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Because of relative simplicity of signal transduction pathway, bacterial chemotaxis 
sensory systems have been expected to be applied to biosensor. Tar and Tsr receptors 
mediate chemotaxis of Escherichia coli and have been studied extensively as models of 
chemoreception by bacterial two-transmembrane receptors. Such studies are typically 
conducted using two canonical ligands: l-aspartate for Tar and l-serine for Tsr. However, 
Tar and Tsr also recognize various analogs of aspartate and serine; it remains unknown 
whether the mechanism by which the canonical ligands are recognized is also common 
to the analogs. Moreover, in terms of engineering, it is important to know a single species 
of receptor can recognize various ligands to utilize bacterial receptor as the sensor for 
wide range of substances. To answer these questions, we tried to extract the features 
that are common to the recognition of the different analogs by constructing classification 
models based on machine-learning. We computed 20 physicochemical parameters for 
each of 38 well-known attractants that act as chemoreception ligands, and 15 known 
non-attractants. The classification models were generated by utilizing one or more of the 
seven physicochemical properties as descriptors. From the classification models, we 
identified the most effective physicochemical parameter for classification: the minimum 
electron potential. This descriptor that occurred repeatedly in classification models with 
the highest accuracies, This descriptor used alone could accurately classify 42/53 of 
compounds. Among the 11 misclassified compounds, eight contained two carboxyl 
groups, which is analogous to the structure of characteristic of aspartate analog. When 
considered separately, 16 of the 17 aspartate analogs could be classified accurately 
based on the distance between their two carboxyl groups. As shown in these results, we 
succeed to predict the ligands for bacterial chemoreceptors using only a few descrip-
tors; single descriptor for single receptor. This result might be due to the relatively simple 
topology of bacterial two-transmembrane receptors compared to the G-protein-coupled 
receptors of seven-transmembrane receptors. Moreover, this distance between carboxyl 
groups correlated with the receptor binding affinity of the aspartate analogs. In view of 
this correlation, we propose a common mechanism underlying ligand recognition by Tar 
of compounds with two carboxyl groups.

Keywords: bacterial chemotaxis, chemotaxis receptor, machine-learning, Qsar, sparse modeling, logistic 
regression
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Figure 1 | Schematics of the ligand binding domain of chemoreceptor Tar and Tsr. (a) Tar and Tsr consist of four α helices, α1, α2, α3, and α4. The α1 and α4 
helices span the inner membrane of the Escherichia coli cells. The ligand binding pocket is composed of the α1 and α4 helices. The binding of the ligand causes a 
piston-like displacement of the α4 helices transmitting a biochemical signal into the cytoplasm. The white arrow shows the direction of the piston-like displacement 
of the α4 helices caused by the ligand binding. (B) Amino-acid sequence alignment of the α1 and α4 helices. Accession number of Tar and Tsr were P07017 and 
P02942, respectively. These sequences were aligned with Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). The residues highlighted in gay constitute the 
α-helical regions. The α4 helix in turn consists of two shorter α helices: α4a and α4b. The ligand binding residues are highlighted by black, square boxes. The 
numbers around the black squares mark the sequence portion of the respective residues.
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inTrODucTiOn

Bacterial cells swim toward favorable directions by sensing envi-
ronmental signals through their chemotaxis receptors (Wadhams 
and Armitage, 2004). The Escherichia coli receptors Tsr and Tar 
have been extensively studied as models for bacterial chemore-
ceptors. Tsr and Tar are two-transmembrane receptors whose 
ligand binding domain consists of four α helices (Figure  1A). 
The chemoreceptors are homodimeric in nature and their ligand 
binding pocket is composed of opposite pairs of α1 and α4 helices 
contributed by each monomer subunit. Binding of the ligand to 
the pocket is thought to induce a piston-like displacement of the 
membrane-spanning signaling-helix α4 (Falke and Erbse, 2009). 
Thus, the displacement transmits a signal into the cytoplasm and 
culminates in a change in the swimming behavior of the bacte-
rium (for reviews refer Sourjik, 2004; Wadhams and Armitage, 
2004; Krell et al., 2011).

The mechanism of ligand recognition by Tar and Tsr has been 
studied extensively by utilizing structural (Milburn et al., 1991; 
Scott et al., 1993; Yeh et al., 1993, 1996; Bowie et al., 1995; Tajima 
et al., 2011; Mise, 2016), genetic (Wolff and Parkinson, 1988; Lee 
and Imae, 1990; Mowbray and Koshland, 1990; Tajima et al., 2011), 
and computational approaches (Bi et al., 2013). These reports usu-
ally encompassed recognition of canonical ligands: l-aspartate for 
Tar and l-serine for Tsr. Direct interaction between the ligands 
and the ligand binding pockets has been already revealed by 
structural studies; residues essential for ligand recognition have 
also been described (Tajima et al., 2011; Figure 1B.). In addition 
to the canonical ligands, various analogs of them are known to 

act as ligands for Tar and Tsr (Mesibov and Adler, 1972; Hedblom 
and Adler, 1983). However, while the detailed mechanism of the 
recognition of the canonical ligands is known, the mechanisms 
underlying the recognition of the analogs remain unstudied. 
The ligand recognition of canonical ligands for Tar and Tsr were 
performed by only eight residues in the ligand binding pockets 
(Figure 1B). In terms of molecular recognition mechanism, how 
these residues recognize these diverse analogs is one of great 
interest. In terms of engineering, it is important to know a single 
species of receptor can recognize various ligands to utilize bacte-
rial receptor as the sensor for wide range of substances (Derr et al., 
2006; Bi et al., 2013, 2016; Bi and Lai, 2015).

To deduce the features of recognition common to the analogs, 
we distinguished the selective binding of ligands using machine-
learning. Sets of previously known 38 attractants that act as ligands 
for the chemoreceptors, and 15 non-attractants were classified 
using logistic regression. The physicochemical properties of these 
compounds were computed from their molecular structures 
(Eguchi et  al., 2015). This method is known as the quantitative 
structure–activity relationship (QASR) method and it is usually 
employed in drug discovery or toxicity studies. Using the strategy 
of exhaustive-search (ES) methods (Igarashi et al., 2016), the mini-
mum electron potential of the compounds was identified as the 
most effective descriptor, which was common to all classification 
models. This descriptor by itself could classify attractants and non-
attractants with 79% accuracy (42/53). Eight of the eleven cases 
of misclassification carried two carboxyl groups, which means 
they were analogs of aspartate. When considered separately, the 
aspartate analogs (17 cases) were classified by considering the 
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distance between the two carboxyl groups (16/17). As shown in 
these results, we succeed to predict the ligands for bacterial chemo-
receptors using only a few descriptors; single descriptor for single 
receptor. This result might be due to the relatively simple topol-
ogy of bacterial two-transmembrane receptors compared to the 
G-protein-coupled receptors (GPCRs) of seven-transmembrane 
receptors. Moreover, the binding affinity of these aspartate analogs 
showed a correlation with the distance between their carboxyl 
groups. From this result, we proposed a mechanism common to 
ligand recognition by chemotaxis receptors of E. coli.

MaTerials anD MeThODs

selection of sample sets
Attractants and non-attractants were selected from Mesibov 
and Adler, 1972, Table 6, in which the response of wild-type 
E. coli (AW518) to several compounds was described, as 
measured by the capillary assay. The table listed 53 compounds 
including l-aspartate, l-serine, and their analogs (Table S1 
in Supplementary Material). Among these 53 compounds, 52 
compounds were selected, except for glutathione. The molecular 
weight of the glutathione (MW = 307.3 Da) is too large for it to fit 
into the ligand binding pocket of Tar Da (Wei et al., 2010; Bi et al., 
2013). In addition, l-glutamate was included into our selection as 
an aspartate analog from Table 3 of the same report (Mesibov and 
Adler, 1972). These 53 compounds contained 38 attractants and 
15 non-attractants. Each of the 38 attractants was accompanied 
by a parameter describing the concentration required to induce 
the cellular response of wild-type E. coli (KD, M).

calculation of Physicochemical Properties
The stable structure of the compound was determined by quantum 
chemical calculation with the PM6 semi empirical method con-
tained in the Spartan ′14 suite (Wavefunction, Inc., California). 
From the stable structure of compounds, 8 molecular properties 
and 12 QSAR descriptors were obtained as descriptors (Eguchi 
et  al., 2015). Molecular properties were as followed: formation 
energy (E, kJ/mol), formation energy in water (Eaq, kJ/mol), 
solvation energy (Esol = Eaq – E, kJ/mol), molecular weight (MW, 
Da), energy of the highest occupied molecular orbital (HOMO; 
EH, eV), and energy of the lowest unoccupied molecular orbital 
(LUMO; EL, eV), HOMO–LUMO gap (EH − EL, eV), and total 
dipole moment (D, debye). QSAR descriptors were as followed: 
area of space-filling model (ACPK, Å2), polar surface area (PSA, 
Å2), volume of space-filling model (VCPK, Å3), ovality of space-
filling model (OCPK), accessible area (AA, Å2), polar area (PA, Å2), 
minimum electron potential (q−, kJ/mol), accessible polar area 
(APA, Å2), minimum local ionization potential (qion−, kJ/mol), 
maximum electron potential (q+, kJ/mol), octanol–water parti-
tion coefficients (LogP), and polarizability (P).

Development of classification Models
Models for classifying the ligands of E. coli chemoreceptors were 
constructed using the scikit-learn machine learning module 
(Pedregosa et al., 2011) and XGBoost (Chen and Guestrin, 2016). 
To build a classification model, the attractants and non-attractants 

were assigned the dependent variable (y) values of 1 and −1, 
respectively. The 10 physicochemical parameters described above 
were input as independent variables. Before the classification, all 
descriptor values were normalized using following equation:

 
z x
=

−µ
σ  

where μ and σ are mean and SD of the descriptor value.

estimation of the effective size
Cohen’s effective size d of each descriptor was calculated with 
following equation:
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where μ, σ, and n denote the mean value of the descriptors, the 
SD of the descriptors, and number of attractant or non-attractant 
compounds, respectively. By convention, d ~ 0.2 is considered a 
small effect, d ~ 0.5 is considered a medium effect, and d ~ 0.8 is 
considered a large effect.

resulTs

Determination of the Most effective 
Descriptor for classification
Using logistic regression and eXtreme Gradient Boosting 
(XGboost) (Chen and Guestrin, 2016), we developed classifica-
tion models to categorize various compounds as attractants or 
non-attractants. These compounds included l-aspartate, l-serine, 
and their analogs. To provide inputs for the classification models, 
we derived 20 physicochemical properties of each compound 
from its molecular structure using quantum chemical calculation 
(see Materials and Methods). The physicochemical properties are 
summarized in Table S1 in Supplementary Material. From the 
20 physicochemical properties, we removed 13 redundant vari-
ables (Eaq, MW, EH, EL, ACPK, PSA, VCPK, OCPK, AA, PA, APA, LogP, 
and P) presenting correlation coefficients greater than 0.7 using 
Spearman-ranked correlation coefficient values (Table  1). The 
remaining seven variables (E, Esol, EH − EL, D, q−, qion−, and q+) 
were selected for model construction. The classification models 
were constructed by choosing one or more of the physicochemi-
cal properties at a time. (Thus, we obtained ΣnCk = 127 models: 
n physicochemical properties chosen k at a time.) This strategy 
is termed as the ES method (Igarashi et al., 2016). These models 
were optimized by employing 10-fold cross-validation. From the 
optimized models, receiver operating characteristic (ROC) curves 
were derived to quantify the area under the curve (AUC) which 
is an appropriate measure for describing model performance 
(Figure 2A). Calculation of the AUC was performed five times 
in each optimized model. The maxim averaged AUC of each clas-
sification methods was as follows; logistic regression: 0.75 ± 0.01, 
XGBoost (linear model): 0.75 ± 0.01, and XGBoost (tree model): 
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0.73 ± 0.03 (mean ± SD, n = 5). The AUC of the top 10 classifica-
tion models were ranged between 0.73 and 0.75 (logistic regres-
sion); between 0.74 and 0.75 [XGBoost (linear model)]; between 
0.70 and 0.73 [XGBoost (tree model)] (Figure 2B). These AUC 
values exceeded the 0.7 showing fair performance of these clas-
sifiers. In these top 10 classification models, averaged value of 
the accuracy in the classification was logistic regression: 80.8%, 
XGBoost (linear): 78.3%, and XGBoost (tree): 75.3%.

To isolate the most effective descriptor for obtaining accurate 
classification models, the frequency of each descriptor in the top 
10 classification models was tallied (Figure 2C). The minimum 
electron potential present on the compound surface (q−) was a 
descriptor that was present in most of the 10 classification mod-
els. The effectiveness of the descriptors in generating accurate 
classification models was also assessed by comparing the average 
value of a descriptor among attractants with its corresponding 
average value among non-attractants (Table  2). Application of 
t-tests showed that the average values of Esol, D, and q− were 
significantly different between attractants and non-attractants 
(p = 0.02, p = 0.009, p = 0.03, respectively). The descriptor q− 
showed the smallest p-value, and this result complements the 
inclusion of q− in the top 10 classification models. On the other 
hand, despite showing a significant difference between attractants 
and non-attractants, the dipole moment (D) descriptor was not 
included in most of the top 10 classification models. This dis-
crepancy could be because, irrespective of their group average, 
several attractants do not show a dipole moment because of their 
symmetric structures (fumarate and succinate). The effectiveness 
of the descriptors was assessed again using the measure of effect 
size called Cohen’s d (Cohen, 1988). It was calculated as the dif-
ference mean values of the two groups of compounds normalized 
by their combined SD (see Materials and Methods for the full 
formula). The descriptor q− showed the largest effect size of 0.96. 
These results corroborate that q− was the most effective descrip-
tor to classify compounds into attractants and non-attractants. 
The average values of q− among attractants and non-attractants 
were 300 ± 31 kJ/mol (n = 38) and –269 ± 36 (n = 15) kJ/mol 
(mean ± SD), respectively. Therefore, the q– of attractants tended 
to be smaller than that of non-attractants.

classification using only the Minimum 
electron Potential q–

Using only the most important descriptor q−, attractants and 
non-attractants were classified again. The classification was 
performed using the single threshold of the q− (Thq−). If a com-
pound had a q− below Thq− then, it was classified as an attractant, 
otherwise it was classified as a non-attractant (Figure  3A). 
When the Thq– was set at –280 kJ/mol, accuracy of the classi-
fication showed maximum value, and 42/53 of the compounds 
were correctly classified. We emphasize: most of the attractant 
and non-attractant could be classified using only the minimum 
electron potential.

To clarify the cause of the misclassification, we analyzed 
the remaining 11 compounds (Table 3). Among these 11 com-
pounds, eight showed a structure analogous to aspartate: they 
carried two carboxyl groups. The remaining three compounds 
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TaBle 2 | Averaged value of descriptors in attractants and non-attractants.

Descriptor attractant (n = 38) non-attractant (n = 15) pa db

E (kJ/mol) −596 ± 233 −566 ± 186 0.7 0.14
Esol (kJ/mol) −74 ± 18 −61 ± 16 0.02 0.76
EH − EL (eV) −10.6 ± 1.0 −10.4 ± 1.0 0.7 0.13
D (debye) 2.5 ± 1.1 1.8 ± 0.7 0.009 0.67
q− (kJ/mol) −300 ± 31 −269 ± 36 0.003 0.96
qION (kJ/mol) 50.3± 6.4 51.7 ± 4.5 0.5 0.23
q+ (kJ/mol) 196± 31 198 ± 13 0.8 0.05

ap-Values were calculated from t-test.
bCohen’s d, which is a measure of effect size (Cohen, 1988).
The most effective descriptor is highlighted in bold.

Figure 2 | Determination of the most effective descriptor for classification. (a) Typical receiver operating characteristic (ROC) curves of highest area under the 
curve (AUC) models. LR, XG linear, and XG tree showed logistic regression, XGBoost (linear model) and XGBoost (tree model). AUC of these ROC curves were 0.73, 
0.75, and 0.7, respectively. (B) Left-hand side: serial numbers of the descriptors. Right-hand side: AUC of the top 10 classification models. Descriptors included in a 
model are labeled blue. Error bars in the right-hand side graph show the SD of the AUC. (c) Fraction of models in which a descriptor is present. A fraction value of 
1.0 means that the descriptor was present in all of the top 10 classification models.
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were all analogs of serine (β-alanine, γ-amino-n-butyrate, 
and l-homocysteine). Therefore, most of the misclassification 
occurred on two-carboxyl compounds, which are analogous to 
aspartate. In a previous report, compounds with two carboxyl 
groups typically bind to the aspartate receptor Tar with a higher 
affinity than the serine receptor Tsr; the apparent dissociation 
constant to induce cellular response (KD) in tsr deletion mutant 
was smaller than that of tar deletion mutant (Mesibov and Adler, 
1972). Actually, accuracy in the classification using the Thq– for 
aspartate analogs and other than aspartate analogs were 53% 

(9/17) and 92% (33/36), respectively. Thus the descriptor q− need 
only be used to accurately classify all ligands other than aspartate 
analogs, that is, serine analogs.

Then, we analyzed the q− of non-aspartate analogs. Among 
53 compounds, 17 compounds carrying two carboxyl groups 
were excluded because q− did not prove to be effective for the 
classification of aspartate analogs. Among the non-aspartate 
analogs classified as attractants, most of the q− was attributed 
to either amino (–NH2 and –NHR) or acyl groups (R-CO–) 
(24/25; Figure 3B). The remaining compound carried a sulfo-
nyl group (–SO2). Moreover, all the 25 attractants carried the 
amino group. On the other hand, q− was attributed to the car-
boxyl groups and hydroxyl groups on non-attractants (7/11). 
The mean value of q− attributed to each functional group was 
quantified by analyzing all the 53 compounds (Figure  3C). 
The amino group showed the smallest q−, –311  ±  22  kJ/mol 
(mean  ±  SD, n  =  31), followed by the sulfonyl –307  kJ/mol 
(n = 1) and acyl groups –287 ± 32 kJ/mol (mean ± SD, n = 6). 
On the other hand, q− of the hydroxyl –249  ±  18  kJ/mol 
(mean ± SD, n = 10) and carboxyl groups –252 ± 21 kJ/mol 
(mean ± SD, n = 5) were higher than that of the amino, sulfonyl, 
and acyl groups, which are carried by the attractants. Therefore, 
non-aspartate attractants had smaller electron potentials. Thus, 
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Figure 3 | Classification using the minimum electron potential q–.  
(a) Classification using a single threshold of q−. (B) Distribution of q− on 
functional groups of non-aspartate analogs. (c) Mean q− on each functional 
group. Error bars show SD. Number of amino, sulfonyl, acyl, carboxyl, and 
hydroxyl groups observed were 31, 1, 6, 10, and 5, respectively.

TaBle 3 | Compounds misclassified according to q−.

no. compound KD
a Ncarboxyl

b Ncarbon

4 β-Alanine 1

5 l-α-Aminoadipatec 2 4

8 γ-Amino-n-butyrate 1

22 Fumarate 3.E−4 2 2

24 l-Homocysteine 1

27 dl-Threo-β-hydroxyaspartate 1.E−4 2 2

33 l-Malate 6.E−4 2 2

36 dl-β-Methylaspartate 3.E−4 2 2

38 dl-α-Methylglutamatec 2 3

42 2-Methylsuccinate 5.E−3 2 2

52 Succinate 2.E−3 2 2

Compounds with blank values are non-attractants.
aApparent dissociation constant calculated from the concentration of the ligand 
required to induce a response by wild-type E. coli (Mesibov and Adler, 1972).
bNumber of carboxyl groups on the compounds.
cCompounds for which the number of carbon atoms NCarbon > 2.
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a smaller electron potential would be an essential factor for 
ligand recognition by Tsr.

Descriptors for the classification of 
aspartate analogs
Compounds with two carboxyl groups could not classified using 
the descriptor q−. To find out the descriptor that was effective for 
classification of these aspartate analogs, their molecular structures 
were analyzed (Table 3; Figure 4). We focused on the number of 
carbon-chain atoms between the two carboxyl groups (NCarbon). 

Only those compounds were classified as false negatives (attract-
ant classified as non-attractant) whose NCarbon was the same as 
that of l-aspartate (NCarbon = 2). These compounds were fumarate, 
dl-threo-β-hydroxyaspartate, l-malate, dl-β-methylaspartate, 
2-methylsuccinate, and succinate. On the other hand, analogs 
whose NCarbon was three or four were classified as false positives 
(non-attractant classified as attractant). These compounds were 
l-α-aminoadipate and dl-α-methylglutamate. Therefore, NCarbon 
seemed to be an important descriptor for classifying aspartate 
analogs into attractants and non-attractants. Accordingly, NCarbon 
was counted in all 17 aspartate analogs (13 attractants, 4 non-
attractants; Figure  4; Table  4). NCarbon of the attractants was 2, 
except for l-glutamate (NCarbon = 3). On the other hand, NCarbon of 
the non-attractants was more than 2 (NCarbon = 3 or 4), except for 
oxaloacetate. Therefore, by assuming the NCarbon of the attractant 
to be 2, attractants and non-attractants could be classified with 
88.2% accuracy (15/17).

Moreover, to take into account the discrepancies associated 
with oxaloacetate and l-glutamate, we next focused on the dis-
tance between the two carboxyl-groups in aspartate analogs. The 
distance between the carbon atoms of the two carboxyl groups 
was defined as R (Figure 5A). The relation between the R and 
threshold of concentration for cellular response (KD) was evalu-
ated for the 17 aspartate analogs (Table 4). The compounds with 
the three largest R values are non-attractants, and all the other 
compounds are attractants, except for the oxaloacetates. Thus, the 
attractants can be classified in response to the distance between 
the carboxyl groups, using a single threshold value for R (RThresh ~ 
4 Å). According to this classification, the discrepancy owing to the 
NCarbon of l-glutamate (NCarbon = 3, attractant) could be resolved. 
To analyze the effect of the distance between the carboxyl carbon 
atoms of the aspartate analogs on their binding to the receptor, 
the R and KD were ascertained for the 13 attractants among the 
aspartate analogs. The cellular sensitivity of the compounds, 
defined as –log10(KD), was plotted against the R values (Figure 5B).  
An inverse correlation was observed between the sensitivity and 
R (Pearson’s correlation coefficient r = –0.57, p = 0.041).
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TaBle 4 | Distance between two carboxyl-groups on l-aspartate analogs.

no. compounds KD (M) Ncarbon
†Nnh2 R (Å) sensitivity

14 l-Aspartate 6.E−08 2 1 2.950 7.2
35 dl-α-Methylaspartate 5.E−07 2 1 2.958 6.3
36 dl-β-Methylaspartate 3.E−04 2 1 2.991 3.5
44 Oxaloacetate 2 3.002
37 N-Methyl-dl-aspartate 1.E−03 2 3.006 3.0
13 d-Aspartate 1.E−05 2 1 3.084 5.0
33 l-Malate 6.E−04 2 3.151 3.2
27 dl-Threo-β-

hydroxyaspartate
1.E−04 2 1 3.218 4.0

53 l-Glutamate 5.E−06 3 1 3.269 5.3
2 N-Acetyl-l-aspartate 1.E−03 2 3.282 3.0

22 Fumarate 3.E−04 2 3.764 3.5
42 2-Methylsuccinate 5.E−03 2 3.803 2.3
52 Succinate 2.E−04 2 3.820 3.7
26 dl-Erythro-β-

hydroxyaspartate
5.E−04 2 1 3.861 3.3

38 dl-α-Methylglutamate 3 1 4.444
31 α-Ketoglutarate 3 5.063
5 l-α-Aminoadipate 4 1 6.358

The 17 compounds were arranged in ascending order of the distance between their 
carboxyl groups (R). The –NHR of the amino group was excluded from the count.
aNumber of –NH2 groups.

Figure 5 | Distance between the two carboxyl-groups on aspartate analogs 
(a) Depiction of the distance between the two carboxyl groups R. The R was 
calculated from molecular models determined using quantum chemical 
calculation (see Materials and Methods). (B) Relation between the cellular 
sensitivity of compounds and their R. The cellular sensitivity was defined as –
log10(KD), where KD was the threshold of concentration required to induce a 
response by wild-type Escherichia coli. (c) Effect of the presence of the 
amino group on the sensitivity of aspartate analogs. The sensitivities of seven 
attractants and six non-attractants were averaged. Significant p-values 
(p < 0.05) are marked with a*.

Figure 4 | Molecular formulae of the amino acid analogs. Numbers before the name of the compound are serial numbers (Table S1 in Supplementary Material). 
The molecules are labeled with the brackets (A) or (N) signifying attractants and non-attractants, respectively. Compounds in bold characters bind to Tar with a 
higher affinity than to Tsr, as reported previously (Mesibov and Adler, 1972).
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Moreover, several of the aspartate analogs had amino groups  
between their two carboxyl groups. This was especially true of 
attractants, which have a low KD (l-aspartate, dl-α-methylaspartate, 
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and l-glutamate). Therefore, the effect of the –NH2 group on 
ligand binding was evaluated for the 17 aspartate analogs. Among 
the 13 attractants, seven compounds had single –NH2 groups and 
the remaining did not have any –NH2 groups. Among the four 
non-attractants, two had a single –NH2 group and the remaining 
did not have any –NH2 groups. These results show that the ratio 
of compounds that have an –NH2 group is comparable between 
attractants and non-attractants. Therefore, the amino group 
was not an essential feature of attractants of Tar. This result was 
consistent with the classification based on q− which is majorly 
attributed to the amino group, but failed to classify the aspartate 
analog accurately (accuracy: 9/17). On the other hand, average 
sensitivities were significantly different between attractants with 
an amino group and those without an amino group (with –NH2 
group: 4.9  ±  1.5, without –NH2 group: 3.1  ±  0.5, mean  ±  SD, 
p = 0.01, Figure 5C). Thus, we conclude that the –NH2 group was 
not an essential feature for classifying attractants of Tar. Instead, 
this group improves the binding affinity with Tar.

DiscussiOn

classification of the ligand of Bacterial 
chemoreceptors using the Qsar Method
We classified each of the 53 chemoreceptor ligands as an attract-
ant or non-attractant using machine-learning. To characterize 
these compounds, we used the QSAR method, which uses 
the physicochemical properties of the compounds instead  
of the crystal structure of the ligand binding pockets. The QSAR 
method can be adopted in the absence of structural information 
about the target, and has been applied to predict the substrate for 
the GPCRs (Wang et al., 2008; Michielan et al., 2009; Lounkine 
et  al., 2010; Brogi et  al., 2011; Zhang et  al., 2012), which are a 
major target of drug discovery. In this study, we showed that 
the ligands of bacterial chemoreceptors could be classified into 
attractants or non-attractants using a combination of 20 phys-
icochemical properties of the compounds. The classifier of the 
highest AUC had only 3 descriptors, which was much smaller 
number than previous QSAR studies for predicting substrates 
of various GPCRs [dopamine receptor: 98 descriptors (Zhang 
et al., 2012) and adenosine receptor: 300 descriptors (He et al., 
2016)]. Finally, these descriptors were narrowed down to single 
descriptor for single chemoreceptors; q− for Tsr and R for Tar. 
This small number of the descriptors in our model might be 
derived because the bacterial two-transmembrane receptors had 
much simpler topology than GPCR of seven-transmembrane 
receptors. To our knowledge, QSAR predictions have only been 
applied to the seven-transmembrane receptors (GPCRs). This 
study demonstrated for the first time that the QSAR method is 
applicable for predicting the ligands of the two-transmembrane 
receptor, and we suggested the ligand of the two-transmembrane 
receptors could be predicted with only a few descriptors.

identification of the Most effective 
Descriptor using sparse Modeling
We succeeded in extracting a physicochemical property singly 
effective at classification using ES-logistic regression, which 

corresponds to L0 regularization of sparse modeling (Igarashi 
et al., 2016). The minimum electrical potential (q−) was extracted 
as the effective descriptor, which could classify attractants and 
non-attractants with 79% accuracy (42/53). Most of the false 
classification was observed for compounds carrying two carboxyl 
groups, which is analogous to aspartate (8/11). The analogs of 
aspartate could bind to Tar with a higher affinity. Therefore, 
q− could classify most of the attractants for Tsr, but not Tar. 
Attractants among non-aspartate analogs mostly had their q− 
attributable to the presence of amino groups. On the other hand, 
most of the non-attractants did not have amino groups (8/11). 
Therefore, the amino group might be an essential residue for 
ligand recognition by Tsr. The importance of the amino group 
for ligand recognition by Tsr has been discussed in a previous 
study (Tajima et al., 2011). Therefore, by combing QSAR and ES 
method, we succeeded in deriving clues about the ligand binding 
mechanism of the receptor without the information about the 
structure of the ligand binding pocket. We propose that the com-
bination of the QSAR method and sparse modeling could prove 
to be an effective approach for understanding the mechanism of 
ligand recognition by receptors, the structure of whose ligand 
binding pocket is unresolved.

Molecular Mechanism of ligand 
recognition by Tsr
The importance of the amino group for ligand recognition by 
Tsr has been discussed in a previous report (Tajima et al., 2011). 
In that report, α-amino group of l-serine was shown to directly 
interact with following residues of the receptor α4 helix: Phe-
151, Phe-152, Gln-154, and Thr-156 (Figure  1B). Therefore, 
the amino groups on non-aspartate analogs might also interact 
with these residues. In addition, the β hydroxyl group of l-serine 
was known to interact with the Asn-68 residue of α1 helix and 
the Arg-73′ of residue of the anti-parallel α1 helix. The prime 
denotes the residue located on the opposite homo dimer. The 
former was essential for ligand recognition while the latter was 
not. To repeat, Asn-68 was an essential residue for ligand recog-
nition by Tsr. Thus, the residues essential for ligand recognition 
could be narrowed to the following: Phe-151, Phe-152, Gln-154, 
and Thr-156 residues on α4 helix for recognition of amino group; 
Asn-68 residue on α1 helix for recognition of the hydroxyl group 
(Figure 6A). In this model, amino and hydroxyl groups of the 
attractant cross-link α1 and α4 helices of the ligand-binding 
pocket of Tsr. However, we could not determine conclusively 
if the hydroxyl group was essential for ligand recognition by 
Tsr because several attractant serine analogs did not contain 
hydroxyl groups. Therefore, the mechanism of binding of com-
pounds to Tsr remained underdetermined in this study. This 
study only expanded upon the importance of the amino groups 
in l-serine recognition and recognition of the various serine 
analogs. However, some limitations are worth noting about 
the importance of the amino groups. Despite carrying amino 
groups, following three compounds did not behave as attract-
ants: β-alanine, γ-amino-n-butyrate, and l-homocysteine. The 
first two, β-alanine and γ-amino-n-butyrate, have –NH2 groups 
which have a small value of q−. However, it must be noted that 
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Figure 6 | Model of ligand recognition of the aspartate analog by Tar. (a) Minimal model for ligand recognition by Tsr. Dotted lines indicate interactions between the 
compound and the ligand binding pockets. Red and blue circle shows carboxyl and amino groups. Black circle shows functional groups, the interaction of which is 
unknown. Gray circle shows functional groups of which interaction with the compounds was obscure. (B) Minimal model for ligand recognition by Tar. (c) Summary 
of rule for ligand recognition by Tar.
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the position of the –NH2 groups was different from the α-amino 
acid. Therefore, to explain the recognition of these compounds, 
other functional groups might be considered which was also 
essential for ligand recognition of the Tsr. Future work therefore 
should consider the relative position of –NH2 groups and other 
functional groups which could also act as essential residue. 
Further mechanistic insights involving the interaction of Asn-68 
and the relative position of the –NH2 groups would be obtained 
by quantifying binding of the compound to Tsr by isothermal 
titration calorimetry (Tajima et al., 2011; Bi et al., 2013).

common Mechanism for ligand 
recognition by Tar
In contrast to the serine analogs which could be classified with 
physicochemical properties, the aspartate analogs could be 
classified using the structural properties of the compounds. The 
attractants for Tar could be predicted by quantifying the dis-
tance between the carboxyl groups (R). The attractants and non- 
attractants were classified by using a single R threshold of ~ 4 Å 
with 94% of accuracy (16/17). Moreover, R showed a correlation 
with the sensitivity of Tar compounds. These results showed that 
the affinity of the aspartate analogs for Tar could be determined 
by using the distance between the carboxyl groups. Only the 
oxaloacetate could not be classified using the distance depend-
ency of the carboxyl groups. Recently, Bi reported antagonist of 
Tar, which binds to the periplasmic domain of Tar but does not 
act as an attractant (Bi et al., 2013). The antagonist of the Tar 
reported in the previous study did not form hydrogen bonds 
between a donor group in the attractant and the main-chain 
carbonyls (Y149 and/or Q152); this interaction was suggested 
to trigger the signal transduction of Tar. The oxaloacetate had 
the second largest q− in our datasets (–224 kJ/mol). Therefore, 
this compound might fail to form the hydrogen bond between 
the residues on α4 helix; oxaloacetate might be antagonist of 
the Tar. The quantification of the q− might provide the clue to 
predict the antagonist of the Tar. In addition to the distance 

dependency, we demonstrated that the amino group was not 
essential for classification as an attractant of Tar. Several residues 
of the α4 helix of Tar have been reported as binding the α amino 
group on l-aspartate (Tyr-149, Phe-150, Gln-152, and Thr-154; 
Tajima et  al., 2011). Our result suggested that the interaction 
between α4 helix and amino groups was not essential for ligand 
recognition by Tar. Instead, it improves the binding affinity of 
the compound. Nonetheless, this result narrowed down the 
possible residues essential for detecting attractants of Tar, since 
only Arg-64 on the α1 helix was left. Arg-64 is known to make 
a hydration bond with the α carboxyl group of l-aspartate. 
For β carboxyl group of the l-aspartate, Ser-68 of α1 helix and 
Arg-69′, Arg-73′ of the antiparallel α1 helix have been reported 
(Tajima et  al., 2011). In this report, Arg-73′ was essential for 
recognition of l-aspartate, but Ser-68 was not essential (Tajima 
et al., 2011). Given these results, the residue essential to ligand 
recognition by Tar could be narrowed down to three arginine 
residues, which were known as the arginine triplet (Arg-64, Arg-
69′, and Arg-73′). Arg-64 of Tar is known to form a hydrogen 
bond with the α carboxyl group on l-aspartate, and Arg-69′ and 
Arg-73′ with the β carboxyl group on l-aspartate. Therefore, 
these essential residues can be crosslinked by two carboxyl 
groups on l-aspartate (Figure 6B). The distance R should affect 
the distance between carboxyl groups and the arginine residue. 
This negative correlation between the sensitivities and R might 
be affected by the electrostatic interaction between carboxyl 
groups and the arginine residue.

From these results, we propose the following model as a com-
mon mechanism for ligand recognition by Tar: arginine residues 
on the α1 helix (Arg-64) and antiparallel α1 helix (Arg-69′ and 
Arg-73′) are crosslinked by compounds with strong negative 
charges on both poles (Figure 6B). Moreover, the strength of the 
crosslink formation is determined by the distance between the 
carboxyl groups (R) (Figure 6C). Such rules for ligand recognition 
can be utilized for drug discovery, including targets of GPCRs. 
Therefore, finding such rules might provide efficient strategies 
for drug design. However, some limitations are worth noting. 
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This model can only be applied to compounds with two carboxyl 
groups. In a future study, we would like to clarify whether this 
rule can be applied to residues with any functional groups other 
than the carboxyl groups. Moreover, the binding of compounds 
to Tar was not experimentally validated in this study. Future work 
should quantify the binding affinity of Tar by measuring the KD of 
the purified binding fragment of Tar using ITC.

In summary, the attractants and non-attractants for Tar and Tsr 
could be classified with only descriptors with a single threshold 
each: q−  =  280  kJ/mol and R ~ 4  Å. For compounds carrying 
two-carboxyl groups, 16/17 compounds were correctly classified 
by assuming the R of the attractant to be <4 Å. The remaining 
compounds could be classified with a high accuracy (33/36) by 
assuming q− of attractant to be <280 kJ/mol. These results showed 
that 92% (49/53) of ligands of Tar and Tsr can be predicted by using 
only two descriptors. Moreover, each descriptor was related to the 
respective ligands for Tar (R) and Tsr (q−). The relation between 
R and sensitivity of binding to Tar highlighted the importance 
of the arginine triplet of the ligand binding pocket. The amino 
groups were not essential for ligand recognitions by Tar. On the 
other hand, the descriptor q− reinforced the importance of amino 

groups for ligand recognition by Tsr. We propose that the selec-
tive importance of the amino groups could explain the differential 
ligand specificity to Tar and Tsr, which are highly homologous 
(Tajima et al., 2011).
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