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Abstract: Electric double-layer capacitors (EDLCs) are energy storage devices that have attracted
attention from the scientific community due to their high specific power storage capabilities.
The standard method for determining the maximum power (Pmax) of these devices uses the relation
Pmax = U2/4RESR, where U stands for the cell voltage and RESR for the equivalent series resistance.
Despite the relevance of RESR, one can observe a lack of consensus in the literature regarding the
determination of this parameter from the galvanostatic charge-discharge findings. In addition,
a literature survey revealed that roughly half of the scientific papers have calculated the RESR values
using the electrochemical impedance spectroscopy (EIS) technique, while the other half used the
galvanostatic charge discharge (GCD) method. RESR values extracted from EIS at high frequencies
(>10 kHz) do not depend on the particular equivalent circuit model. However, the conventional
GCD method better resembles the real situation of the device operation, and thus its use is of
paramount importance for practical purposes. In the latter case, the voltage drop (∆U) verified at the
charge-discharge transition for a given applied current (I) is used in conjunction with Ohm’s law to
obtain the RESR (e.g., RESR = ∆U/∆I). However, several papers have caused a great confusion in the
literature considering only applied current (I). In order to shed light on this important subject, we
report in this work a rational analysis regarding the GCD method in order to prove that to obtain
reliable RESR values the voltage drop must be normalized by a factor of two (e.g., RESR = ∆U/2I).

Keywords: equivalent series resistance; galvanostatic charge-discharge method; impedance technique;
voltage drop; simulation of equivalent circuit models

1. Introduction

From urban mobility to portable electronics, fast charging devices are in growing demand [1–3].
In this scenario, electric double-layer capacitors (EDLCs), also known as supercapacitors, are very
attractive energy storage devices with ultra-fast and short-term features [2–4]. To scale the characteristics
of different EDLCs, the specific energy and power are commonly evaluated for practical purposes.
The key parameters for the energy storage devices are regarded to the energy (Wh kg−1) and power
(W kg−1) normalized per weight of the device (or the electrode material). In this sense, the maximum
output energy (Emax) and power (Pmax) are determined using the relations Emax = CU2/2 and Pmax

= U2/4RESR, respectively, where U stands for cell voltage, C for specific capacitance, and RESR for
equivalent series resistance (ESR) [5].
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It is commonly verified in the literature that ESR can be properly determined using the
electrochemical impedance spectroscopy (EIS) and the galvanostatic charge-discharge methods.
In the case of EIS, the ESR value can be accurately determined at high frequencies (>10 kHz) [6–8].
This method is quite simple to be applied since it does not rely on the use of a particular equivalent
circuit model for the device [9]. Despite the advantages offered by the EIS method, we must consider
that the conventional GCD method better resembles the real operation conditions for supercapacitors,
i.e., the use of this method in the laboratory studies is of paramount importance in order to obtain a
more realistic experimental scenario resembling a real application.

In the case of the GCD method, the voltage drop (∆U) verified at the charge-discharge transition
for a given applied current (I) must be used in conjunction with Ohm’s law to obtain the RESR

(e.g., RESR = ∆U/∆I and not RESR = ∆U/I) [5,10–16]. However, the ‘ad hoc’ adoption in the literature
of non-standard normalizing factors for ∆U have led to a great confusion when findings present in
different papers obtained for supercapacitor devices were compared.

The objective of the present work is to present a theoretical analysis of the GCD method to
demonstrate that correct determination of RESR values requires the voltage drop to be normalized by a
factor of two (e.g., RESR = ∆U/2I and not RESR = ∆U/I). Simulations using canonic circuit models were
carried out to emphasize the theoretical aspects inherent to the present work. Furthermore, a comparison
of the theoretical electrochemical behaviors of these circuits in the frequency domain is presented using
the EIS method.

2. Fundamentals of the EIS and GCD Methods

Figure 1a,b shows the simulated Nyquist (e.g., complex-plane) plots and the corresponding
galvanostatic charge-discharge plots obtained as a function of the RESR. It is worth mentioning that the
impedance response verified at very high frequencies does not depend on the particular equivalent
circuit model used in the simulation process [7,8,17–22]. In addition, for practical purposes, since
the EIS is a steady-state technique obeying the linear theory of systems, one has that highly accurate
values of resistances and capacitances can be obtained for EDLCs using a low amplitude sinusoidal
voltage (e.g., δU = 10 mV (peak-to-peak)) and scanning the frequency for various orders of magnitude
(e.g., ∆f = 100 kHz to 10 mHz).

From the above considerations, simulations were accomplished using a canonic equivalent circuit
model representing the ideal electrochemical response of a symmetric coin cell device where the
positive and negative electrodes are identical. As it can be seen in the inset of Figure 1, the equivalent
series resistance (RESR) is connected to a branch containing a capacitor (CEDL), representing the charge
storage process on the electrical double-layer (EDL) formed at the electrode/electrolyte interface,
which stands in parallel with a leakage resistance (RL). Despite the use of a canonic model, it is
important noting that the RESR-value obtained at high-frequencies always appear as a generalized
resistance connected in series with the other circuit elements of the particular circuit model [4].

The simulation presented in Figure 1a was accomplished for different RESR-values and using an RL

(impedance to leak current)-value of 1 MΩ. Obviously, an ideal EDLC device has a very high leakage
resistance (RL→∞) and the phenomenon of frequency dispersion is absent, i.e., the complex-plane
plot is characterized by a perfect vertical line (see Figure 1a). Thus, the extrapolation of this line
on the real axis (Zreal) at very high frequencies (e.g., ω → ∞) yields the desired value of the RESR.
Therefore, in real systems the true value of RESR is commonly determined by extrapolation using a
high-frequency value of ≈1.0 kHz.
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Figure 1. Schematic representation of (a) the complex-plane plots and (b) the galvanostatic charge-
discharge curves evidencing the voltage drop (Udrop). The inset in Figure 1a shows the canonic circuit 
model. Simulation was carried out considering different values of the RESR and RL = 1 MΩ. 

Figure 1b shows the galvanostatic charge-discharge curves evidencing the voltage drop (Udrop) 
at the inversion of polarity. From the theoretical viewpoint, in this case the determination of the RESR-
value involves the application of a square wave current function with the inversion in polarity (e.g., 
I(+)  I()) and I(+) = I()).A voltage drop is observed at the reversal of polarization with a voltage 
increase after the sign of the current was reversed. During a continuous repetition of the charge–
discharge processes, the positive (anode) and negative (cathode) electrodes were constantly charged 
and discharged, respectively, for equal times by applying positive (I(+)) and negative (I()) currents of 
the same magnitude (I(+) = I()). Therefore, for an ideal case where only a capacitive behavior 
exists (RESR = 0) one would obtain as the response a symmetric triangular voltage wave since the 
capacitive voltage (Uc) increases linearly with the stored charge (Q) for a given capacitance (C), i.e., 
δUc = δQ/C. However, in real cases where RESR > 0 the anodic branch (e.g., the straight line with a 
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Figure 1. Schematic representation of (a) the complex-plane plots and (b) the galvanostatic charge-discharge
curves evidencing the voltage drop (Udrop). The inset in Figure 1a shows the canonic circuit model.
Simulation was carried out considering different values of the RESR and RL = 1 MΩ.

Figure 1b shows the galvanostatic charge-discharge curves evidencing the voltage drop (Udrop)
at the inversion of polarity. From the theoretical viewpoint, in this case the determination of the
RESR-value involves the application of a square wave current function with the inversion in polarity
(e.g., I(+) ↔ I(−) and |I(+)| = |I(−)|).A voltage drop is observed at the reversal of polarization with a
voltage increase after the sign of the current was reversed. During a continuous repetition of the
charge–discharge processes, the positive (anode) and negative (cathode) electrodes were constantly
charged and discharged, respectively, for equal times by applying positive (I(+)) and negative (I(−))
currents of the same magnitude (|I(+)| = |I(−)|). Therefore, for an ideal case where only a capacitive
behavior exists (RESR = 0) one would obtain as the response a symmetric triangular voltage wave since
the capacitive voltage (Uc) increases linearly with the stored charge (Q) for a given capacitance (C),
i.e., δUc = δQ/C. However, in real cases where RESR > 0 the anodic branch (e.g., the straight line with a
positive slope) of the voltage wave referring to the charging process (e.g., δUc(+) = δQ(+)/C) is displaced
to more positive values by a constant value dictated by UESR(+) = RESR × I(+) = constant. Therefore,
the instantaneous values of the overall voltage are given by Ui = Uc(+) + UESR(+). Accordingly, the
cathodic branch (e.g., the straight line with a negative slope) of the voltage wave associated with the
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discharging process (e.g., δUc(−) = δQ(−)/C) is displaced to more negative voltages due to the reversal
in polarity of the applied current where δI = I(+) − I(−) = 2I, since |I(+)| = |I(−)|.

Intuitively, the instantaneous values of the overall voltage after the reversal in polarity is given
by Ui = Uc − UESR = Uc − RESR × 2I. In this sense, the overall voltage drop during reversal of the
polarization is UESR = − RESR × 2I since ∆UESR < 0, i.e., RESR = ∆UESR/2I and, therefore, the voltage
drop must be normalized by a factor of 2 [5].

3. Theoretical Electric Response of the GCD Curves Using the Canonic Equivalent Circuit Model

3.1. Deriving the Theoretical Formula for the Equivalent Series Resistance

To obtain the theoretical model for the calculation of the RESR, the canonic circuit presented in
Figure 2 representing the charge–discharge processes was employed to obtain the pertinent equations.
In short, key equations for the charge and discharge processes and a combination of them are presented
to obtain the desired theoretical model.
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Figure 2. Electric circuits containing the canonic equivalent circuit model representing the
electrochemical behavior of electric double layer capacitors during the charging and discharging
processes carried out at constant current. Definitions: Icell is the constant current applied; RESR is the
equivalent series resistance; RL is the leakage resistance; CEDL represents the equivalent capacitance of
the symmetric coin cell; Ucell is the overall cell voltage and USC

0 is the voltage across the CEDL when
the capacitor is fully charged.

According to the basic laws governing the theory of electric circuits the cell voltage during a
charging process for the circuit presented in Figure 2 is given by the following relationship:

Ucell(t) = RESRIcell + RLIcell ×

[
1− exp

(
−t

RLC

)]
(1)

In addition, it is possible to demonstrate that the function Ucell(t) describing the transient response
after the switcher K is closed is given by the following equation:

Ucell(t) = U0
sc −RESRIcell −

(
U0

sc + RLIcell

)
×

[
− 1 + exp

(
−t

RLC

)]
(2)

Using Equations (1) and (2), the theoretical galvanostatic charge–discharge curves accounting
for the charging and discharging processes on CEDL, respectively, were obtained at constant current
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from numerical simulation (e.g., Simulink of PSIM software) using different RESR-values (e.g., 0, 0.01,
and 0.1 Ω) keeping the RL = 1.0 MΩ and CEDL = 0.1 F (see Figure 3). The anodic (positive) and
cathodic (negative) currents were alternated between +1 A and −1 A, respectively. In this case, a virtual
controlled current source was applied referring to a charging time of ~1 s. Then, the current direction
was reversed, thus characterizing the discharge of the CEDL. The magnitude of the charge and discharge
currents was maintained so that the desired characteristics of the circuit could be graphically observed.
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Figure 3. Simulation of the galvanostatic charge–discharge curves using different values of RESR.
Conditions: RESR = 0, 0.01, and 0.1 Ω; RL = 1.0 MΩ; and CEDL = 0.1 F. The anodic (positive) and
cathodic (negative) currents were alternated between +1 A and −1 A, respectively.

The RESR-value can be determined by the voltage drop during the reversal of the polarity, i.e.,
when the charging process is discontinued to obtain the discharging curves. In the case of the cell
voltage during the charging process (see Equation (1)), when t→ ∞ the capacitor is fully charged.
Therefore, one has for this particular condition that:

Ucell(t) = RESRIcell + RLIcell (3)

Remembering that for the charging voltage when t→∞ one has that RLIcell is equal to the voltage
in the capacitor (USC

0), the following equation can be obtained:

Ucell(t) = RESRIcell(charging) + U0
sc (4)

In the case of the cell voltage for the discharging process (t→ 0), when t tends to zero the capacitor
is fully discharged. Thus, for these conditions one has from Equation (2) that:

Ucell(t) = U0
sc −RESRIcell(discharging) (5)

Calculating the difference between Equations (1) and (2), the following relation is obtained:

∆U = RESR
(
Icell(charging) + Icell(discharging)

)
= 2RESR|Icell| (6)

Since the charging and discharging current are equal in modulus. Finally, the theoretical expression
for the equivalent series resistance is given by Equation (7):

RESR =
∆U

2|Icell|
(7)



Molecules 2019, 24, 1452 6 of 9

Therefore, it become obvious from Equation (7) that the voltage drop must be normalized by a
factor of 2 in order to obtain reliable findings during application of the GCD method. In a Supplementary
Data we performed an alternative approach for same demonstration, please have a look.

3.2. Validation of the Theoretical Expression Obtained for the Equivalent Series Resistance Using a Commercial
Supercapacitor of 200 F

Figure 4 shows that the GCD curves obtained for a 200 F commercial supercapacitor (e.g., 2.7V
D35H62 PTH S0016) as a function of the applied current (e.g., 1–2 A). For these high values of the
applied currents the ∆U/∆I ratio was constant (=25 mΩ) [23].
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Figure 4. Experimental GCD curves obtained for a 200F commercial supercapacitor (2.7V D35H62 PTH
S0016) as a function of the applied current.

Figure 5a shows the Nyquist plot obtained for the 200 F commercial supercapacitor (experimental
conditions: δU = 10 mV (peak-to-peak), Ud.c. = 0 V, and ∆f = 10 kHz to 10 mHz). The impedance data
of a real electric double-layer capacitor (EDLC) were quite different from the impedance response of a
conventional (passive) capacitor due to the presence of the frequency dispersion phenomenon [4,17].
In fact, as discussed earlier by Conway [4], the EDLCs composed of high surface area porous carbon
materials cannot be represented by a simple capacitance or even by a simple RC circuit due to the
influence of the ions in conjunction with the porous behavior exhibited by the electrode material,
i.e., the high-frequency voltage hardly penetrates inside the narrow pores while the low-frequency
voltage penetrates inside the porous electrode structure.

Figure 5a shows that at high frequencies the Nyquist plot was characterized by a semicircle
which indicates the existence of a Faradaic leakage resistance in parallel with a capacitive element
as a consequence of the contributions from the pseudocapacitance associated with surface redox
functionalities present at the interfaces and/or edges of carbon particles [5]. Obviously, in practice, the
RESR-value is obtained at very high frequencies from extrapolation on the real axis of the Nyquist plot.
Thus, it was verified in the present case that RESR = 22 mΩ, which is in good agreement with that of
25 mΩ obtained in this work using the classical GCD method.

At moderate frequencies, there was a linear region in the Nyquist plot with a phase angle of
approximately −45◦, which indicates the presence of electrochemically active pores in the electrode
structure. This characteristic behavior exhibited by porous electrodes was previously discussed in the
literature [6]. On the contrary, the existence of a Warburg impedance (W), which is also characterized by
a phase angle of approximately −45◦, indicates that the electrochemical process is diffusion controlled
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during oxidation/reduction of the surface redox functionalities. In these different cases, the charge
storage process is distributed over a network of R and C elements commonly represented by a
semi-infinite transmission line of continuously connected R and C components. Despite the these
considerations, one has in the special case of EDLCs characterized by a phase angle at high-frequencies
of approximately −45◦ that is more plausible from the physicochemical viewpoint to consider the major
influence of the porous electrode structure instead of a mass-transport controlled process since the real
influence of the pseudocapacitance caused by the surface redox functionalities can be negligible in
comparison with the purely electrostatic capacitance caused by the accumulation of the ions at the
electrode/solution interface.

In addition, the analysis of the experimental findings obtained at low frequencies (see Figure 5a)
revealed the presence of an inclined capacitive line. In fact, this behavior is predicted by the De Levie’s
model representing the electrochemical response of porous electrodes [7]. Considering the presence
of non-idealities due to the frequency dispersion phenomenon, the inclined capacitive line can be
represented by a R*-CPE circuit model where ZCPE = 1/Yo(jω)n and n � 1. In this case, R* contains
information about the electrolyte resistance inside the pores while the parameter Yo represents the
non-ideal capacitance.

Figure 5b shows the RESR-values obtained from the GCD method as a function of the applied
current. As it can be seen, a stationary value of 25 mΩ was obtained for applied currents higher than 1 A.
These findings are in agreement with the experimental value of 22 mΩ obtained using the EIS technique.
It must be emphasized that for an applied current lower than 1 A the RESR values were overestimated
in comparison with those obtained with the EIS technique. Therefore, the present study suggests that
reliable values of the RESR must be obtained in the case of the GCD method using different currents in
order to verify a stationary (constant) value. To the best of our knowledge, this important issue regarding
the influence of the applied current on the RESR values has not been addressed in the literature.Molecules 2019, 24, x 8 of 10 
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Figure 5. (a) Nyquist plot obtained for the commercial supercapacitor of 200 F. (b) Equivalent series
resistance obtained from the GCD method as a function of the applied current.
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4. Conclusions

From the theoretical analysis of a canonic circuit model an Ohm-like equation was deduced for
the determination of the equivalent series resistance (RESR) using the galvanostatic charge–discharge
method. It was verified that the voltage drop must be normalized by a factor of two in order to obtain
meaningful findings. The present work compared the applications of the electrochemical impedance
spectroscopy (EIS) technique and galvanostatic charge/discharge (GCD) method in order to determine
the value of the equivalent series resistance (RESR) present in electric double-layer capacitors (EDLCs).
The derived equation was applied to obtain the RESR of a 200 F commercial supercapacitor.

In principle, the theoretical treatment presented in this work is strictly valid for EDLCs, i.e., where
the battery-like Faradaic reactions are absent. Therefore, we may find discrepancies during the analysis
of the experimental findings obtained for pseudocapacitors (PCs) where solid-state surface redox
reactions occur. Further complications can also appear in the case of asymmetric capacitors since in
these cases the positive and negative electrodes are not identical (i.e., they are composed of dissimilar
materials).

Supplementary Materials: The following are available online.
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