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Mesenchymal stromal cells (MSCs) have demonstrated therapeutic potential in
inflammatory models of human disease. However, clinical translation has fallen short of
expectations, with many trials failing to meet primary endpoints. Failure to fully understand
their mechanisms of action is a key factor contributing to the lack of successful
commercialisation. Indeed, it remains unclear how the long-ranging immunomodulatory
effects of MSCs can be attributed to their secretome, when MSCs undergo apoptosis in
the lung shortly after intravenous infusion. Their apoptotic fate suggests that efficacy is not
based solely on their viable properties, but also on the immune response to dying MSCs.
The secondary lymphoid organs (SLOs) orchestrate immune responses and play a key
role in immune regulation. In this review, we will discuss how apoptotic cells can modify
immune responses and highlight the importance of MSC-immune cell interactions in SLOs
for therapeutic outcomes.

Keywords: mesenchymal stromal cells, cell therapy, immune responses, apoptosis, secondary lymphoid organs,
spleen, lymph nodes, efferocytosis
INTRODUCTION

Mesenchymal stem cells, more accurately known as mesenchymal stromal cells (MSCs), are one of
the most widely investigated therapeutic cell types, owing to their ease of accessibility and expansion
from tissues free of ethical concerns, as well as their immunomodulatory capacity in various
preclinical disease models (1–3) . MSCs can be sourced from the stroma of almost all tissues, but
most commonly from bone marrow (BM), adipose tissue (AD) and umbilical cord (UC) (4, 5).
MSCs are contained within a heterogeneous population expressing CD105, CD73 and CD90 while
lacking CD45, CD11b, CD19 and HLA-DR. They are characterized by their adherence to plastic and
ability to differentiate into osteoblasts, adipocytes and chondrocytes in vitro (6).

With increasing clinical translation, however, this minimal set of criteria is now recognized as
inadequate for defining MSCs. It does not reflect MSC potency, which is largely based on broad
immunomodulatory properties (7), rather than their self-renewal or multipotential capacity (8, 9). It
does not address changes in marker expression levels or biological properties due to culture
expansion and cell manufacturing processes (10), including cryopreservation and freeze-thawing
(11). Additionally, it does not identify the risk profile of the MSC product, particularly with regard
to hemocompatibility of intravenously (IV) delivered cells and their potential to trigger adverse
thromboembolic events (12). Thus, proposed amendments to the criteria have included functional
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potency assays based on the immunomodulatory activity of
MSCs (13), and profiling of the hemocompatibility of the
diverse array of MSC products now in clinical use (14).

The preclinical efficacy of MSCs in various unrelated
conditions such as graft-versus-host disease (GvHD), Crohn’s
disease, kidney transplantation, myocardial infarction, stroke,
diabetes, acute respiratory distress syndrome (ARDS), multiple
sclerosis, and brain and spinal cord injury, mainly relates to
immune regulation (15–20). In vitro studies have shown that
MSCs can modulate adaptive and innate immune responses.
MSCs suppress T cell proliferation, cytokine response (e.g. IFN-g
production) and cytotoxic activity in response to antigen-specific
stimuli (21–23) whist promoting regulatory T cells (Tregs), via
their production of soluble factors (Figure 1) such as nitric oxide
(NO), indolamine 2,3 dioxygenase (IDO) and transforming
growth factor-beta (TGF-b) (24, 30–32). MSCs can also
downregulate the cytokine responses of innate immune cells,
including dendritic cells (DCs) and monocytes, via the
expression of prostaglandin E2 (PGE2) (33). How these in vitro
findings relate to their mode of action remains to be clarified,
given the complexity of immune responses in vivo and the short
persistence of MSCs following infusion.
MSC SURVIVAL AND BIODISTRIBUTION

To date, studies have investigated different routes of MSC
administration in order to maximise therapeutic efficacy. The
different administration routes result in variations in MSC
survival. IV infusion has been the most commonly used and
studied method for MSC delivery because it is convenient,
minimally invasive and reproducible (4). However, MSCs
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administered via the IV route are entrapped in the lung and
rapidly cleared, with few traces detected in other tissues (34, 35).
Studies using various MSC detection techniques, including MSCs
constitutively expressing fluorescent proteins or luciferase, or
labelled with fluorescent dyes or radioactive tracers, showed that
viable MSCs are detected in the lung within 24 hours of IV
administration but not at 72 hours (35–37). The decrease in
detectable viable cells is directly proportional to the increase in
dead cells in the lungs, indicating that IV-infused MSCs undergo
cell death (37). Activation of caspase 3, a hallmark of apoptosis,
in MSCs further indicates that MSCs undergo programmed cell
death following their entrapment in the lung (38, 39).

The survival of IV-delivered MSCs can also be compromised
if cells trigger the instant blood-mediated inflammatory reaction
(IBMIR) due to incompatibility with blood (40). Expression of
secreted and cell surface immunogenic factors (e.g. tissue factor
(TF)/CD142) vary across MSC tissue sources and cell
manufacturing conditions, including freeze-thawing and
culture passaging (12, 14). These factors can activate the innate
immune system and trigger the coagulation and complement
cascades, which limit MSC engraftment and efficacy, but also
increase the potential for adverse thromboembolic events (41).

Other injection routes, including intraperitoneal (IP),
subcutaneous (SC), and intramuscular (IM), which bypass the
lung, have also been examined. Prolonged detection of MSCs has
been observed following IP and SC injection (42, 43). Following
IM injection, a dwell time of up to 5-month was observed (44).
Other studies have administered MSCs directly into the diseased
tissue, for example, intratracheal administration in models of
lung inflammation or intrathecal administration in models of
spinal cord injury or neuroinflammatory disease (45–48). In
these studies, MSCs are directly exposed to an inflammatory
FIGURE 1 | Immunomodulatory capacity of viable and apoptotic MSCs. (A) Live or viable MSCs can sense the microenvironment and respond to cytokine signals by
polarizing into ‘pro-inflammatory’ or ‘anti-inflammatory’ phenotypes (24). ‘Anti-inflammatory’ MSCs produce anti-inflammatory soluble factors, including IDO and TGF-b, to
modulate immune cell function and dampen inflammation. MSCs also produce extracellular vesicles (EV), such as exosomes, that can be immunomodulatory, depending
on their cargo (19, 25). (B) Excessive inflammatory stress or the presence of cytotoxic immune cells will induce apoptosis of MSCs (26). MSCs can undergo a pre-
apoptotic stage, known as autophagy. Autophagic MSCs, as well as the EVs produced during this stage, may have roles in immunosuppression (27). (C) As MSCs
undergo apoptosis, their apoptotic secretome can promote an anti-inflammatory microenvironment and attract phagocytes for efferocytosis (28). Phagocytes that have
engulfed the apoptotic MSCs become immunomodulatory and have downstream regulatory effects on adaptive immune cells, such as T cells (29). Figure was created
with BioRender.com.
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environment, which can influence MSCs survival and
therapeutic efficacy (26, 49). Pre-conditioning of MSCs via
hypoxia or serum deprivation for instance, can promote cell
survival when subsequently exposed to an ischemic environment
(50–52). Although the quantity, duration and the type of stress
insult matter, overall, excessive stress will likely predispose MSCs
to cell death (26).

In some disease settings, dead or dying MSCs and their
associated ‘by-products’ can contribute to therapeutic efficacy
(38, 39, 53–55) raising additional questions about their mode of
action. How are MSCs killed in different microenvironments?
How does the dying process contribute to therapeutic efficacy in
different disease settings? Importantly, how do IV administered
MSCs dying in the lung exert anti-inflammatory effects in distal
organs in disease settings that seemingly do not involve the lung?
MSC APOPTOSIS AND THEIR
IMMUNOSUPPRESSIVE ‘BY-PRODUCTS’

The molecular pathway that induces the death of MSCs in vivo is
unclear and complicated by pre-existing disease, inflammatory
cell infiltrate and the presence of different pathogens (26). The
stress signals from the inflammatory microenvironment can
trigger the apoptosis of MSCs. In a mouse model of GvHD,
the presence of elevated numbers of cytotoxic CD8+ T cells and
CD56+ natural killer (NK) cells in the lung caused MSC
apoptosis (38). Settings that do not involve cytotoxic cell
infiltrate likely involve other mechanisms. We recently showed
that disabling the intrinsic (mitochondrial) pathway of apoptosis
in MSCs prevented caspase 3 activation in the lung shortly after
IV injection, indicating that MSCs were predominantly killed via
the intrinsic pathway in non-GvHD settings (39). Activation of
coagulation and complement by infused MSCs has also been
shown to damage and reduce viability of MSCs (40, 56). Stronger
activation of these proteolytic cascades is demonstrated by
freeze-thawed (without culture recovery) and high-passage
MSCs compared with fresh culture-derived, minimally
expanded cells. This is due to variations in expression of
immunogenic triggers, which may subsequently impact their in
vivo therapeutic function (11).

In general, apoptosis is an ordered event that creates a
transient immunosuppressive microenvironment via the
release of anti-inflammatory mediators, including IL-10, TGF-
b, CCR5, annexin-A1 and thrombospondin-1 (Figure 1) (28).
Besides these secreted factors, cells can undergo a pre-apoptotic
stage known as autophagy when they sense danger or stress
signals from the microenvironment (57). By culturing MSCs in a
stressed environment, autophagic MSCs can be pre-engineered
to secrete immunomodulatory factors, such as TGF-b, to
regulate T cell proliferation (58). Interestingly, MSCs have
been shown to communicate with damaged cells via
bidirect ional transfer of mitochondria to increase
mitochondrial biogenesis and rescue the cellular function of
damaged cells (27). In preclinical models of myocardial
infarction and respiratory disorders, mitochondrial transfer has
Frontiers in Immunology | www.frontiersin.org 3
been shown to contribute to the therapeutic effects of MSCs
(Figure 1) (27, 59–61). MSCs can transfer mitochondria to
macrophages via tunnelling nanotubules, cell fusion or
extracellular vesicles (EV), which influence the macrophage
function to modulate inflammation (59, 62). Whilst
mitochondrial transfer has yet to be demonstrated in apoptotic
MSCs, apoptotic bodies, which are a distinct type of extracellular
vesicles formed when apoptotic cells disassemble into fragments
(63), may also contribute to therapeutic efficacy upon
engulfment by macrophages (64). Thus, MSCs are susceptible
to cell death post-administration, which contributes to the anti-
inflammatory effects of MSC therapy (10, 39).
EFFEROCYTOSIS OF MSCs

Rapid clearance of apoptotic debris by phagocytes is essential in
maintaining body homeostasis. Known as efferocytosis, this
physiological process ‘silently’ removes apoptotic cells,
inducing peripheral tolerance and avoiding inflammation.
Phagocytic cells, including macrophages and monocytes, play a
critical role in MSC therapy, as demonstrated in disease models
where depletion of macrophages with clodronate liposomes
renders MSC therapy ineffective (33, 36, 38). Phagocytes that
have engulfed apoptotic cells, including MSCs, display a
regulatory phenotype characterized by upregulation of PD-L1,
IDO, COX2 and CD206, increased production of IL-6, IL-10,
TGF-b and PGE2, and decreased production of pro-
inflammatory cytokines such as TNF-a and IL-12 (29, 37, 65).
Phagocytes that have engulfed apoptotic MSCs can suppress T
cell proliferation, downregulate CD4+ T cell activation and
promote Foxp3+ Treg generation (29, 37). The inhibition of
COX2 abrogated the immunosuppressive capacity of efferocytic
monocytes that had engulfed apoptotic MSCs, highlighting the
importance of the PGE2/COX2 axis in this immunosuppressive
function (29).

Since MSC apoptosis and the subsequent response of immune
cells to this process contributes to their immunomodulatory
effects, an outstanding question is whether viable MSCs are still
required for MSC therapy, or can pre-inactivated MSCs be used
as an alternative?
APOPTOTIC OR DEAD MSCs AS A
THERAPEUTIC CELL OPTION

Several studies have investigated the efficacy of in vitro induced
apoptotic, dead or inactivated MSCs. Treatment outcomes can be
influenced by the type and duration of stimulation used to
inactivate the cells, and also the disease setting (26). Apoptotic
MSCs (39, 53, 54), but not dead MSCs (36, 66) could inhibit lung
inflammation. In certain disease settings, such as LPS-induced
sepsis, inactivated or dead MSCs could replicate the
immunomodulatory effects, as pre-inactivation enhanced the
phagocytosis of MSCs (55, 67). In other settings, non-viable
MSCs were ineffective or did not fully replicate the effects of
June 2022 | Volume 13 | Article 892443
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viable MSCs (33, 42, 67). For instance, in GvHD, apoptotic MSCs
had to be administered at a much higher dose than viable MSCs
to achieve comparable therapeutic benefits (38). It is plausible
that inflammatory diseases driven by innate immune or
phagocytic cells are more likely to benefit from treatment with
inactivated MSCs, while suppression of T cell responses require
MSCs with an active secretome (67). Importantly, the type and
stage of cell death at the time of MSC administration are key
considerations, as apoptosis, but not necrosis or lytic cell death,
induces anti-inflammatory responses (68).

Although MSC apoptosis and the subsequent host phagocytic
response contribute to immunomodulation, there remains much
to learn about the full mechanisms of MSC therapy. As MSC
apoptosis and efferocytosis occurs in the lung post-infusion, how
does this dampen inflammation in other organs or tissues? In
vitro studies have shown that MSCs can regulate immune cell
function via their paracrine activity, but such molecules must
have a relatively long half-life and broad biodistribution for this
to be a plausible mechanism in vivo. Immune responses are
initiated and maintained in the SLOs, which play a key role in
immune regulation during health and disease. Thus, our
knowledge of how MSC therapy modulates immune responses
would be improved by considering the known function of SLOs,
their role in clearance of apoptotic cells and gaining a better
understanding of the effects of MSCs in these organs.
ORGANIZATION AND FUNCTION OF
SECONDARY LYMPHOID ORGANS

Primary lymphoid organs, also known as central lymphoid
organs, are the sites for the development and maturation of
leukocytes. Primary lymphoid organs include the bone marrow
and thymus (69–71). Lymphocytes (a class of leukocytes, e.g. T
and B cells) generated in primary lymphoid organs then seed the
SLOs where they initiate adaptive immune responses. SLOs
include lymph nodes (LNs), spleen, tonsils, adenoids, Peyer’s
patches, and mucosal-associated lymphoid tissues (MALT) (71).
The localisation of lymphocytes in SLOs maximizes their
interaction with foreign antigens that drain to the SLOs via
blood or lymphatics. Antigen presenting cells, such as DCs, can
also transport antigens to SLOs and activate lymphocytes there.
Once activated, these lymphocytes undergo expansion and
differentiate into effector or memory cells to provide antigen-
specific responses. This review will focus on the spleen and LNs
as the major SLOs.

Structure and Function of the Spleen
The spleen is a network of branching arterial vessels that
functions to filter blood, allowing for the capture of blood-
borne pathogens and antigens, and is a key organ for iron
metabolism and erythrocyte homeostasis (72, 73). Although
early research suggested that excision of the spleen does not
largely impact the human immune system, its functional
significance has been demonstrated through various studies
Frontiers in Immunology | www.frontiersin.org 4
over the years. While the human and mouse spleen is similar
in terms of gross structure and immune cell function, some key
differences are known to exist and have been reported elsewhere
(73–75). This section will focus on the mouse spleen.

The spleen is composed of the white pulp (WP) and red pulp
(RP), with the marginal zone (MZ) situated in between (76, 77),
(Figure 2). Arterial blood arrives at the MZ and runs through the
cords in the RP, where the F4/80+ RP macrophages (RPMs)
monitor and phagocytose incoming aged erythrocytes (85, 86).
In addition, RPMs also extract any dead or opsonized cells from
the circulation, while simultaneously surveying for pathogens
and tissue damage (78). Other leukocyte populations located in
the RP, including neutrophils, monocytes and gd T cells, exert
immune effector functions upon encountering an inflammatory
insult (72, 76, 77). Blood is recollected in sinuses to form the
venous sinusoidal system and ultimately enters the efferent vein
for return to the systemic circulation (77, 79, 80).

The white pulp is the site of lymphocyte differentiation and
initiation of immune responses to blood borne antigens. Correct
organization and maintenance of the WP is regulated by specific
chemokines that attract T cells and B cells and establish their
respective zones within the WP (81, 82). The continuous traffic
of haematopoietic cells in and out of the spleen is an efficient way
for these cells to survey the blood for pathogens and antigens.

The MZ is an important transit area for cells that are leaving
the bloodstream and entering the WP. It contains a number of
resident cells that have unique properties, including a subset of
DCs and innate-like B cells called MZB cells (73, 84). Two
specific subsets of macrophages are also found here: MZ
macrophages (MZMs) and margina l meta l lophi l i c
macrophages (MMMs) (76, 87). The MZMs line the outer ring
of the WP and are characterized by expression of C-type lectin
SIGNR1 and type I scavenger receptor MARCO (85, 88). The
MMMs form the inner ring, located closer to the WP (89, 90).
These macrophages are characterized by expression of the
adhesion molecule SIGLEC1 (CD169) (82, 91–93).

Structure and Function of the Lymph Node
While the spleen filters the blood and protects the host against
blood-borne pathogens, LNs bring antigens draining from
tissues together with lymphocytes circulating in the blood.
There are more than 20 identified lymph nodes in mice and
over 500 in humans, located at multiple sites throughout the
lymphatic circulatory system (94, 95). Current understanding of
LN structure and function is mainly gained from animal studies.

The parenchyma of the LN is compartmentalized by stromal
cells and organized into the cortex at the outermost region
containing B cell follicles, the paracortex in the inner region
containing the T cell zone, and the medulla proximal to the
efferent lymphatic vessels containing the medullary sinuses (95,
96), (Figure 3). Lymphocytes in the blood enter the LNs via high
endothelial venules (HEVs) directly into the paracortex area.
Lymph, containing soluble and cell-associated antigens, enters
the LNs via afferent lymphatic vessels and is filtered through the
lymphatic sinus (71, 95). Subcapsular sinus macrophages (SSMs)
survey and capture lymph-borne antigens before they enter the
June 2022 | Volume 13 | Article 892443
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cortex and paracortex, acting as gatekeepers that protect the host
from aberrant immune responses and preventing the systemic
spread of antigens (97–99, 102, 103). SSMs initiate innate
immune responses by producing pro-inflammatory cytokines
to recruit innate immune cells, and can also activate adaptive
immunity by extending across the subcapsular sinus floor to
present antigen to B cells in the follicles (99, 104).

Lymph passing by the subcapsular sinus will encounter
another type of sinus macrophage, known as medullary sinus
macrophages (MSMs). MSMs are located along the sinus of the
medulla region, interacting with the lymph and also lymphocytes
that are egressing the LN (97). Functionally, MSMs can actively
phagocytose antigens, as well as apoptotic immune cells in the
lymph (105–107). As the lymph passes through the medullary
sinus, it then exits the LNs via the efferent lymphatic vessel and
eventually return to the blood circulation.

The LN contains other macrophages that are also important
in maintaining tissue homeostasis and clearing apoptotic debris.
Medullary cord macrophages (MCMs) support plasma cell
survival and efferocytose apoptotic debris, while tingible body
macrophages (TBMs) are involved in the clearance of apoptotic
B cells in the germinal centre (97). A recent study has identified a
resident macrophage population in the T cell zone, known as T
cell zone macrophages (TZMs), that efferocytose apoptotic DCs
draining from the periphery (100). As efferocytosis induces an
immunomodulatory phenotype in phagocytes, these LN resident
macrophages play an important role in immune regulation.
Frontiers in Immunology | www.frontiersin.org 5
APOPTOTIC CELL CLEARANCE AND
TOLERANCE IN SLOs

Essentially all tissues undergo programmed cell death, known as
apoptosis, evident through the constant turnover of cells. Under
homeostatic conditions, apoptotic cells rarely accumulate in
tissues due to the efficient efferocytosis by tissue phagocytes. The
clearance of apoptotic cells is linked to an anti-inflammatory
response that also induces immunological tolerance (108, 109).
The precise apoptotic cell machinery and phagocytic components
involved in apoptotic cell-induced immunosuppression are
reviewed extensively elsewhere (109–112). However, it is clear
that the efficient clearance of apoptotic cells can be attributed to
the redundancy in the mechanisms of apoptotic cell recognition.

Splenic and LN macrophages are known to participate in the
efferocytosis of apoptotic cells and maintenance of immune
tolerance. TZMs and TBMs in the LN are known to engulf
apoptotic debris silently without stimulating T cells, in order to
maintain local immune homeostasis (100). The splenic MZ is
also involved in the clearance of apoptotic cells from the
circulation. IV-injected apoptotic cells drain to the splenic MZ,
where they are rapidly engulfed by macrophages in the marginal
zone (83). MZMs are known to be critical for particulate trapping
in the spleen (72). Depletion studies (in which both MZMs and
MMMs are depleted) have also indicated a crucial role for MZ
macrophages in apoptotic cell-driven immunomodulation. The
initial engulfment of apoptotic cells by macrophages in the MZ is
FIGURE 2 | Anatomical structure and organization of mouse spleen. The splenic arterial network functions to filter blood and maintain erythrocyte homeostasis. Arterial blood,
arriving at the marginal zone (MZ), passes through the red pulp (RP) cords, and is monitored by red pulp macrophages (RPMs) that survey for blood-borne antigens (78).
Blood is recollected in sinuses before exiting the spleen through the efferent vein for return to the systemic circulation (79, 80). Within the spleen, adaptive immune responses
to incoming systemic antigens are initiated in the white pulp (WP) which are largely driven by T and B cells (81, 82). Circulating lymphocytes arriving at the spleen may exit the
bloodstream and enter the WP via the MZ (77). Marginal zone macrophages (MZMs) and marginal metallophilic macrophages (MMMs) are involved in the clearance of
apoptotic cells, and maintenance of immune tolerance (83). Their functions are mediated by dendritic cell subsets, cDC1 and cDC2, which present antigens to T cells, and
marginal zone B cells (MZBs) that help synchronize immune responses between the adaptive and innate arms (73, 84). This immune network is closely supported by stromal
cells such as MAdCAM+ endothelial cells that line the marginal sinus, and help mediate tissue homeostasis (77). Figure was created with BioRender.com.
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vital in the generation of tolerance to self, whereby delayed
clearance of apoptotic cells results in reduced immune tolerance
to apoptotic cell-associated antigens (113). For example,
depletion of MZ macrophages led to development of systemic
tolerance breakdown in mouse models of systemic lupus
erythematosus (SLE) and induced inflammatory responses
towards apoptotic cell antigens (113).

The infusion of apoptotic cells has been reported to induce
immunosuppression in experimental inflammatory diseases,
autoimmunity and transplantation. In animal models of
autoimmune arthritis, when apoptotic cells were infused not at
the joint, but via the IV (114–116) or IP route (114, 117), the
resolution of arthritic inflammation was conserved at the joint.
In mouse models of transplantation, IV infusion of donor
apoptotic splenocytes was shown to promote donor-specific
immunosuppression, prolonging the survival of heart allografts
(118, 119). Clinical studies have also shown that infusion of
leukocytes rendered non-viable, either via a chemical cross-
linker, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide
(ECDI) or extracorporeal photochemotherapy, is safe and
potentially beneficial in multiple sclerosis (120) and cutaneous
T cell lymphoma (121). In apoptotic cell-based therapies, the
spleen plays a pivotal role as splenic macrophages and DCs are
involved in the phagocytosis of apoptotic leukocytes
administrated via the IV route (122, 123). Together, these
findings point to a critical role for the SLOs in the clearance of
apoptotic cells and establishment of a tolerogenic state.
Frontiers in Immunology | www.frontiersin.org 6
SLOs IN DISEASE

SLOs have a crucial role in host immune defense. In SLOs,
antigen priming and immune cell activation occurs, followed by
clonal expansion of antigen-specific effector lymphocytes, and
the formation of immunological memory and tolerance. The
importance of the spleen in host immunity has been
demonstrated in various disease settings. In a long-term
follow-up study, patients whose spleen had been surgically
removed had an increased risk of developing bacterial
infections (124). In malaria, the spleen is important in
controlling the blood stage infection, clearance of parasitized
red blood cells, induction of memory lymphocytes and
replenishment of healthy red blood cells (125, 126).
Splenectomized patients infected with malaria experienced
enhanced parasitic burden, severe disease symptoms, and
higher mortality rate (126).

Although SLOs are protective during infection, they may also
promote the establishment and progression of some
inflammatory diseases. LNs are the key sites for the initiation
of GvHD and acute colitis (127, 128). In GvHD, donor cells
migrate to the recipient LNs via their expression of lymphoid
homing molecules, CD62L (L-selectin) and CCR7 (C-C
chemokine receptor 7) (129). Upon recognition of alloantigen
on the donor cells, T cells in the recipient LNs are activated and
migrate to tissues where they cause damage (commonly in skin,
gut and liver) (127). In acute colitis, intestinal migratory DCs
FIGURE 3 | The immune and stromal cell composition of mouse lymph node. Lymph nodes filter the lymph and respond to the lymph-borne antigens, from which
T and B cells will get activated, proliferate, and provide adaptive immune responses. Myeloid populations of lymph nodes support and regulate this adaptive
response and maintain the homeostasis of lymph nodes (97). Subcapsular sinus macrophages (SSM) survey the infiltrating lymph before they transduce the
activation signals towards the B cells sitting in the B cell follicles (98, 99), whereas cDC1 and cDC2 present the antigens that activate the CD4+ and CD8+ T cells
inside the T cell zone, respectively (95). Subsets of lymph node macrophages, including medullary cord macrophages (MCM), T cell zone macrophages (TZM) and
tingible body macrophages (TBM), are known for their efferocytotic ability (97, 100). They clear the apoptotic cell debris and maintain the homeostasis of lymph
nodes. Lymph node stromal cells also help in regulating tissue homeostasis. Marginal reticular cells (MRC) organize and regulate the B cell follicles, whereas
fibroblastic reticular cells (FRC) maintain the T cell homeostasis within the paracortex (101). Figure was created with BioRender.com.
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drain to the mesenteric LNs where they present antigen and
induce Th1 or Th17 responses (128, 130, 131). Pathogenic Th17
cells can also migrate from the mesenteric LNs to the gut and
cause inflammatory bowel disease (131). Some studies have
shown that lymphadenectomy (surgical removal of a group of
lymph nodes and surrounding lymphatic tissues) protected rats
from GvHD (132, 133). Lymphadenectomy is rarely investigated
in clinical studies for the purpose of reducing inflammation,
although it is performed on cancer patients to stop the spread of
tumor metastases via the lymphatic system, or to remove the
tumor cells in the lymphatic tissues (134, 135).

The spleen can also promote inflammatory responses in some
disease settings. For example, splenectomy showed protective
effects (e.g. reduced infarct volume) in rat models of brain, liver,
kidney and intestine ischemic injury (136–140). In animal
models of ischemic brain injury and also in patients with
stroke, spleen atrophy (reduction in splenic weight and size) is
commonly observed and thought to be a result of splenic
leukocytes egressing via the blood circulation and into the
injured brain (141). These circulating leukocytes are composed
of monocytes, macrophages, neutrophils and lymphocytes, and
their migration to the brain exacerbates inflammation and
neurodegeneration (142, 143). Splenectomy performed on a rat
stroke model (middle cerebral artery occlusion, MCAO), prior to
injury, showed neuroprotective effects, with a reduction in brain
infarct volume, peripheral immune cells and activated microglia
in the brain infarct tissue (140, 142). Apart from the infiltration
of splenic immune cells into the brain injury sites, the spleen also
contributes to brain inflammation by producing pro-
inflammatory signals, such as IFN-g (140).

The involvement of SLOs and peripheral immune cells in the
progression of central nervous system (CNS) inflammation has
also been highlighted in other disease models, including spinal
cord injury and experimental autoimmune encephalomyelitis
(EAE, mouse model of multiple sclerosis) (144–146). In these
disease settings, peripheral T cells and myeloid cells are recruited
to the CNS and promote disease symptoms by enhancing
inflammation. The crucial contribution of splenic T cells in
promoting neuroinflammation is further demonstrated in
neuropathic pain studies, in which the adoptive transfer of
splenic T cells elevated neuropathic pain symptoms in the
recipient (144).

Understanding how SLOs regulate the inflammatory response
in such disease settings is important in defining the role of these
SLOs in mediating the immunomodulatory effects of
cell therapy.
SLOs IN CELL THERAPY

Given the importance of SLOs in disease progression and
tolerance induction, there is emerging evidence for their
involvement in cell therapy in experimental disease models. A
notable example is stroke, where IV administration of different
therapeutic cell types, such as umbilical cord blood cells,
haematopoietic stem cells, amnion epithelial cells, bone
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marrow stromal cells and multipotent adult progenitor cells,
were shown to induce neuroprotective effects (147–150). IV-
injected therapeutic cells were detected in the spleen and induced
an anti-inflammatory environment that promoted repair in the
CNS (e.g. infarct size, peripheral immune cell infiltration) (149–
151). Of note, a study using neural stem cells to treat stroke
showed that the direct interaction between IV-administered stem
cells with splenocytes, particularly CD11b+ cells, was necessary
for the treatment to be neuroprotective, with splenectomy
abolishing the beneficial effect (152). In line with this, the
improvement in functional recovery from stroke in MAPC-
treated animals was also not evident in the absence of a spleen,
supporting a critical role for the spleen (153).

MSC Biodistribution in SLOs
Despite the central role of the spleen and lymph nodes in the
blood and lymph network respectively, MSCs are rarely detected
in the SLOs. When reported, the presence of MSCs in the SLOs is
usually minimal and requires sensitive detection techniques
(Figure 4). Small numbers of MSCs were detected in spleen
and lymph nodes 24 hours post-IV infusion in naïve mice (154),
and for up to 5 weeks in a mouse model of sclerodermatous
GvHD (155). Similarly, localization within the spleen and LNs
may also occur in the days after IP, but not SC or IM, infusion
(44), although MSC biodistribution was variable following this
delivery route and attachment of MSC aggregates to the
peritoneal walls has been reported (157).

It is thought that the presence of MSCs in SLOs is a result of
their active migration, since they express higher levels of homing
molecules, including CCR7, CD62L and intercellular adhesion
molecule-1 (ICAM-1), compared to other fibroblastic cells (154,
158, 159). MSCs engineered to overexpress CCR7 or ICAM-1
showed improved MSC migration to the spleen and LNs post-IV
injection in a GvHD model (158, 159). The increased
distribution of MSCs within SLOs correlated with an
improvement in their immunomodulatory effects and clinical
outcomes in these disease models (158, 159).

The presence of inflammation can influence the
biodistribution of MSCs in SLOs. In a myocardial infarction
(MI) model, the presence of inflammation increased the
recruitment of IV-infused MSCs to the spleen compared to
controls without MI (160). In contrast, inflammation can
reduce the presence of MSCs in the LNs. In experimental
models of colitis and delayed-type hypersensitivity (DTH)
(154, 161), accumulation of MSCs was reduced in the LNs and
redistributed towards the inflamed tissues.

However, it is important to note the caveats of the labelling
approaches used in such studies. For example, membrane dyes
are retained when cells lose membrane integrity upon cell death,
making it hard to discriminate signals from viable cells, cellular
debris, or redistribution by phagocytes that had engulfed
apoptotic cells (162). Moreover, studies have repeatedly shown
that the small numbers of detectable MSCs eventually get cleared
(35, 39, 163), yet their interaction with the host immune system
within minutes to hours post-IV infusion is likely critical to
therapeutic outcomes. For instance, complement activation by
MSCs can adversely trigger IBMIR, but has also been found to
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upregulate the expression of CD11b on blood myeloid cells,
which mediate the immunosuppressive effects of MSCs (164).
Clarification of whether the detection of MSC signals in SLOs
indicates the presence of viable MSCs or apoptotic cell clearance
therefore has important implications for our understanding of
the mechanisms of MSC therapy.

MSCs Regulate the T Cell Profile in SLOs
In several disease settings, the cellular composition of SLOs and
function of their immune cells are changed upon cell therapy.
The presence of MSCs is also found to associate with a change in
the total cellularity of the SLO (154, 158, 160, 165), (Figure 4). In
a model of myocardial infarction, MSC recruitment to the spleen
was shown to decrease splenic natural killer cells and neutrophils
(160). In a stroke model, the infusion of human umbilical cord
blood cells altered the T cell and monocyte/macrophage
composition in the spleen (165). In GvHD and DTH models,
MSC recruitment to the LNs was also observed to regulate the
survival and activation of lymphocytes, in particular, T cells
(154, 158).

The splenic T cell profile is further modulated following cell
therapy. Splenic T cells from animals that had received cell
therapy were composed of a less pro-inflammatory population
(with reduced IFN-g+ and IL-17+ CD4+ T cells), which exhibited
a reduced pro-inflammatory response when restimulated in vitro
(165, 166). In an autoimmune uveitis model (166), T cells from
MSC-treated groups showed reduced proliferative response and
produced less pro-inflammatory Th1 and Th17 cytokines, but
more anti-inflammatory IL-10, upon antigen restimulation.

Apart from modulating the T cell profile and inflammatory
responses, MSC treatment can also induce Tregs in SLOs. In
studies of autoimmune disease and allograft transplantation,
Frontiers in Immunology | www.frontiersin.org 8
MSCs inhibited inflammation by inducing an increase in
FoxP3+ Tregs in the draining LNs and the spleen (156, 166–
169). Similarly, an increase in splenic Tregs after MSC treatment
was observed in ischemic kidney injury models. The importance
of Treg induction in this model was highlighted when the
therapeutic effects of MSCs were abrogated following the
depletion of Tregs or the complete excision of the spleen (170).

Myeloid Cells in SLOs Are a Critical
Mediator of MSC Effects
Studies have established that co-culturing different myeloid cell
populations with MSCs induces regulatory phenotypes, which
can modulate immune responses. For example, DCs co-cultured
with MSCs downregulated their expression of co-stimulatory
molecules and were found to be less stimulatory in activating T
cell responses in vitro (171–173). Monocytes and macrophages
exposed to MSCs were less pro-inflammatory (produced less
TNF and IL-12, and more IL-10 and IL-6) (174), more
phagocytic and had increased bacterial killing capacity (33,
174–176). Macrophages with an immunoregulatory
profi le could further maintain an anti-inflammatory
microenvironment and influence Treg generation (174, 177).
Induction of amphiregulin in MSC-primed macrophages was
recently identified as one pathway leading to induction of Tregs
and decreased Th1 responses (178). The phenotype and
morphology of macrophages ‘re-educated’ by MSCs share
some similarities with myeloid-derived suppressor cells
(MDSCs), which are differentiated from immature myeloid
cells via PGE2 and IL-10-dependent mechanisms, and have
immunosuppressive function (177). However, these in vitro
findings need to be contextualized within the complex
structural organization and cellular composition of the SLOs.
FIGURE 4 | Biodistribution of MSCs post-IV infusion. IV administration is the most commonly used method for MSC delivery. To study the biodistribution of MSCs
following IV infusion, studies have used different labelling approaches to track cell signals. Depending on the sensitivity of the techniques, MSCs (or signals of labels)
have been found in lung, liver, and SLOs following IV infusion (37, 154). MSCs are cleared rapidly from the blood, and the majority of them are then detected in the
lung where they undergo cell death (35). Some signals can also be found in the liver, although these are mostly dead MSCs (37, 154). Dead MSCs in the lung are
cleared by lung phagocytes to avoid inflammation (37). Recent studies identified small numbers of MSCs in the SLOs, however, it is unclear whether they remain
viable inside the SLOs (154–156). In LNs, MSCs are observed to localize along the boundaries of the germinal center and paracortical area; while in the spleen, MSC
signals are detected in the red pulp region, co-localizing with CD11b+cells (155, 156). MSCs in the SLOs can regulate T cell response and induce Tregs, and their
recruitment is influenced by inflammation. However, the extent by which these immunomodulatory effects in the SLOs are induced by efferocytosis of dying MSCs,
or direct contact with viable MSCs or their secretome, remains unknown. Figure was created with BioRender.com.
June 2022 | Volume 13 | Article 892443

https://www.biorender.com
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zheng et al. SLOs in MSC Therapy
Studies examining immune cell changes in SLOs following
MSC therapy support a role for myeloid cells in mediating the
immunomodulatory effects of MSCs. When infused in a GvHD
model, MSCs overexpressing the homing molecule, ICAM-1,
were found in greater numbers in the SLOs (compared to control
MSCs) and were found to inhibit splenic DC activation and
maturation, suppress CD4+ T cell differentiation, and increase
the splenic Treg/effector T cell ratio (159). Whilst it remains to be
established that the change in regulatory/effector T cell balance is
a direct consequence of DC function altered by MSCs in the
spleen, studies have linked the induction of Tregs to CD11b+

phagocytic cells. Co-culture of splenocytes with MSCs induced
Tregs, but not in the absence of CD11b+ cells (156). In a model of
enterocolitis, the increase in Tregs in the SLOs underlies MSC
therapeutic efficacy, which is abrogated upon the depletion of
CD11b+ cells by clodronate-filled liposomes (156). Importantly,
adoptive transfer of CD11b+ cells that had been co-cultured with
MSCs was sufficient to increase Tregs in the SLOs and protect
against disease (156). In another study using an osteosarcoma
xenograft model in mice lacking T cells, clodronate depletion of
CD11b+ splenic macrophages increased the amount of
bioluminescence signal of luciferase-expressing MSCs found in
the spleen after IV injection, and subsequently facilitated MSC
delivery to the tumor (179). The data suggest that MSCs are
phagocytosed by macrophages in the spleen, and overcoming
this barrier promotes tissue-targeted delivery of MSCs. Thus,
while the tolerogenic outcome of efferocytosis can contribute to
the anti-inflammatory effects of MSC therapy, settings that
require efficient delivery of MSCs to tissues may need to
employ strategies that avoid splenic macrophage clearance.
CONCLUSION AND FUTURE DIRECTIONS

MSCs exhibit broad spectrum immunomodulatory effects in
various inflammatory diseases, but do not persist for significant
periods in any part of the body following IV infusion. Instead,
their lung entrapment and rapid clearance has shifted the focus to
lung phagocytic cells as mediators of their therapeutic effects.
Although traces of MSCs have been found in SLOs, along with
changes in immune cell composition and function, limitations in
Frontiers in Immunology | www.frontiersin.org 9
labelling and imaging techniques make it difficult to establish with
certainty that the small numbers detected are viable MSCs, cell
debris or label redistribution following phagocytic uptake. There
are several cell types with phagocytic capacity in the SLOs,
including migratory cells from the circulation. Cells found in
different compartments of the spleen and LNs perform different
function, which depends crucially upon their spatial interactions
with other cells and chemical cues. Furthermore, SLOs comprise
not just immune cells, but also a variety of stromal populations
that have functional roles in health and disease (180, 181),
including the capacity to efferocytose apoptotic cells (182).
Whether these stromal populations have a role in MSC therapy
is an open area to explore.
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