on only 12 of the 92 expression do-

mains (Supplementary Table S13).

The average AUROC value for the stage 2 query rankings using

the ‘5 Insect’ heterogeneous network was higher (0.752) than the

corresponding value on the Drosophila only heterogeneous network

(0.728) (Fig. 4 and Supplementary Table S14).

As before, the stage 2 rankings in the ‘5 Insect’ heterogeneous

network were also better than the stage 1 rankings. The improve-

ment upon incorporating additional species was in addition to the

improvement we observed with heterogeneous over homogenous

networks. The ‘5 Insect’ network contains many additional nodes

and edges that do not directly relate to the fruit fly genes being

ranked. However, the advantage of the network approach is that

many indirect connections contribute meaningfully to the rankings.

We speculate that the ‘5 Insect’ network provides more accurate

ranking of fruit fly genes because more meaningful ‘motif’ or

‘prot_domain’ features are conserved across orthologous genes in

multiple species and form dense subnetworks within the ‘5 Insect’

heterogeneous network.

3.1.3 Query-specific feature nodes reveal shared properties of

co-expressed gene sets

To create the query-specific subnetwork for the second stage RWR,

our method identifies the set of feature nodes that are the most rele-

vant to the query gene set. If there are k feature types, it selects 50k

feature nodes to be included in the subnetwork. Of the 150 feature

nodes (k¼3) selected from our heterogeneous Drosophila network

as being relevant to a specific query gene set, on average, 6 were

‘motif’ nodes, 107 were ‘prot_domain’ nodes and 38 were ‘ChIP’

nodes. This reflected a strong enrichment for ChIP feature nodes,

which only account for 2% of all feature nodes. This enrichment is

not surprising given that the ChIP features were derived from experi-

ments performed in the same developmental stages as query gene

sets. This was a crude confirmation that our feature selection pro-

cedure is selecting query-relevant features. Some ChIP feature nodes

were selected for many (>65) of the 92 different query gene sets.

These nodes corresponded to the DNA-binding of pioneer factors

TRL and VFL or important developmental regulators, such as TWI,

HB and EVE. At the level of protein domains, the zinc-finger,

homeobox and helix–loop–helix DNA-binding domains appeared as

selected features for more than 50 of the 92 expression domains.

These were the most common DNA-binding protein domains, and

their appearance on the list of most relevant features is consistent

with the understanding that transcription factors are a key compo-

nent of gene expression control during development.

3.2 Comparison to GeneMANIA
We attempted to compare the performance of our two-stage random

walk-based ranking procedure to the popular tool GeneMANIA.

This tool implements label propagation on a ‘gene–gene affinity net-

work’ to rank genes on their similarity to a given set. The only fea-

ture-gene data type from our analysis above that has already been

preprocessed into a GeneMANIA affinity network is the

‘prot_domain’ feature type, representing Pfam domain annotations.

In the GeneMANIA affinity network, two genes are joined if they

share Pfam domains, but the exact number and types of the domains

shared are lost in the representation. In our network, we explicitly

connected gene nodes that share a protein domain to the feature

node representing that protein domain, preserving the specific de-

tails of gene–gene relationships. Using 10% of each expression do-

mains as test sets and the AUROC evaluation metric, we compared

the GeneMANIA algorithm with its Pfam protein domain affinity

network (SM4) to our two-stage RWR method applied to the homo-

geneous ‘prot_domain’ network in Drosophila. We found that our

two-stage algorithm outperforms GeneMANIA at high values of

AUROC threshold (Supplementary Fig. S3 and Supplementary

Table S15). For example, at an AUROC threshold of 0.7, our RWR

procedure produced rankings that yield an AUROC >¼0.7 for 17

expression domains, while GeneMANIA rankings reach this level of

accuracy for only 8 expression domains. We also performed a com-

parison between DRaWR and GeneMANIA on a heterogeneous

Fig 4 Comparison between Single and Multi-Species Networks. We compared

the stage 1 and stage 2 rankings when the initial network was defined as the

heterogeneous network either from a single species (‘Fly’) or from multiple

species (‘5Insect’). We calculated the AUROCs from each stage’s rankings for

each of the 12 selected Drosophila expression domain genes sets and then

plot the number of domains (y-axis) that were above each possible AUROC

threshold (x-axis)
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network defined from Pfam domain edges as well as genetic and

protein interaction edges (SM5 and Supplementary Table S16). We

found that our random walk based approach on type-normalized

heterogeneous networks produces similar average AUROC (0.7051)

to the GeneMANIA label propagation method on the weighted com-

bination of the corresponding gene–gene affinity networks

(Supplementary Fig. S4). In both analyses, our algorithm was also

able to report the most relevant protein domains, a capability that

GeneMANIA lacks.

3.3 Application to multi-species behavioral aggression

sets
Finally, we applied our DRaWR algorithm to experimentally

derived gene sets that are challenging to analyze with common exist-

ing tools. In a recent study (Rittschof et al., 2014), the authors at-

tempted to understand if there are conserved neuromolecular

mechanisms that underlie the common behavior of aggressive re-

sponse to territorial intrusion in social animals. This study examined

the transcriptomic state of brains in three greatly diverged social ani-

mals, the mouse M.musculus, the stickleback fish G.aculeatus and

the honeybee A.mellifera. The analysis in the original study separ-

ately examined data from each species to find Gene Ontology terms

and cis-regulatory elements significantly associated with differen-

tially expressed (DE) genes in each species, and then honed in on as-

sociations that are shared across species. Our method, on the other

hand, offers the potential for studying DE gene sets from the three

species in an integrated framework that may enable more subtle sig-

nals of shared genetic ‘toolkits’ to reveal themselves.

3.3.1 Construction of network and definition of query sets

To construct the network for analysis of this dataset, we incorpo-

rated heterogeneous information from all three of the species in the

study (mouse, stickleback fish and honeybee) as well as two add-

itional, highly annotated species D.melanogaster and H.sapiens. We

constructed a weighted network with nodes and edges described in

detail in Section 2.1. We connected the gene nodes within and be-

tween species with ‘homology’ edges defined from all-pairs BLAST

results. We connected 3671 ‘prot_domain’ feature nodes to gene

nodes in all five species based on the corresponding HMMER scans

results. We also included ‘Gene Ontology’ feature nodes for 1827

GO terms, connecting them to nodes representing human, mouse

and fruit fly genes, as per available gene annotations. We did not in-

clude any edges between ‘Gene Ontology’ feature nodes and genes

nodes of stickleback fish or honey bee because most of their GO an-

notations included in Ensembl (Cunningham et al., 2014) are

derived from orthology rather than direct annotation. Finally, we

added ‘brain atlas’ nodes and edges that connected these feature

nodes to mouse gene nodes that are specifically expressed in one of

twelve brain regions defined in the atlas. This new five species net-

work (Supplementary Table S17) has 76 060 genes and over 13 mil-

lion edges, with homology edges accounting for 95% of all edges.

We obtained one gene set of differentially expressed (DE) genes

from each species from the aggression study (Rittschof et al., 2014).

These included 153 bee genes, 499 fish genes and 883 mouse genes

deemed to be differentially expressed in the brains of the social ani-

mals when exposed to an intruder. Each of these three species-spe-

cific gene sets was to serve as a query gene set for DRaWR. Since we

were interested in ranking genes and features for their relatedness to

all three DE gene sets simultaneously, we additionally created a sin-

gle gene set by combining all 1535 DE genes. For each of the four

DE gene sets, we created an appropriate gene universe set (genes

that need to be ranked by our procedure), comprising genes from

only the corresponding subset of species.

3.3.2 Aggression related features

Application of the DRaWR pipeline to the multi-species query set

comprising aggression-related DE genes from mouse, fish and bee

revealed feature nodes that are most related to the query set (greatest

value of ~vQ � ~vU ) (Supplementary Table S18); we report the top ten

features in Table 1.

The feature node corresponding to the ‘Striatum’ brain region

was ranked first. This is consistent with the striatum being the part

of the brain responsible for coordinating movement with motiv-

ation, an important component of an aggressive behavior response

to an intruder. It has been demonstrated that damage to the striatum

can result is aberrant social behavior (Glenn and Yang, 2012;

Johansson and Hansen, 2001), and that the ventral striatum is active

in maternal defense (Hansen et al., 1991) and punishment behavior

against a rival (Buades-Rotger et al., 2015; Cikara et al., 2011). The

next most relevant feature nodes include the retrohippocampus, the

hippocampus and the pallidum, which are known to be involved in

emotions and movement or motivation and behavior. We also found

the protein domain feature nodes for major royal jelly protein

(MRJP) and juvenile hormone binding protein (JHBP) domains in

our top ten list. Genes containing the MRJP domain have been pre-

viously implicated in behavior because of their expression in the

mushroom bodies of honeybee brains (Drapeau et al., 2006;

Kucharski et al., 1998). JHBP domain genes have also been corre-

lated with hygienic behaviors in honeybees in response to infest-

ations of parasitic mites (Parker et al., 2012). There were several

‘Gene Ontology’ features identified by our method as relevant to

our multi-species DE query set that were ranked in the top forty fea-

ture nodes. These included terms involving the plasma membrane,

protein binding and ribosome. The fifth most related Gene

Ontology feature node was for the term ‘Hormone activity’, which

was also discovered in the original study (Rittschof et al., 2014).

3.3.3 Observations about gene rankings in aggression study

In addition to identifying the features most relevant to the DE genes,

we also evaluated the gene ranking produced after the second stage

of DRaWR, conducting our tests on 10% of the genes held out from

the query set. As Supplementary Table S19 (column ‘3 species’)

shows, we found the heterogeneous multi-species network (AUROC

0.690) to yield better rankings than any homogeneous, multispecies

network containing a single feature type. Our method successfully

Table 1. Ten query-specific features

Rank Feature node name Feature node type

1 Striatum Brain Atlas

2 Retrohippocampal Brain Atlas

3 Hippocampus Brain Atlas

4 Pallidum Brain Atlas

5 MRJP Prot Domain

6 PMP22_Claudin Prot Domain

7 JHBP Prot Domain

8 Globin Prot Domain

9 Olfactory Brain Atlas

10 Claudin_2 Prot Domain

The top ten feature nodes selected with our algorithm on the ‘3 species’

query set and multi-species, heterogeneous aggression network. Each node is

listed along with its feature type.
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enabled us to integrate experimental results from different species

with knowledge from many different sources in a single framework.

We also examined the aggression-related DE gene set of each

species separately to check if these gene sets have varying levels of

coherence that may make it more or less difficult to identify related

genes. For each species, we tested ranking accuracy on held out DE

genes, using either the 5-species network or a single-species network

appropriate for that species. In general, we found that the species-

specific DE gene sets that were the most difficult to correctly rank

their related genes using only the appropriate single species network

showed the greatest improvement when using the multi-species net-

works. In particular, we poorly ranked the mouse DE genes in the

mouse single species heterogeneous network. However, when incor-

porating information from additional species, we see a great im-

provement (AUROC in heterogeneous, multi-species network

0.788).

4 Discussion

We have developed the DRaWR method to rank genes for their re-

latedness to a given gene set in the context of extensive, heteroge-

neous information represented as a network. We showed that the

rankings improve when more sources of information are incorpo-

rated into the network and when data from additional species are

appended. Our algorithm applies a two-stage RWR to rank related

genes and, as a byproduct, produces a list of features that are specif-

ically related to the gene set. We have shown its application in char-

acterizing embryonic expression domains in Drosophila and

transcriptomic responses to social intruders in a cross-species study.

With genome sequencing projects like the 10 000 Vertebrate

Genomes (Genomes 10k) and 5000 Insect Genomes (i5k) underway

and high throughput technologies becoming less expensive and

more efficient, a biological network containing all public data

would need to scale to thousands of species, covering tens of mil-

lions of genes and potentially billions of functional interactions.

However, in runs with the 80 000 node, 13 million edge multi-spe-

cies heterogeneous network above, representing the data required at

least 4 GB of RAM and processing it took several hours using our R

implementation. With these requirements, it becomes difficult to op-

timize the restart parameter or the number of selected features in the

second stage subnetwork for each query set. Since all of our results

suggest that we are able to produce the best rankings when given the

largest, most diverse initial network, scalability of the algorithm is

an important issue and one of the driving reasons for selecting a ran-

dom walk with restart approach.

One common approach to address computational scalability is

the paradigm of data and computation distribution offered by

MapReduce (Dean and Ghemawat, 2008). The reliability and effi-

ciency of this framework has led to its widespread adoption, and

public instances (e.g. the Amazon Elastic Compute Cloud) provide a

platform for users to store large networks and deploy analysis tools

on them. A message passing version of the RWR algorithm maps

easily to a MapReduce framework. It has been implemented in the

graph mining software PEGASUS (Kang et al., 2009) has been

shown to scale to graphs with billions of nodes and edges. More re-

cent software, B_LIN (Tong et al., 2006), Pregel (Rozowsky et al.,

2009), GraphLab (Low et al., 2012) and GraphX (Xin et al., 2013),

are explicitly designed to improve performance in scalable graph

processing by carefully distributing data and minimizing communi-

cation costs.

There are several limitations to the random walk based ap-

proach. First, we are only able to represent positive information.

Edges are only able to convey how closely related two nodes are and

nodes are only allowed to be annotated as belonging to the given

gene set. However, proper use of negative information may perhaps

create a more nuanced network and produce better outcomes. For

example, we may want to add edges that represent mutual exclusiv-

ity or strong anti-correlation between two nodes in the network. We

may also have negative examples of a property of interest that we

would like to incorporate to make rankings more accurate. Many of

these properties may be addressed by remapping our random walk

on a connectivity network algorithm into an application of belief

propagation on probabilistic graphical models (Kang et al., 2011;

Koller and Friedman, 2009). Additionally, although we normalize

our edges by type, the RWR does specifically treat different types of

edges in a distinguishable way. Some studies have attempted to con-

trol how information is passed through different edge types by defin-

ing specific meta-paths (Yu et al., 2014) that dictate a sequence of

node types that must be followed to inform a relationship between

two nodes. Our simple, two-stage RWR algorithm for gene ranking

provides a solution to and highlights the challenges of performing

analysis of experimental data on massive, heterogeneous networks

of biological knowledge.
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