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Abstract
The tumor microenvironment (TME) interacting with the malignant cells plays a vital role in cancer development. Herein, 
we aim to establish and verify a scoring system based on the characteristics of TME cells for prognosis prediction and per-
sonalized treatment guidance in patients with triple-negative breast cancer (TNBC). 158 TNBC samples from The Cancer 
Genome Atlas (TCGA) were included as the training cohort, and Molecular Taxonomy of Breast Cancer International Con-
sortium (METABRIC) (N = 297), as well as GSE58812 (N = 107), were included as the validation cohort. The enrichment 
scores of 64 immune and stromal cells were estimated by the xCell algorithm. In the training cohort, cells with prognostic 
significance were found out using univariate Cox regression analysis and further applied to the random survival forest (RSF) 
model. Based on the scores of M2 macrophages,  CD8+ T cells, and  CD4+ memory T cells, a risk scoring system was con-
structed, which divided TNBC patients into 4 phenotypes  (M2low,  M2highCD8+ThighCD4+Thigh,  M2highCD8+ThighCD4+Tlow, 
and  M2highCD8+Tlow). Furthermore, types 1 and 2 patients were merged into the low-risk group, while types 3 and 4 patients 
were in the high-risk group. The low-risk group had superior survival outcomes than the high-risk one, which was further 
confirmed in the validation cohort. Moreover, in the low-risk group, immune-related pathways were significantly enriched, 
and a higher level of antitumoral immune cells and immune checkpoint molecules, including PD-L1, PD-1, and CTLA-4, 
could be observed. Additionally, consistent results were achieved in the SYSUCC cohort when the scoring system was 
applied. In summary, this novel scoring system might predict the survival and immune activity of patients and might serve 
as a potential index for immunotherapy.
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Introduction

Female breast cancer has become the most commonly 
diagnosed cancer worldwide in 2020 [33]. Even though 
triple-negative breast cancer (TNBC) only accounts for 
15–20% of all breast cancers, the aggressive behavior and 
lacking effective target agents make it a great challenge in 
clinical practice. Compared with other subtypes of breast 
cancer, TNBC shows a higher rate of metastasis and infe-
rior prognosis [9, 19].

As the most important advance in the treatment of 
TNBC in recent years, immunotherapy using immune 
checkpoint inhibitors (ICIs) shows promising efficacy 
both in early-stage and metastatic TNBC [6, 31]. How-
ever, inconsistent results have been observed by various 
studies. The Impassion130 trial showed the addition of 
PD-L1 inhibitor atezolizumab to first-line nab-paclitaxel 
significantly improved progression-free survival (PFS) 
and overall survival (OS) in PD-L1-positive patients [30]. 
The KEYNOTE-355 trial reported that in PD-L1-positive 
TNBC, the PD-1 inhibitor pembrolizumab combined 
with first-line chemotherapy could significantly increase 
the benefit of PFS [11]. However, the most recent Impas-
sion131 trial failed to exhibit the benefit of atezolizumab 
combined with paclitaxel even in PD-L1-positive patients 
[14]. Besides, the disparity in the benefits of ICIs neoad-
juvant administration was also demonstrated in the early-
stage TNBC. Both KEYNOTE-522 trial and Impassion031 
trial showed the combination ICIs and chemotherapy 
increased pathological complete response (pCR) rates, 
while the NeoTRIPaPDL1 phase III trial failed to show 
any pCR improvement when atezolizumab was added to 
neoadjuvant chemotherapy [1, 14].

Factors such as steroid premedication and different 
chemotherapy backbones may contribute to these conflict-
ing results, but one of the most important factors is the 
poor predictive value of PD-L1 [14, 34]. There are dis-
crepancies among various PD-L1 detection assays, as well 
as differential expressions between primary and metastatic 
sites [28, 29]. A proportion of PD-L1-positive patients do 
not respond to ICIs while some PD-L1-negative patients 
do [20]. The above-mentioned issues limit PD-L1 as a 
biomarker for immunotherapy efficacy prediction. Herein, 
searching for a more reliable predictive marker is urgently 
needed.

Previous studies mainly focused on molecular bio-
markers of malignant cells, such as mRNA panels and 
protein signatures, to find more specific TNBC classifica-
tion methods and construct prognostic prediction models. 
However, more and more pieces of evidence show that 
the tumor microenvironment (TME) plays a crucial role 
in tumor initiation, invasion, and metastasis, including 

various immune cells, stromal cells, and many other cells 
that interact with the malignant ones. Recently, researchers 
pointed out the importance of TME in response to immu-
notherapy [15]. Therefore, analyzing the cellular heteroge-
neity of TME may provide more detailed information for 
precise classification of TNBC and predicting the appli-
cability of immunotherapy.

In this study, 64 immune and stromal cells in the TME of 
TNBC were screened for prognostic relevance and applied to 
model construction in silico. We evaluated the distinguish-
ing efficacy of our scoring system in identifying patients’ 
survival outcomes and immune checkpoint molecule expres-
sions using bioinformatics analysis. Additionally, we con-
firm our findings in tissue samples from the SYSUCC cohort 
by immunohistochemical (IHC) staining to facilitate its 
clinical application.

Materials and methods

Data acquisition

Our study design is displayed in Fig. 1. The inclusion cri-
teria for patients from The Cancer Genome Atlas (TCGA), 
Molecular Taxonomy of Breast Cancer International Con-
sortium (METABRIC), and the Gene Expression Omnibus 
(GEO) datasets are as follows: (a) histologically diagnosed 
with triple-negative breast cancer (TNBC); (b) available 
for clinical data, such as overall survival (OS) data; and 
(c) available for xCell-derived score matrix. Patients with-
out active follow-up were excluded. Through preliminary 
screening, a total of 158 patients from the TCGA dataset 
were included as the training cohort, and the validation 
cohort consisted of patients from the METABRIC database 
(N = 297) and GSE58812 (N = 107). The TCGA dataset was 
obtained from TCGA using gdc-client. METABRIC data 
were downloaded from cBioPortal under the guidelines of 
the website (http:// www. cbiop ortal. org/) [12]. The mRNA 
expression matrix of GSE58812 was downloaded from the 
GEO dataset (https:// www. ncbi. nlm. nih. gov/ geo/) [21].

Collection of specimens

For the Sun Yat-sen University Cancer Center (SYSUCC) 
cohort, the following criteria were used for the patient 
selection: (a) pathologically diagnosed with TNBC and 
underwent curative surgery; (b) the molecular subtypes 
were determined by immunohistochemistry (IHC) staining, 
and Her2 status was further validated using fluorescence 
in situ hybridization (FISH) if indecipherable in IHC; (c) 
the staging of the patient was determined according to 
the AJCC 7th TNM staging system; (d) without a second 
primary malignancy; (e) no neoadjuvant chemotherapy or 

http://www.cbioportal.org/
https://www.ncbi.nlm.nih.gov/geo/
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immunotherapy before operation. Also, patients without 
active follow-up were excluded. As a result, a total of 51 
patients diagnosed between 2009 and 2011 were enrolled 
in the SYSUCC cohort. This study was conducted under 
the guidance of the Helsinki Declaration and approved by 
the institutional review committee of SYSUCC.

Immunohistochemical staining

IHC was performed on tissue specimens collected from 
the SYSUCC cohort. The specimens were fixed with for-
malin and then embedded with paraffin. The embedded 
specimens were cut into 3um sections before staining and 
further undergo the antigen-retrieval procedure at 98 °C 
in citrate buffer (pH 6.0) for 10 min. To reduce the pos-
sibility of the nonspecific staining caused by endogenous 
peroxidase, sections were placed in the 3% hydrogen per-
oxide and incubated for 10–15 min, followed by a rinse 
with buffer solution twice. The sections were further incu-
bated with diluted primary antibody overnight at 4 °C. 
Rinse twice with TBS, then incubate with HRP Polymer 
for 30 min at room temperature. The 3,3′-diaminobenzi-
dine (DAB) system was used as the chromogen and the 
sections were counterstained with hematoxylin[35]. The 
slides were observed using the NIKON ECLIPSE 80i 
microscope. IHC results were evaluated by two independ-
ent pathologists who were blinded to the clinical data.

Prognosis‑related cell selection and model 
construction

We used the xCell algorithm to accurately identify the 
enrichment of multiple cells in the TME of TNBC. xCell 
is a method for cell-type enrichment analysis using sin-
gle-sample Genome Set Enrichment Analysis (ssGSEA), 
which uses a spill-over compensation technique to reduce 
dependencies between closely related cell types. And it 
integrates the advantages of gene set enrichment with 
deconvolution approaches and covers a variety of immune 
and stromal cells. Through calculating ssGSEA scores for 
gene signatures and averaging the scores of all signatures 
corresponding to cell types, information on the enrichment 
scores of 64 cell types were extracted from all samples[3]. 
We found 6 cells with prognostic significance by the uni-
variate Cox regression analysis and enrolled them into the 
random survival forest (RSF) model. Before undergoing 
the univariate Cox survival analysis, patients were divided 
into two groups based on the median of xCell scores. The 
log-rank test was used to further analyze the correlation 
between prognostic cells and survival probability. The 
RSF model was constructed to select the key cells and 
determine their comprehensive roles in survival. Accord-
ing to the decision tree with distinct survival, 158 TNBC 
patients in the TCGA cohort were divided into 4 immu-
nophenotypes based on the 3 main prognostic cells.

Fig. 1  Study design. A risk 
score system was constructed 
in the training cohort (TCGA, 
N = 158) and further vali-
dated in the validation cohorts 
(GSE58812, METABRIC, 
SYSUCC)
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Establishment of the scoring system

Multivariate Cox regression was applied to estimate the 
risk score using the generated coefficients and correspond-
ing expression. Furthermore, the patients were divided into 
the low-risk and high-risk groups based on their risk scores. 
Time-dependent receiver operating characteristic (ROC) 
analysis was performed and the areas under curve (AUC) at 
different time points were calculated to assess the discrimi-
nation value of the score. Survival analyses, including log-
rank test, univariate and multivariate Cox regression models 
were adopted. The fractions of tumor-infiltrating immune 
cells were assessed by uploading the expression matrices to 
the cell-type identification which estimated relative subsets 
of RNA transcripts and calculated the scores based on LM22 
signatures with 1000 permutations.

Statistical analysis

The univariate and multivariate Cox regression was per-
formed to confirm the independent predictors for OS using 
the “survival” package in R software[36]. The threshold was 
determined using the “randomForestSRC” package in R 
software. The survival curves related to prognostic analysis 
were prepared by the Kaplan–Meier method, and log-rank 

tests were used to determine the significance of survival 
differences. A time-dependent ROC analysis and the AUC 
were adopted to evaluate the accuracy of survival predic-
tion by using the “timeROC” package in R software[8]. The 
significance of differences in the fractions of immune cells 
was estimated by the Wilcoxon test. All reported P values 
have corresponded to bilateral tests and the P value < 0.05 
indicated that the difference between the groups was statisti-
cally significant. All statistical analyses were performed on 
R software version 3.5.3 (https:// www.r- proje ct. org/).

Results

Selection of prognosis‑related cells

The contents of 64 immune and stromal cells in the TME 
of TNBC were calculated through the xCell algorithm. An 
overview of the scores in the training cohort was shown in 
Fig. 2a. To further determine the prognostic value of these 
cells, a univariate Cox regression model was applied.  CD4+ 
memory T cells (HR [hazard ratio] 0.324, 95%CI [confi-
dence interval] 0.138–0.765, P < 0.05), M2 macrophages 
(HR 2.918, 95%CI 1.217–6.996, P < 0.05), mv endothelial 
cells (HR 2.780, 95%CI 1.152–6.707, P < 0.05),  CD8+T 

Fig. 2  Selection of prognosis-related cells and survival analysis. a 
The profile displayed the scores of 64 immune and stromal cell types 
in the tumor microenvironment of TNBC from the TCGA cohort, 
which is extracted by the xCell algorithm. b 6 types of cells were 

selected by the univariate Cox regression analysis. c Kaplan–Meier 
analyses of 6 cell types in 562 samples from TNBC patients from 
TCGA, METABRIC, and GSE58812. A log-rank test was used for 
data analysis

https://www.r-project.org/
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cells (HR 0.373, 95%CI 0.158–0.878, P < 0.05), endothelial 
cells (HR 2.622, 95%CI 1.080–6.376, P < 0.03), and Th2 
cells (HR 0.409, 95%CI 0.175–0.957, P < 0.05) were iden-
tified (Fig. 2b). Kaplan–Meier analysis of these 6 kinds of 
cells were shown in Fig. 2c. The log-rank test of OS showed 
consistent results that higher scores of  CD4+ memory T 
cells,  CD8+ T cells, and Th2 cells were associated with bet-
ter prognosis, while M2 macrophages, endothelial cells, and 
mv endothelial cells did the opposite.

Model construction and patient classification

To comprehensively quantify the TME of TNBC and bet-
ter predict patients’ prognosis, the random survival forest 
(RSF) model was applied to construct a novel scoring sys-
tem. The above-mentioned 6 prognosis-related cells were 
further selected by variable importance (VIMP) and mini-
mal depth analysis for the model construction (Fig. 3a, b). 
During the VIMP analysis, M2 macrophages showed the 
highest variable importance, followed by  CD4+ memory 
T cells. However, Th2 cells should be discarded from the 
model for their negative VIMP. Through the minimum 

depth analysis, we found that the minimum depth of  CD4+ 
memory T cells is the smallest, indicating that they are the 
most powerful in prognostic prediction. Th2 cells have the 
largest minimum depth and exceed the selection thresh-
old, so they are excluded. As is well known, the endothe-
lial cell subtypes are hard to distinguish by IHC assay. 
To facilitate clinical application, only  CD4+ memory T 
cells,  CD8+ T cells, and M2 macrophages were selected 
to build up the model. The decision tree was applied for 
phenotypes classification. Accordingly, patients were 
divided into 4 phenotypes based on the scores of these 3 
kinds of cells. Patients with a  M2low feature were classi-
fied as type 1 (N = 79, 50%),  M2highCD8+ThighCD4+Thigh as 
type 2 (N = 30, 19%),  M2highCD8+ThighCD4+Tlow as type 3 
(N = 8, 5%), and  M2highCD8+Tlow as type 4 (N = 41, 26%) 
(Fig. 3c). To further quantify, the score of each patient 
was evaluated by the multivariate Cox regression model. 
The scores of types 3 and 4 were significantly higher than 
those of types 1 and 2, which was consistent with the 
results obtained by the RSF model, indicating that types 3 
and 4 patients are in a relatively high-risk state (Fig. 3d). 

Fig. 3  Model construction and patient classification. a The impor-
tance value analysis of the 6 candidate cells in the random survival 
forest model. b The minimal depth analysis of the 6 candidate cells. 
The vertical line in red means the selection threshold. c The decision 

tree exhibited that 158 TNBC patients were divided into 4 phenotypes 
by the scores of 3 cell types. d The risk score of each patient was 
shown. Columns represent samples sorted by the score from low to 
high
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Hence, types 1 and 2 patients were merged into the low-
risk group, while types 3 and 4 patients were in the high-
risk group.

Prognostic and diagnostic value of the classifier

The analysis above was used to construct a comprehensive 
indicator and identify 4 phenotypes and 2 subgroups of 
TNBC patients with distinctive features. To verify the prog-
nostic value of our scoring system, Kaplan–Meier analysis 
was applied in the training cohort. The 5-year survival curves 
of type 1 and type 2 showed better survival than those of 
type 3 and type 4 (Fig. 4a). To validate the prediction accu-
racy of our scoring system, the time-dependent AUC and 
ROC curves were employed for further evaluation (Fig. 4b, 
c). The time-dependent AUC was higher than 0.6, suggesting 
that the prediction model may be an independent factor in 
predicting the prognosis of TNBC. We found that the AUC 
was 0.706 in the 1st year, 0.607 in the 3rd year, and 0.678 in 
the 5th year, indicating the moderate ability of our system in 
prognosis prediction. In the training cohort, Kaplan–Meier 
analysis of OS suggested that the low-risk group had a better 
prognosis than the high-risk group (P < 0.05) (Fig. 4d). To 
confirm that the scoring system shared a similar prognostic 
value in different populations, we applied it to the validation 

cohorts. The result of the METABRIC cohort was consistent 
with that of the training cohort, disclosing that our scoring 
system was able to discriminate patients with better or worse 
OS (Fig. 4e). Though the difference did not reach statistical 
significance, the low-risk group showed a better OS in the 
GSE58812 cohort.

To further investigate the rationality and universality 
of our scoring system, an IHC assay was performed in the 
SYSUCC cohort (N = 51) to facilitate its clinical application. 
Based on the evaluation of  CD4+ T cells,  CD8+ T cells, and 
M2 macrophages, patients were classified into the above-
mentioned 4 phenotypes and a consistent result could be 
achieved in the Kaplan–Meier analysis of OS (Figure S2a, 
b).

Classification associated with immune pathways 
and checkpoint molecules

Further results showed the score of each patient and its cor-
relation with the expressions of immune-related genes and 
clinical prognosis. A total of 404 differentially expressed 
genes were included in this analysis. Patients with lower 
scores expressed higher levels of immune-related genes, 
which indicated that these patients have a more active 
immune microenvironment. For overall survival, patients 

Fig. 4  Prognostic and diagnostic value of the classifier. a Kaplan–
Meier analysis of OS among the 4 phenotypes. b Time-dependent 
ROC analysis of the classifier regarding OS in patients with TNBC. c 
Receiver operating characteristic (ROC) curves showed the diagnos-

tic value of 1, 3, and 5 years after diagnosis. d Kaplan–Meier analysis 
of OS between the 2 groups in the TCGA cohort. e Kaplan–Meier 
analysis of OS between the 2 groups in the validation cohorts. A log-
rank test was used for data analysis
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with higher scores seemed to have a higher rate of death, 
which indicates that the newly defined scoring system may 
be an independent and promising prognostic predictor for 
TNBC (Fig. 5a). Subsequent analyses proved that several 
key immune checkpoint molecules, PD-L1, PD-1, and 
CTLA-4, were significantly upregulated in TNBC patients 
with lower scores, demonstrating that the low-risk group 
might be more sensitive to immunotherapy. The expres-
sion of some immune-related molecules, such as LAG3 and 

TIGIT, was significantly higher in the low-risk group, indi-
cating their roles as potential therapeutic targets in TNBC 
treatment (Fig. 5b). We then applied GSEA to examine the 
relevant signaling pathways involved in patients with low 
scores. Our results revealed that several key immune-related 
pathways were significantly enriched in the low-risk group, 
including immune response regulating cell surface recep-
tor signaling, T cell and B cell activation, lymphocyte and 
B cell-mediated immunity, immunoglobulin production, 

Fig. 5  Immune characteristics of different risk groups. a Heatmap 
shows the correlation between risk score, prognosis, and the expres-
sions of immune-related genes. A total of 404 differentially expressed 
genes were included in this analysis. The screening criteria of genes 
were: FDR < 0.05 and |logFC|> 1. A Chi-square test was adopted 
for data analysis. b Differentially expressed genes between the two 
groups. Compared with the high-risk group, several key immune 
checkpoint molecules that were upregulated in the low-risk group 

were pointed out. c GSEA pathway enrichment analyses of differen-
tially expressed genes between the two groups. d The immune score 
and stromal score of the 2 groups were evaluated by the ESTIMATE 
algorithm. Blue and red represent the low-risk and high-risk groups, 
respectively. e Comparison of 28 infiltrating immune cells between 
the two groups. The CIBERSORT algorithm was employed. Blue and 
red represent the low-risk and high-risk groups, respectively
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cytokine receptor binding, T cell receptor complex, and 
antigen receptor-mediated signaling (Fig. 5c, S1). Moreo-
ver, the ESTIMATE method was employed to explore the 
overall TME status. A high immune score, but not the stro-
mal score, was observed in the low-risk group (Fig. 5d). To 
further investigate the cooperative contribution of infiltrat-
ing immune cells between the two groups, the CIBERSORT 
algorithm was used to estimate the proportion of 28 immune 
cells in the TCGA cohort (Fig. 5e). Patients in the low-risk 
group presented a higher percentage of antitumoral immune 
cells, including activated B cells (P < 0.01), activated  CD4+ 
T cells (P < 0.01), activated  CD8+ T cells (P < 0.01), NK 
cells (P < 0.01), and activated dendritic cells (P < 0.01). 
Taken together, these results showed that there was a more 
active immune microenvironment in the low-risk group 
compared with the high-risk one.

Discussion

TNBC is a group of heterogeneous tumors, including sev-
eral distinct molecular subtypes [23]. So far, a variety of 
genomic classifications and subtypes have been proposed. 
Due to the remarkable progress in immunotherapy, one of 
the most widely accepted subtypes is immune-enriched [2]. 
How to identify this subgroup of patients in clinical prac-
tice remains unresolved. The current study comprehensively 
analyzed 64 cell types of the TME and found that infiltrating 
with a high density of  CD4+ memory T cells,  CD8+ T cells, 
and Th2 cells were associated with superior survival while 
infiltrating with more M2 macrophages, endothelial cells, 
and mv endothelial cells contribute to worse survival. We 
aimed to establish a scoring system that can more compre-
hensively reflect the biological characteristics of the tumor 
microenvironment. However, due to the poor prognostic 
prediction ability of Th2 cells and the difficulty in distin-
guishing endothelial cell subtypes, an easy-to-use prognostic 
model with 3 cell types was built up in this study. Based on 
the scores of M2 macrophages,  CD8+ T cells, and  CD4+ 
memory T cells, patients with TNBC were divided into 4 
phenotypes and 2 groups.

As it is well known,  CD4+ Th1 cells and  CD8+ T cells 
are the two main components of TILs [32].  CD4+ Th1 cells 
secrete IL-2 and IFN to activate and promote the prolifera-
tion of  CD8+ T cells, which subsequently release cytotoxic 
cytokines and kill cancer cells directly [18]. Accumulat-
ing data prove that  CD4+ Th1 cells and  CD8+ T cells are 
associated with better survival both in the early-stage and 
metastatic TNBC, which may serve as a promising marker 
for identifying patients who are more likely to benefit from 
ICIs [7, 13, 25, 27]. As a typically pro-tumorigenic cell, M2 
macrophage plays an immunosuppressive role in the TME 
by inhibiting the activation of M1 macrophage and secreting 

IL-10 and TGF-β [10]. Current evidence supports the nega-
tive prognostic role of M2 macrophages in breast cancer [4]. 
Tumor endothelial cells may provide activation signals or 
secrete biglycan to stimulate cancer cell metastasis. Recent 
studies have emphasized that “angiocrine factors” released 
by tumor endothelial cells can enhance the invasiveness of 
tumor cells [26]. Herein, excluding endothelial cells and mv 
endothelial cells from our model compromised its accuracy 
and reliability, which was one of our limitations.

During the Kaplan–Meier analysis, a distinct difference 
in survival was observed among different subtypes, which 
was further confirmed in the SYSUCC cohort. The low-risk 
group exhibited a better prognosis than the high-risk one 
in the training cohort, but there was a slight difference in 
the GSE58812 cohort (P = 0.088). Part of the explanation 
was that the sample size of this cohort was relatively small 
(N = 107), especially when it was classified into 2 groups. 
And the moderate predictive ability of our 3 cell types model 
might be one reason that accounted for this finding. Through 
an in-depth exploration of the differentially expressed genes 
of the 2 groups, we found that the immune microenviron-
ment of the low-risk group was more active, with immune-
related pathways enriched and immune checkpoint mole-
cules upregulated. At the same time, a higher percentage 
of anti-tumor immune cells were infiltrated in the TME of 
the low-risk group, implying there was both a consuming 
anti-cancer immune response and an increased anti-immune 
response in this microenvironment. The active anti-cancer 
immune response might be restored by that application of 
immune checkpoint blockade, such as anti-PD-1/PD-L1 
treatment.

As previous studies reported, approximately 20% of 
TNBCs were classified as immunomodulatory (IM), in 
which immune cell markers and signalings, such as NFkB, 
TNF, JAK, and cytokine signaling, were highly enriched. 
Through histological assessment, RNA detection, and gene 
expression analysis, it was proven that the IM subtype was 
one kind of tumor with substantial infiltrating lymphocytes, 
which owned a better prognosis compared with other sub-
types of TNBC [24]. Besides, more immune checkpoint 
molecular gene expressions, such as PD-1, PD-L1, and 
CTLA-4, were found in the TME of IM subtype, which was 
quite similar to the low-risk group of our study [5].

Compared with the heterogeneity in PD-L1 expres-
sion, this immune infiltrated cell-based scoring system 
could better reflect the immune status of the TME, thus 
more accurately identifying the population with stronger 
immune activity against tumor cells [22]. Besides, there 
was no apparent correlation between the level of immune 
cell infiltration and that of PD-L1 expression in the TME. 
Herein, combining two or more methods to capture char-
acteristics of the TME may be more effective as a com-
prehensively predictive indicator for immunotherapy [16]. 
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In a meta-analysis, biomarkers such as PD-L1 expression 
combined with tumor mutational burden (TMB) had been 
demonstrated an advantageous performance than PD-L1 
expression or TMB alone [17]. Whether the combination 
of TMB and our classifier has superior performance still 
needs to be further confirmed in future studies.

The study has the following limitations. First of all, this 
study is a retrospective analysis of public data sets that lack 
clinical information to improve their accuracy and cannot 
eliminate the heterogeneity between different populations. 
Therefore, prospective studies are needed to verify the pre-
dictive value of our scoring system, especially in terms 
of immunotherapy response prediction. Furthermore, the 
selected cells were not analyzed at all tumor sites due to the 
unavailability of pathological slides from the common data 
set, and the tissue microarray only reflected the average cel-
lular composition. Additionally, only 3 types of prognostic-
related cells were included in the model. There may be other 
more comprehensive panels that we missed. Subsequent 
inclusion of some stromal cells may more fully reflect the 
features of TME and minimize the potential of bias.

Conclusion

In conclusion, a risk scoring system based on 3 cell types of 
the TME was developed and validated, which could cluster 
patients with TNBC into 4 phenotypes and 2 groups. And 
the low-risk group has a superior prognosis and more active 
immune activity than the high-risk one. Though this novel 
scoring system might predict the survival, immune activity, 
and potential therapeutic response of patients, we recom-
mend further validating its efficacy in prospective studies.
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