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Abstract: Understanding of molecular mechanisms of tumor growth has an increasing

impact on the development of diagnostics and targeted therapy of human neoplasia. In this

review, we summarize the current knowledge on molecular mechanisms and their clinical

implications in von Hippel-Lindau (VHL) disease. This autosomal dominant tumor syn-

drome usually manifests in young adulthood and predisposes affected patients to the devel-

opment of benign and malignant tumors of different organ systems mainly including the

nervous system and internal organs. A consequent screening and timely preventive treatment

of lesions are crucial for patients affected by VHL disease. Surgical indications and treatment

have been evaluated and optimized over many years. In the last decade, pharmacological

therapies have been evolving, but are largely still at an experimental stage. Effective

pharmacological therapy as well as detection of biomarkers is based on the understanding

of the molecular basis of disease. The molecular basis of von Hippel-Lindau disease is the

loss of function of the VHL protein and subsequent accumulation of hypoxia-inducible factor

with downstream effects on cellular metabolism and differentiation. Organs affected by VHL

disease may develop frank tumors. More characteristically, however, they reveal multiple

separate microscopic foci of neoplastic cell proliferation. The exact mechanisms of tumor-

igenesis in VHL disease are, however, still not entirely understood and knowledge on

biomarkers and targeted therapy is scarce.
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Overview of VHL Disease
Von Hippel-Lindau (VHL) disease is an autosomal dominantly inherited tumor

syndrome. The disease usually manifests in young adulthood and predisposes

affected patients to the development of benign and malignant tumors of different

organ systems, mainly including nervous system and internal organs. The incidence

of VHL disease has been assessed as one in 36,0001,2 and the penetrance is higher

than 90%.3

VHL disease is named after German ophthalmologist Eugen von Hippel, who

identified and described retinal hemangioblastomas,4 and Arvid Lindau, a Swedish

Pathologist, who discovered the coincidental occurrence of retinal and cerebellar

hemangioblastoma with tumors and cysts in internal organs. He published the

clinical spectrum of VHL disease.5,6

Clinically, the patients are divided into different groups: Patients with VHL type

1 predominantly without pheochromocytoma, and VHL type 2 predominantly with
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pheochromocytoma.7 VHL type 2 is further subdivided

into type 2A (with renal cancer) and type 2B (without

renal cancer). In type 2C, affected patients develop solely

pheochromocytomas.8

Molecular and Histomorphological
Basis of VHL Disease
VHL inactivation has a variety of different effects on human

tissue on molecular as well as on histomorphological levels.

Since there is no animal model available to date, which has the

full VHL phenotype, most knowledge is based on restricted

knockout models or on observations in human tissues.

Molecular Basis of VHL Disease
Patients affected by VHL disease carry a germline muta-

tion of the VHL tumor suppressor gene.9 Five-hundred

different pathogenic germline mutations have been identi-

fied in families with VHL disease.10 The VHL protein

(pVHL) interacts with elongins B, C and Cullin-2 to

form the VBC complex, an E3 ubiquitin ligase.11 This

complex mediates ubiquitin-mediated degradation.12–14

Biallelic inactivation of VHL is thought to be the basis

of tumorigenesis in VHL disease. Reintroduction of the

VHL function can reverse some effects of inactivation.15

The consequences of VHL inactivation can be divided into

HIF-dependent and HIF-independent effects (Figure 1).

HIF-Dependent Effects

HIF is a heterodimeric transcription factor consisting of an

unstable α and a stable β subunit. Different HIFα genes have

been identified in the human genome.16 HIF1α and HIF2α do

not appear to be fully redundant in function. Although germ-

line knock-out of HIF1α and HIF2α results in embryonic

lethality the timing and cause of death appear to differ.17

Moreover, post-natal inactivation of HIF1α and HIF2α leads

to differing phenotypes as well. The two proteins are also

differentially expressed in VHL lesions, where immature

cells show exclusive activation of HIF2α in contrast to frank

tumors that show activation of both HIF2α and HIF1α.18,19

Many of the HIF-dependent proteins are involved in oxy-

gen sensation and regulation and include genes involved in the

uptake and metabolism of glucose (GLUT-1, 6-PFK, PDK),

angiogenesis (VEGF, PDGF, CTGF), control of extracellular

pH (CA9), mitogenesis (TGFα), and erythropoiesis

(erythropoietin).20–23 EGFR and TGFα promote cell prolifera-

tion and survival. CXCR4 and its ligand SDF1 stimulate

chemotaxis and may also contribute to tumor cell invasion

and metastases. MMP1 and lysyl oxidase (encoded by LOX)

are implicated in ECM breakdown and tumor cell invasion/

migration. Finally, dysregulation of TWIST and activation of

HGFR (encoded by c-MET) are involved in epithelial-to-

mesenchymal transition (EMT).

Deciphering of the molecular mechanisms of VHL func-

tioning has had a large impact on the understanding of oxygen

sensation in mammalian cells and the development of neopla-

sia in general.24 The Nobel Prize in Physiology or Medicine

2019 was awarded jointly to William G. Kaelin, Peter

J. Ratcliffe and Gregg L. Semenza “for their discoveries of

how cells sense and adapt to oxygen availability.”

HIF-Independent Effects

In addition to HIF degradation, the VHL protein is

involved in HIF-independent cellular processes, which

may be connected with tumorigenesis. It regulates the

proper deposition of fibronectin and collagen IV within

the extracellular matrix.25 It furthermore stabilizes micro-

tubules and maintains the primary cilium. The VHL pro-

tein also activates and stabilizes p53 and, in neuronal cells,

induces apoptosis by downregulation of Jun-B.25 Acute

loss of VHL protein causes a senescent-like phenotype. It

appears that it increases p400 activity, which results in

inactivation (hypophosphorylation) of the retinoblastoma

protein (pRb) and prevents senescence.26 The VHL protein

can also act as an adaptor to bind CK2, which inactivates

the NF-kB agonist CARD9, leads to inhibition of NF-kB

signaling and overall inhibits cell survival. It is further-

more needed for primary cilium function by microtubule

stabilization and binding with aPKC and the polarity pro-

teins Par3 and Par6.

Box 1 Example of a Routine Surveillance Protocol for Von Hippel–

Lindau Disease

Annual ophthalmic examinations (direct and indirect

ophthalmoscopy), beginning at age 1 to screen for retinal

hemangioblastoma.

Contrast-enhanced MRI brain and full spine to screen for CNS

hemangioblastomas, beginning at age 12. Annual or biennial depending

on manifestations

MRI examinations of the abdomen every 12 months to screen for

renal cell carcinoma and pancreatic tumors, beginning from the age of

12 years.

Annual blood pressure monitoring and 24-h urine studies for

catecholamine metabolites starting at age 4 y to screen for

pheochromocytoma. Alternatively measuring plasma free

metanephrines.

Biennial audiogram starting at age 16 to screen for ELST

Note: Data from Maher.204
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The different HIF dependent and HIF-independent mole-

cular functions imply several possible ways of how VHL

related tumorigenesis may occur and which molecular targets

could possibly be used for therapy. Despite the broad under-

standing of VHL functioning, it remains largely unclear, how

a “normal” cell of a VHL patient which carries one mutated

VHL allele is transformed into a tumor cell. Simple inactiva-

tion of the second VHL allele seems insufficient for tumor

growth27–29 and does also not explain the peculiar organ dis-

tribution of the disease with mainly CNS and internal organs

involved. Some keys to these unsolved questions are discussed

in the next section on histomorphological tumorigenesis.

Histomorphological Basis of VHL Disease
Organs affected by VHL disease may develop frank tumors.

More characteristically, however, they reveal multiple separate

microscopic foci of neoplastic cell proliferation. Detailed his-

tologic studies – combined with molecular analysis – were

performed on autopsy material after processing the entire

anatomic structure (eg studies on entire spinal cord

(Figures 2 and 3), cerebellum, epididymis (Figures 4 and 5),

or vestibular aqueduct) allowing for variably precise quantita-

tion of these neoplastic foci. Studies on both the entire VHL

spinal cord and surgically resected spinal cord tumors revealed

these microscopic neoplastic foci to represent early, VHL-

Figure 1 VHL protein functions: HIF independent and HIF dependent. Abbreviations: aPKC, atypical protein kinase C; CA9/12, carbonic anhydrase 9/12; CARD9, caspase

recruitment domain-containing protein 9; CDKN1B, cyclin-dependent kinase inhibitor 1B; CK2, protein kinase CK2; CoV, type V collagen; CTGF, connective tissue growth

factor; Cul2, Cullin 2; CXCR4, CX chemokine receptor type 4; ECM, extracellular matrix; EGFR, epidermal growth factor; FLK1, fetal liver kinase 1; GLUT1, glucose

transporter 1; GSK3B, glycogen synthase kinase 3 beta; HIF, hypoxia-inducible factor; HGFR, hepatocyte growth factor; LOX, lysol oxidase; MDM2, mouse double minute 2

homolog; MMP, matrix metalloproteinases; NFKB, nuclear factor kappa-light-chain-enhancer of activated B cells; NOS, nitric oxide synthase; PDGF, platelet-derived growth

factor; RBX1, ring box protein 1; SDF1, stromal cell-derived factor 1; TCEB1/2, transcription elongation factor B1/2; TGF, transforming growth factor; TWIST, twist related

protein; VEGF, vascular endothelial growth factor; 6PFK, 6 phosphofructokinase.
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inactivated precursor lesions. This chapter describes histologic

changes occurring organs affected by VHL disease with spe-

cial consideration of early tumorigenesis.

Tumors Involving CNS

Hemangioblastoma

The histology of neurosurgically resected hemangioblastomas

shows a high degree of variability. Cytologically, hemangio-

blastomas are predominantly composed of two types of cells.

The first cytologic component is characterized by conspicuous

neoplastic andVHL-inactivated clear cells that are convention-

ally called “stromal” cells. “Stromal” cells do not exist in

normal nervous system tissue, and their origin has been

Figure 2 Early VHL pathogenesis in the nervous system: Hemangioblastoma precursors. Histologic examination of grossly normal-appearing nerve root tissue of VHL

patients reveals numerous microscopic hemangioblastoma precursor structures within nerve roots. Reprinted with permission from Vortmeyer AO, Tran MG, Zeng W, et al

Evolution of VHL tumourigenesis in nerve root tissue. J Pathol. 2006;210(3):374–382.18

Figure 3 Hemangioblastoma progression. Proposed structural progression of hemangioblastoma from mesenchymal (A) to epitheloid (B and C) and vasculogenetic

architecture/extramedullary erythropoiesis (D–G); (A–D), immunohistochemical stain for CD31; (E–G), (H and E) stain. Immunohistochemistry for CD31 was performed

to better differentiate reactive vascular cells (positively staining cells) from neoplastic cells (negatively staining cells). (H and E) stain was performed to demonstrate

erythropoiesis within epitheloid and vasculogenetic structures. Reprinted from Exp Mol Pathol, 96(2), Glasker S, Smith J, Raffeld M, Li J, Oldfield EH, Vortmeyer AO, VHL-

deficient vasculogenesis in hemangioblastoma 162-167, Copyright (2014), with permission from Elsevier.205
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controversial. While “stromal” cells are lipid- and glycogen-

rich cells with abundant clear or bubbly cytoplasm in larger

tumors, they are smaller and less conspicuous in small tumors

or precursor structures. The other cytologic component of

hemangioblastomas is represented by abundant blood vessels.

The blood vessels do not show VHL inactivation30,31 and

therefore represent reactive angiogenesis. Intense reactive

angiogenesis is a characteristic feature of hemangioblastoma

and explained by the expression of HIF, VEGF and other

angiogenic factors in stromal cells.32,33

Hemangioblastomas show not only cytological but also

marked architectural variation. Tumor cells may be scattered

within a matrix of abundant capillaries, referred to as

“reticular”34 or “mesenchymal”35 architecture. Tumors may

also reveal epitheloid tumor cell clustering, referred to as

“cellular”34 or “epitheloid”35 architecture. A transition from

Figure 4 Early VHL pathogenesis in the epididymis: cystadenoma precursors. (A–C) Multifocality of cystadenoma precursor structures: “Tumor-free” VHL epididymis contains

multifocal microscopic precursors in the efferent ductule compartment of the caput (marked by arrows); e= normal efferent ductules. Republished with permission of JohnWiley &

Sons-Books, from Epididymal cystadenomas and epithelial tumorlets: Effects of VHL deficiency on human epididymis, Glasker S, Tran MG, Shively SB, et al. J Pathol. 210(1):32–41.
permission conveyed through Copyright Clearance Center, Inc. Copyright © 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.48

Figure 5 Papillary cystadenoma of the epididymis. (A), Gross examination of VHL epididymis shows enlargement of the caput epididymis (white arrows). (B),
Cystadenomas reveal papillary (pap), tubular (tu) and cystic (cy) architecture. (C), Immunohistochemical staining with anti-CD31 reveals extensive vascularization of the

tumor stroma. Numerous reactive vascular cells are in direct contact with overlying neoplastic epithelial cells. Republished with permission of John Wiley & Sons-

Books, from Epididymal cystadenomas and epithelial tumorlets: Effects of VHL deficiency on human epididymis, Glasker S, Tran MG, Shively SB, et al J Pathol. 210(1):32–41.
permission conveyed through Copyright Clearance Center, Inc. Copyright © 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.48
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mesenchymal to epitheloid architecture occurs gradually with

tumor growth. Hemangioblastomas smaller than 8mm3 in size

show exclusively mesenchymal architecture, while epitheloid

features may be developed in tumors larger than 6 mm3;

epitheloid features have been consistently observed in tumors

larger than 737 mm3.35 A markedly elevated Ki67 prolifera-

tion index in epitheloid areas suggests that epitheloid features

are associated with accelerated tumor growth.35

Biologically, the profound cytologic and architectural

transformation from mesenchymal to epitheloid tumor clo-

sely resembles stages of embryonic hemangioblastic

transformation.36 The capacity of “stromal” cells to differ-

entiate into red blood cells has been subsequently

demonstrated37,38 and a shared protein expression profile

with hemangioblast precursor cells has been identified.28

Therefore, multiple lines of evidence have confirmed the

“stromal” cells to represent hemangioblastic precursor cells.

The histologic evolution of hemangioblastomas is not

completely understood. The earliest stages of VHL tumor-

igenesis are represented by microscopic foci, undetectable

radiologically or by the naked eye. Because of their minute

size, these foci can only be detected by detailed histologi-

cal analysis of normal-appearing tissues of VHL patients.

Moreover, to obtain information on the number and dis-

tribution of microscopic lesions, tissue blocks need to be

step-sectioned at 50-micron intervals. Such studies have

been performed on tissues of VHL patients that had been

obtained at autopsy. Analysis of a series of cases revealed

that precursor lesions of spinal cord hemangioblastomas

were exclusively located in nerve root tissue, dorsal roots

being far more frequently involved than anterior roots.

Tumors preferentially developed from dorsal root precur-

sors in close proximity to the spinal cord.29,39 In general,

precursor structures are detected in far greater abundance

than frank tumors;29,39 therefore, precursor structures have

extremely low proliferative potential, and only a small

subset of precursor structures will develop into tumors.

In the cerebellum, precursors originate in the molecular

layer.19 Numerically, precursor structures are far more

frequent in dorsal root tissue compared to cerebellar tissue.

It, therefore, appears that precursors in the cerebellum

have a higher probability to develop into clinically rele-

vant tumor than nerve root precursors.19

Histologically, precursor CNS lesions reveal a sharply

demarcated zone containing abundant capillaries and scat-

tered small VHL-deficient cells;29 by immunohistochem-

istry, VHL-deficient cells have revealed HIF2 activation.39

Significant changes occur during the progression of

a precursor structure to tumor.39 Cytologically, the VHL-

deficient cells markedly increase in size and develop abun-

dant clear, vacuolated or eosinophilic cytoplasm. While in

the earliest stages of tumorigenesis VHL-deficient tumor

cells show – similar to the VHL-deficient cells in the

precursor lesions – a diffuse distribution pattern

(“mesenchymal architecture”), further tumor growth con-

sistently reveals tumor cells to form small clusters

(“epitheloid architecture”) in parts of the tumor.35

The retina develops from extensions of the neural tube,

providing justification to include retinal hemangioblastomas

among the craniospinal hemangioblastomas. Furthermore,

histologic features of small and larger retinal tumors are

identical to those of nerve root and cerebellar hemangioblas-

tomas. Analogous to CNS tumors, retinal hemangioblasto-

mas are composed of VHL-inactivated tumor cells with

intense reactive vascularization40,41 and unrelated to capil-

lary hemangiomas occurring elsewhere in the body.

Endolymphatic Sac Tumors

Endolymphatic sac tumors were originally described by

Heffner as adenocarcinomas of probable endolymphatic

sac origin.42 Endolymphatic sac tumors in VHL disease

are extensively vascularized tumors forming prominent

papillary structures, the papillae being lined by a single

row of cuboidal epithelial cells. Cysts lined by single rows

of cuboidal cells are frequently present, and epitheloid clear

cell proliferation is occasionally detected.27 Tumors larger

than 10 mm in size usually present with bony erosion, while

the exact border between endolymphatic duct and sac is not

clearly defined, it is of clinical relevance that tumors appear

to originate most frequently from intraosseous portions of

endolymphatic sac/duct epithelium.27

Studies on clinically uninvolved endolymphatic sac

and duct of VHL patients showed evidence for VHL-

inactivated cells lining cysts or papillary projections; in

analogy to studies in other tissues these microscopically

small cystic or papillary structures may represent early

stages of endolymphatic sac tumors.27

Visceral Tumors

Renal Cell Carcinoma

The diseased VHL kidney is characterized by renal cysts

and clear cell carcinoma. These pathologic changes show

wide differences in growth.43 Histologically, solid tumors

and cysts are composed of clear cells and associated with

intense vascularization.44 There is a histopathologic
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continuum ranging from benign cysts and atypical cysts to

carcinoma.44 Numerically, by far the most pathogenic

events in the kidney are represented by microscopic cystic

and solid neoplasms.45 VHL gene function is inactivated

in the smallest foci of microscopic neoplasia.46,47 All clear

cell tumors in the kidney are designated renal cell carci-

noma, although they need to reach at least 3 cm size to

acquire the capacity to metastasize. Histologically, larger

renal clear cell tumors may develop frankly malignant

features including tumor necrosis and cytologic anaplasia

with mitotic activity.

Epididymis Cystadenoma

Epididymal cystadenomas are component tumors of VHL

disease composed of cuboidal epithelial cells, with papil-

lary, tubular and cystic architecture, and prominent angio-

genicity. Numerous tumor precursor elements were

detected by a thorough analysis of nontumorous epididy-

mides obtained at autopsy (Figure 4). Topographically,

precursor structures were confined to the efferent ductules

of the caput epididymis. Precursor structures were charac-

terized by the formation of epithelial cysts and prominent

epithelial proliferation into the lumina of cysts and efferent

ductules.48 A 3dimensional reconstruction of intraductular

papillary neoplastic growth revealed the complex inter-

mingling of pre-existent anatomic structure and slow neo-

plastic growth creating a hamartomatous appearance.49

Since epididymal cystadenomas are rare neoplasms, the

occurrence of bilateral tumors is highly associated with

VHL disease.50

Papillary Cystadenoma of the Broad Ligament

Papillary cystadenoma of the broad ligament occurs less

frequently than epididymal cystadenoma. Morphological

and immunohistochemical features strongly overlap.

Morphologic and genetic studies have established this

tumor as a VHL component tumor, and it is considered

as female counterpart tumor of epididymal cystadenoma.51

Pancreatic Microcystic Adenoma

Microcystic adenomas of the pancreas (serous cystadeno-

mas) are tumors composed of small cysts lined by flat-

tened or cuboidal glycogen-rich cells.52 After the initial

demonstration of VHL gene deletion and mutation in

microcystic adenomas,53 a more detailed analysis of the

VHL pancreas revealed the presence of numerous small

microcystic adenomas as well as VHL gene-inactivated

pancreatic cysts; most cysts were of microscopic size

suggesting a continuum of development from the pancrea-

tic cyst(s) to microcystic adenoma.54

Pancreatic Neuroendocrine Tumor

Pancreatic neuroendocrine tumors were established as

VHL component tumors in 1998.55 Compared to sporadic

neuroendocrine tumors, VHL-associated neuroendocrine

tumors more frequently exhibit clear cell morphology

which may be challenging to differentiate from metastatic

renal cell carcinoma or pancreatic microcystic adenoma

which may occur in the same pancreas.55

Adrenal Pheochromocytoma and Extra-Adrenal

Paraganglioma

Pheochromocytomas and paragangliomas are associated

with multiple hereditary disorders. The histologic features

are distinguished from other VHL disease-associated clear

cell neoplasms by more variable, frequently polyhedral

cytology, basophilic and finely granulated cytoplasm and

cytoplasmic bodies in both familial and nonfamilial

cases.56 In contrast, analysis of VHL disease-associated

pheochromocytomas revealed tumor cells with clear or

amphophilic, inclusion-free cytoplasm that were more

intensely intermixed with vascular cells.57

In conclusion, the characterization of precursor structures

has provided more precise insight on the anatomic and cytolo-

gic origin of neoplastic processes associatedwithVHLdisease.

In all anatomic structures investigated so far, precursor struc-

tures were far more numerous than frank tumors. Therefore,

VHL inactivation (“second hit”) is necessary, but insufficient

for the development of a frank tumor. In the future, compara-

tive molecular analysis of frank tumor and precursor structures

may be helpful to identify a “third hit” promoting tumorigen-

esis from precursor material.

VHL Disease Manifestations and
Treatment
Patients affected by VHL disease develop specific types of

heavily vascularized tumors in a highly selective subset of

organs. Multiple and bilateral tumors occur frequently.

Affected organs and lesions include retinal hemangioblas-

tomas, cerebellar, brainstem and spinal cord hemangio-

blastomas, endolymphatic sac tumors, renal cell

carcinomas, pheochromocytomas, pancreatic cysts, micro-

cystic serous adenomas, neuroendocrine tumors, as well as

epididymal cystadenomas.58–61
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Retinal Hemangioblastomas
Retinal hemangioblastomas are benign tumors that fre-

quently occur in multiplicity and bilaterally in VHL

patients. Expression of high levels of VEGF in these

tumors causes hypervascularization, vascular leakage and

eventually retinal detachment.

Annual screening by fundoscopy and if necessary fluores-

cence angiography is recommended for VHL patients starting

at 1 year of age. Early treatment of asymptomatic lesions is

recommended. Laser coagulation or cryotherapy can control

the majority of peripheral retinal hemangioblastomas.62,63

Larger tumors can be treated by vitrectomy.64 Optic disc

hemangioblastomas should be monitored without treatment.

With regular screening and early treatment of detected lesions,

visual prognosis for VHL patients is in general good: In one

major study approximately 8% of the eyes of VHL patients

had poor visual acuity of 20/200 or worse with approx. 8% of

these eyes requiring enucleation.65

Pharmacological treatments are in experimental stages

and are discussed in the section on targeted therapies.

Craniospinal Hemangioblastomas
Hemangioblastomas are benign slow-growing highly vas-

cularized tumors. They are frequently the first manifesta-

tion of VHL disease. These patients frequently develop

multiple hemangioblastomas.66 The hemangioblastoma

tumor burden in VHL disease is associated with germline

deletions and male sex.67 Depending on their size and

location hemangioblastomas cause different neurologic

symptoms.66,67 It is usually an associated pseudocyst or

syrinx and not the tumor itself which causes the

symptoms.68 The syrinx is caused by vascular leakage

and is frequently larger than the tumor itself.66

Polyglobulia occurs in 10% of patients69 and may cause

thrombosis. Removal of the largest hemangioblastoma

usually resolves polyglobulia.69

Treatment is primarily surgical and is recommended

for all symptomatic tumors and for all tumors causing CSF

obstruction.66,70,71 If surgery is not possible, radiation

therapy may be an alternative, however, its effectiveness

remains controversial.72–74 Pharmacotherapy of CNS

hemangioblastoma is at an experimental stage and is dis-

cussed in the section on targeted therapy.

Endolymphatic Sac Tumors
These histologically benign tumors originate in the vestib-

ular aqueduct and grow locally invasive into the petrous

bone. Patients will typically present with hypoakusis or

hearing loss (100%), tinnitus (77%), dysequilibrium

(62%), and facial paresis (8%).75 Tumor-associated intra-

labyrinthine hemorrhage may lead to acute hearing loss

and vestibulopathy due to endolymphatic hydrops.76 All

patients with endolymphatic sac tumors (ELSTs) should

undergo diagnostic testing for VHL mutations since endo-

lymphatic sac tumors can be the first manifestation of

VHL disease.

In general, early surgical resection is recommended to

enhance the possibility of complete resection and avoid

hearing loss or vestibular symptoms, which may be

irreversible.77 The timing of surgery depends on the severity

of symptoms, the slow but variable growth of the tumors, the

possibility of injury to the 7th and 8th cranial nerves and

possible bilateral occurrence. The role of radiation in the

treatment of these tumors remains controversial.78

Description of pharmacological therapies is scarce and is

discussed in the section on targeted therapy.

Renal Manifestations
Patients with VHL disease may develop renal cysts and

renal cell carcinomas (RCCs).46,79–83 VHL-disease-

associated RCCs tend to be low grade and minimally

invasive,84 their rate of growth varies widely.85,86 VHL

alterations are also observed in 60–70% of sporadic

RCCs.87

The goal of therapy is the prevention of metastasis and

maintenance of kidney function. Most authors recommend

nephron-sparing surgery for carcinomas that exceed 3 cm

in size.79,88 Other authors suggest that a diameter of 4 cm

is also acceptable.89 The “3 cm rule” takes into account the

overall survival and quality of life (considering potential

premature renal failure and need for dialysis).

Although the gold standard for treating renal tumors is

open and minimally invasive partial nephrectomy, alterna-

tive therapies including cryotherapy and radiofrequency

ablation are also presently utilized.90 Pharmacological

therapy is used for metastatic disease and is discussed in

the section on targeted therapy.

Pheochromocytoma
In more than 33% of patients, pheochromocytomas can

occur in a familial syndrome such as the VHL

syndrome.91,92 The presence of pheochromocytomas

defines VHL disease type 2 (A,B,C). More than 26% of

VHL patients developed pheochromocytomas in major

series.93–96

Gläsker et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
OncoTargets and Therapy 2020:135676

http://www.dovepress.com
http://www.dovepress.com


Few tumors are hormonally inactive with plasma-free

metanephrine levels within the normal reference range. The

tumors occur bilaterally in up to 39% of patients.93 The

tumors can also be found in the sympathetic chain and are

then mostly unable to produce and secrete

catecholamines.92,97–100 In general, extra-adrenal pheochro-

mocytomas have a higher frequency and potential of malig-

nancy than pheochromocytomas located in the adrenal

gland.101 No biomarkers are available that can reliably dis-

tinguish a benign from a metastatic pheochromocytoma.

Screening for pheochromocytoma includes measure-

ments of urinary catecholamine metabolites and fractio-

nated metanephrines, as well as of plasma-free

metanephrines.94,102,103 The diagnosis can further be

established by abdominal computed tomography and/or

magnetic resonance imaging.58,105 Given the low fre-

quency of extra-adrenal pheochromocytomas (15%) or

metastatic (<5%) pheochromocytomas in patients with

VHL disease, selected patients should undergo 123I-

MIBG scanning to screen for extra-adrenal or metastatic

disease18,101,105 F-FDG, and more recently,67 Ga

DOTATATE PET have been shown to offer better test

characteristics for assessment and staging of pheochromo-

cytoma/paraganglioma than 106 MIBG scintigraphy107–110

The detection of a pheochromocytoma in patients with

VHL syndrome is important to prevent life-threatening

hypertensive attacks. Hormonally active pheochromocy-

tomas should generally be treated before surgical treat-

ment of other VHL lesions to prevent intraoperative

hypertensive complications and require perioperative

blockade.111

It is recommended that pheochromocytoma screening

should be started already in childhood at the age of 4

years,58,92,94,96,112 acknowledging that metastatic pheo-

chromocytoma occurs in asymptomatic VHL patients.113

In patients with apparently familial pheochromocytoma

there is a 50% chance of VHL disease, whereas the disease

is detected in only 10% of patients with sporadic

pheochromocytoma.92,114,115 More than 70% of pediatric

pheochromocytomas are VHL related.

Treatment of nonmetastatic adrenal pheochromocy-

toma consists of adrenal cortical sparing (partial) tumor

removal, whenever possible.116–119 Minimally invasive

adrenal sparing removal of the pheochromocytoma should

be performed in most if not all patients.120

This potentially impacts survival as the risk of death

from primary adrenal insufficiency may be higher than

dying of a recurrent pheochromocytoma. Metastatic

pheochromocytoma occurred in 3 patients of a VHL

cohort consisting of 273 patients94 and recurrences

occurred in 8 of the 273 patients. Bausch and colleagues

found a 38% risk of developing a second paraganglioma in

pediatric patients diagnosed with pheochromocytoma.121

There is no consensus on whether hormonally inactive

pheochromocytomas require treatment. The decision will

depend on tumor growth, symptoms, and possible

metastasis.106,122 Mutation-adjusted surveillance aims to

increase life expectancy.123

Epididymal Cystadenoma
About 50% of male VHL patients develop these non-

malignant tumors.124 Epididymal cystadenomas typically

arise in the head of the epididymis and contain cystic as

well as adenomatous areas and. These lesions are usually

asymptomatic. Malignant transformation has not been

reported. Obstruction of efferent ductules and spermatic

cords may result in fertility problems in rare cases. If

necessary, these tumors can be seen on ultrasound.

The female counterparts are cystadenomas of the broad

ligaments. They play no major clinical role. “Adnexal

papillary cystadenoma” are rare, but may require surgery.

They are of probable mesonephric origin.

Pancreatic Manifestations
Pancreatic manifestations in VHL disease include cystade-

nomas, cysts and pancreatic neuroendocrine tumors.125

A recent series of 48 patients with VHL disease at the

Mayo Clinic also revealed 5 patients with branch duct

intraductal papillary neoplasm.126

Pancreatic manifestations are observed in 35–70% of

VHL patients.55,127,128 It may be difficult to differentiate

between benign microcystic adenoma and a pancreatic

neuroendocrine tumor. Pancreatic neuroendocrine tumors

also reveal a staggering growth pattern similar to

hemangioblastoma.129

Besides rare cases of bile duct obstruction or pancreatic

insufficiency these tumors are usually asymptomatic.

Screening is performed by contrast-enhanced MRI with.

Image acquisition has to be performed in the early arterial

phase. Pancreatic neuroendocrine tumors are usually solid

lesions, whereas microcystic adenomas reveal

a multicystic appearance. Microcystic adenomas usually

need no treatment, whereas pancreatic neuroendocrine

tumors need to be considered for surgery. Mutations in

exon 3, especially of codons 161/167 are at enhanced risk

for metastatic pancreatic neuroendocrine tumors.130 Most
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of these lesions are small and slow-growing. In general,

VHL-associated pancreatic neuroendocrine tumors have

a favorable prognosis compared to sporadic tumors.131

Tumors with a diameter over 2.8 cm should be treated

surgically to avoid metastasis according to a recent multi-

center study.130 68Ga-DOTATOC PET/CT has better sen-

sitivity in detecting pancreatic NET (size range 4–38 mm)

in patients with VHL than 111In-octreoscan.132

Resection of pancreatic tumors may be combined with

laparotomy for other VHL associated lesions.133,134

Biliary obstruction with pancreatic insufficiency can be

treated by placing biliary stents or replacing pancreatic

enzymes. A new option is organ-sparing minimally inva-

sive resection which can be applied to tumors in the tail

and the body of the pancreas.135 Chemotherapy is cur-

rently under investigation and discussed in the section on

targeted therapy.

VHL Screening and Prognosis
A careful family history and screening for other lesions

associated with VHL should be performed in all patients

with hemangioblastoma, the index tumor of VHL disease.

Genetic testing for VHL disease is recommended for all

patients with hemangioblastoma.136,137

If a diagnosis of VHL disease is established, patients

should undergo an annual screening program (Box 1) for

the timely identification of manifestations before irrever-

sible deficits or metastasis occurs. Screening includes per-

iodic contrast-enhanced MRI scans. While CNS

gadolinium accumulation will eventually occur in virtually

all VHL patients, no pathological effect of this accumula-

tion is known so far.138

The screening programs vary slightly between different

centers. A typical program is presented in Box 1. The

screening includes several contrast MRI scans. Most cen-

ters perform three different scans. Brain, spine and abdo-

men. Since the discovery of Gadolinium (Gd) depositions

in the CNS it is being considered to minimize the use of

Gadolinium. These depositions are particularly frequent in

VHL patients.138 A shortened 35-mins whole-body MRI

protocol with only one Gd injection has been recently

suggested139 making VHL screening also quicker and

more convenient for patients.

The overall life expectancy of VHL patients used to be

limited with a median survival of around 50 years.2,60

However, the introduction of clinical screening enabled

timely diagnosis and prophylactic treatment of VHL

lesions leading to significantly improved life

expectancy.140 Modern management of VHL disease-

associated lesions has achieved a life expectancy of addi-

tional 10 years.141

Biomarkers in VHL Disease
Timely screening for and preventive treatment of lesions is

key to the successful management of VHL patients.

Recent developments in oncology are biomarkers includ-

ing tumor markers, disease activity markers, liquid biopsy

and others. We here review the knowledge of systemic

biomarkers. Tumor-specific markers, which are detected

within the tumor tissue, are not reviewed here. To date,

systemic biomarkers do not play a role in the clinical

practice of VHL disease, except for plasma and urinary

catecholamine metabolites and fractionated metanephrines

for pheochromocytoma. However, there are interesting

new developments. Certain markers or combinations of

markers may be further developed for clinical use in the

future and may supplement or even replace other time-

consuming screening examinations.

Measuring plasma levels of HIF-dependent molecules

appears to be an obvious attempt to monitor disease activity

in VHL patients. One group has suggested using plasma

VEGF and miRNA210, a hypoxia-inducible micro-RNA,

to monitor disease activity in VHL patients with retinal

hemangioblastomas. They report that levels of both mole-

cules decreased in all patients under therapy with

propranolol.142 Other groups have observed a decrease of

serum levels of the HIF-dependent proteins VEGF and also

the receptors VEGFR-2 and VEGFR-3 as well as CA9

during therapy with sunitinib and sorafenib in patients with

VHL-associated and sporadic RCC.143 Reduction of serum

VEGF levels was also detected in mice with xenografted

VHL RCCs under propranolol treatment.144

Also, monitoring tumor secretion products may be of

interest in VHL disease. VHL patients with pancreatic

neuroendocrine tumors had a correlation with plasma

vasoactive intestinal peptide and pancreatic polypeptide

levels in one study.145

The significance of VHL mutations as a predictive

marker in sporadic RCCs is well described. VHL muta-

tions in circulating tumor DNA have been detected by

liquid biopsy using a Taqman assay.146

Another study describes the identification of VHL

mutations in circulating cancer cells with single-cell

genetic analysis.147

Polyglobulia has been described as a paraneoplastic phe-

nomenon in VHL disease. It was reported to occur in CNS
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hemangioblastomas as a consequence of the secretion of

erythropoietin. More recent studies show that this phenom-

enon is rare, but if present, polyglobulia subsides with the

removal of the hemangioblastoma.69 This is consistent with

reports of erythropoietic activity in a subset of

hemangioblastomas.37 Interestingly, the level of serum ery-

thropoietin and the extent of polyglobulia do not correlate.148

However, the size of the solid tumor component correlates

with polyglobulia. Therefore, polyglobulia is a biomarker for

tumor growth in a subset of hemangioblastomas.

Polycythemia has also been reported in patients with VHL

disease and renal cancer149 and pheochromocytoma.150

In general, the knowledge on biomarkers in VHL dis-

ease is scarce and this should be addressed in future

clinical studies on VHL disease.

Targeted Therapy in VHL Disease
Targeted cancer therapy aims to block specific molecular

pathways of cancer cells. Targeted drugs can be subdi-

vided into compounds that inhibit the growth of the pri-

mary tumor, prevent invasion in nearby tissue; or drugs

that block angiogenesis, metastasis and consequent devel-

opment of secondary tumors. Because most VHL related

tumors are benign, or only carry a low rate of metastasis,

targeted VHL therapy mainly focuses on inhibiting pri-

mary tumor growth and angiogenesis.

Up to date, the incomplete understanding of VHL

tumorigenesis has thwarted the development of a targeted

therapy against the disease. Furthermore, VHL tumors are

known for their saltatory growth pattern with quiescent

phases, which complicates the distinction between

response to treatment and natural behavior. Considerable

effort has been spent on pharmacological trials, harvesting

mixed results. There are no systematic reviews on phar-

macological trials in VHL disease. We have reviewed

more than 50 studies or case reports and summarized the

findings here. The studies are categorized by the main

action of their respective drug (Figure 6).

Monoclonal Antibodies
Because VHL tumor vascularization (and consequently also

tumor growth) is largely dependent on VEGF, many VHL

treatment trials have focused on blocking the VEGF-pathway.

Intravitreal injection of anti-VEGF monoclonal antibo-

dies has been widely used as therapy for neovascular age-

related macular degeneration. It is now being repurposed

for retinal hemangioblastomas in VHL disease.151

Bevacizumab is a monoclonal antibody that prevents

interaction between VEGF-A (isoforms 206, 189, 165, 121

Figure 6 Molecular targeting in VHL disease: action mechanisms. Abbreviations: EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; FGF, fibroblast

growth factor; FGFR, fibroblast growth factor receptor; HIF, hypoxia-inducible factor; PDGF, platelet-derived growth factor; PDGFR, platelet-derived growth factor

receptor; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor.
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and 110) and its receptors (VEGFR1/2). Research groups

have reported moderate effects of intravitreal bevacizumab

on retinal hemangioblastomas.

Ach et al reported a VHL patient who experienced

growth stabilization of retinal hemangioblastomas after

several years of intravitreal bevacizumab injections.152

Tano et al treated two VHL patients with intravitreal bev-

acizumab in combination with vitrectomy, to stabilize

a proliferative vitreoretinopathy caused by retinal hemangio-

blastomas. Even though exudationwas suppressed, hemangio-

blastoma volumes remained stable.153 Hrisomalos et al

reported a similar response in one VHL patient, after

a regimen of 12 bevacizumab injections over 60 months.154

Tsai et al published contradictory results: photodynamic ther-

apy in combination with intravitreal bevacizumab and corti-

costeroids reduced the volume of multiple retinal

hemangioblastomas in one VHL patient, but exudation was

not affected. According to Tsai et al, corticosteroids seem to be

more effective in reducing exudation than bevacizumab.155

Walker et al described a VHL patient with rebound neovascu-

larization after intravitreal bevacizumab injection, again with-

out effect on tumor volume.156

Also, the systemic use of bevacizumab has been tested.

Wackernagel et al reported the active development of

retinal hemangioblastomas during systemic bevacizumab

treatment in a VHL patient. Side effects of systemic use

were paresthesias and nail petechiae.157

To conclude; laser photocoagulation, cryotherapy,

photodynamic therapy and pars plana vitrectomy seem to

remain the gold standard for the treatment of retinal VHL

hemangioblastomas. Bevacizumab may be considered as

adjunctive therapy to stabilize exudation caused by multi-

ple treatments, and to halt neovascularization.

Ranibizumab is anothermonoclonal antibody that prevents

interaction between VEGF-A (isoforms 165, 121, 110 and

theoretically 206 and 189) and its receptors (VEGFR1/2).

After three intravitreal ranibizumab injections, Michels et al

saw stabilization and decreased exudation of a retinal heman-

gioblastoma in a VHL patient.158 Wong et al conducted

a prospective case series including 5 VHL patients with

advanced retinal hemangioblastomas, who followed a 24-

week regimen of 7 intravitreal ranibizumab injections. Three

subjects noticed transient vision improvement, which was

however followed by progressive tumor growth and macular

exudation. In one patient, macular exudate even increased

immediately. One patient experienced prolonged vision

improvement and a decrease of macular exudate after 10

injections, with stabilization of tumor volume.159

Pegaptanib is a monoclonal antibody that selectively binds

the VEGF-A 165 isoform (which is most predominant in

hemangioblastomas) and thereby prevents interaction with its

receptors (VEGFR1/2). Dahr et al published a pilot case series

including 5 VHL patients with retinal hemangioblastomas that

were ineligible for conventional treatment. After six intravi-

treal pegaptanib injections, macular exudation decreased in

two patients, and one of them experienced improved visual

acuity. Three patients had adverse events that necessitated

treatment withdrawal; such as retinal detachment after laser

treatment, retinal detachment caused by exudation, and pro-

gressive macular edema. Pegaptanib did not reduce retinal

hemangioblastoma volumes and was therefore considered as

a palliative treatment modality only.160

We conclude that monoclonal antibodies directed against

VEGF are mainly applied as adjunctive treatment to reduce

macular exudation; in VHL patients with advanced juxtapapil-

lary or peripheral retinal hemangioblastomas, which are ineli-

gible for conventional treatment. However, because of mixed

results, larger prospective randomized trials may be needed to

evaluate their efficacy and safety.

Tyrosine Kinase Inhibitors
Tyrosine kinase inhibitors are targeted drugs that block

cellular signal transduction cascades. As for monoclonal

antibodies, pharmacologic VHL trials have mainly focused

on the VEGF tumor pathway.

Semaxanib (SU5416) is a small molecule tyrosine

kinase inhibitor of VEGFR2 and stem cell factor receptor

c-kit. It has been widely used as a chemotherapeutic for

liver metastases of colon cancer and other malignancies.

To date semaxanib is not licensed for human use outside

clinical trials. Its application in VHL disease has been

tested in case reports and small series.

In 2002, Aiello et al reported a VHL patient with an optic

nerve head hemangioblastoma,whowas treatedwith 10 cycles

of systemic semaxanib. Fundoscopic findings did not change;

however, a positive correlation was found between semaxinib

dose and visual acuity. Interestingly, Aiello et al reported no

change in tumor volumes of the patient’s synchronous cere-

bellar, spinal and pancreatic lesions.161

Later, other semaxanib trials have followed. Richard

et al conducted a toxicity assessment study on 3 VHL

patients. Semaxanib caused secondary polycythemia, with-

out effect on hemangioblastoma volumes.162

Girmens et al reported the decrease in macular exudate

around a retinal hemangioblastoma, in a VHL patient who
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was treated with semaxanib for 7 months. However,

volume and vision remained stable.163

In 2004, Madhusudan et al conducted a Phase I/Phase

II study with 4-week cycles of 8 semaxanib injections,

including 6 VHL patients. In one patient, brain/spinal

hemangioblastomas and pancreatic cyst volumes remained

stable after 22.4 months of ongoing treatment and after

41.4 months of follow-up. However, upper motor neuron

symptoms decreased. Another patient with retinal/brain/

spinal hemangioblastomas and renal/pancreatic/epididy-

mal cysts only experienced complete regression of a sole

retinal lesion (which was also treated with laser coagula-

tion). The patient had improved strength and sexual func-

tion after 10 months of treatment. Tumor volumes

remained stable on imaging. Clinical response in the

other four patients was not described.164

A similar improvement of upper motor neuron symp-

toms caused by semaxanib, without effect on tumor

volume, was described by Schuch et al in a VHL patient

with multiple spinal hemangioblastomas.165

To our great interest, Jennens et al reported a VHL

patient with the complete metabolic and radiologic

response of a metastatic renal cell carcinoma, after 11

systemic semaxanib injections.166

Sunitinib is a first-generation tyrosine kinase inhibitor of

multiple receptors (including VEGFR1/2/3, and PDGFR αand

β). It is by far the most investigated targeted therapy in VHL

disease. However, side effects often lead to disruption of treat-

ment: fatigue, nausea, vomiting, diarrhea, mucositis, hemato-

logic disturbances, nausea, hypertension and hand-foot

neuropathy.167–179

Jimenez et al used oral sunitinib to treat a VHL patient with

a metastatic pelvic pheochromocytoma (positively staining for

VEGF and PDGF beta on immunohistochemistry). The pheo-

chromocytoma started shrinking after 6 months. Interestingly,

also the patient’s renal (staining positive for VEGF) and pan-

creatic tumor volumes decreased.167

Other researchers published similar results inVHLpatients

undergoing several years of sunitinib treatment: Ali et al (1

patient),169 Wang et al (1 patient),170 Kobayashi et al (1

patient),172 Oudard et al (6 patients),173 Kim et al (4

patients),174 Yuan et al (3 patients),176 Tsimafeyeu et al (1

patient),178 Babinska et al (1 patient)179 and Nuñez et al (3

patients).177 Results range from disease stability to partial

response in (metastatic) renal cell carcinomas, in some (meta-

static) pancreatic neuroendocrine tumors and in one

pheochromocytoma.

Tsimafeyeu et al describe complete regression of

a metastatic renal cell carcinoma in a VHL patient, after

11 months of sunitinib treatment.178

Jonasch et al conducted a major pilot trial, treating 15

VHL patients with sunitinib. After four cycles, response

was absent in hemangioblastomas and partial in 33% of

renal cell carcinomas. Rebound growth in both tumor

groups occurred after 48 months. According to Jonasch

et al, the higher concentrations of VEGFR2 in renal cell

carcinomas compared to hemangioblastomas may explain

differences in treatment sensitivity. Pancreatic NETs and

cysts, retinal hemangioblastomas and renal cysts remained

stable. Two patients with retinal hemangioblastomas

experienced increased ocular discomfort, a finding also

reported by Oudard.168,173

In a retrospective analysis of 14 VHL patients, Roma

et al reported partial response to sunitinib in 64% of

different VHL tumors (progressive renal cell carcinomas;

and pancreatic, adrenal and ovarian lesions), yielding

a progression-free survival of 71.4% after 2 years.

Hemangioblastomas remained stable.171

In conclusion, sunitinib response seems to be depen-

dent on several individual patient characteristics; such as

overall VHL disease severity, performance status, age and

tumor VEGFR status. Sunitinib is mainly used as

a palliative treatment modality for temporary symptom

control of renal cell carcinomas and pancreatic neuroendo-

crine tumors. Complete remission of renal cell carcinomas

has been described. Sunitinib does not seem to affect

cerebellar and retinal hemangioblastomas. Transient

shrinking of medullary hemangioblastomas, with neurolo-

gic symptom improvement, was described by Oudard.173

Similar to sunitinib, pazopanib is a first-generation

inhibitor of multiple tyrosine kinases (including VEGFR

1/2/3; FGFR3 and PDGFR αand β). It has been approved

for the treatment of advanced renal cell cancer and

advanced soft tissue sarcoma.

In 2012, Kim et al reported a VHL patient with multi-

focal renal cell carcinoma and multiple cerebellar heman-

gioblastomas that were all progressive under sunitinib

treatment. Subsequent pazopanib treatment improved bul-

bar symptoms and ambulation. On imaging, cerebellar

hemangioblastoma volume decreased, and renal cell carci-

noma growth rate slowed.180

Also remarkable is the report of Migliorini et al in

2015, about a tetraplegic VHL patient with a non-

resectable spinal hemangioblastoma, who regained
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ambulation after pazopanib treatment. The tumor seemed

to be reshaped on MRI.181

Taylor et al described a VHL patient with the radiolo-

gic shrinking of two spinal hemangioblastomas, after

pazopanib treatment. Neurologic symptoms did not

change, nor did the tumor volume of other hemangioblas-

tomas and one renal cell carcinoma.182

In 2018, Jonasch et al conducted a single-arm nonran-

domized phase II study with pazopanib on 30 VHL

patients. After a median follow-up of 12 months, the

radiologic objective response rate was 52% in renal cell

carcinomas (59 tumors; 2 complete responses, 29 partial

responses, 28 stable diseases), 53% in pancreatic serous

cystadenomas (17 tumors; no complete responses, 9 partial

responses, 8 stable diseases), and 4% in central nervous

system hemangioblastomas (49 tumors; no complete

responses, 2 partial responses, 47 stable diseases, 2

patients with intratumoral hemorrhage). None of the 30

patients developed new VHL related lesions or progressive

disease during pazopanib treatment. Interestingly, the type

of VHL mutation did not correlate with disease

response.183

Finally, Salim described the 9-month stability of

a VHL patient with retinal hemangioblastomas treated

with pazopanib184.

Reported side effects of pazopanib are fatigue, diar-

rhea, increase of transaminases, oral mucositis, neutrope-

nia, alopecia/hair depigmentation, hypertension, gastritis

and appendicitis.180,181,183

In conclusion, pazopanib seems to have a larger ther-

apeutic effect on renal cell carcinomas, compared to suni-

tinib. However, study results are inconsistent and side

effects are not to be neglected.

Erlotinib is a tyrosine kinase inhibitor of EGFR, indi-

cated for the treatment of metastatic non-small cell lung

carcinoma and metastatic pancreatic cancer. In 2001,

Rogers et al reported progressive disease under oral erlo-

tinib in a young VHL patient with multiple cerebellar and

spinal hemangioblastomas.185

Dovitinib is a tyrosine kinase inhibitor of multiple

receptors (including VEGFR1/2/3, PDGFRβ and FGFR1/

3). It is currently under investigation for refractory multi-

ple myeloma and metastatic renal cell carcinoma. In 2018,

Pilié et al conducted a pilot study of dovitinib in 6 VHL

patients. All patients discontinued treatment due to non-

compliance or side effects (fatigue, vomiting, severe rash,

transaminitis, neutropenia, mucositis and dyspnea). The

best response was a stable disease of central nervous

system hemangioblastomas.186

Sorafenib is a multiple tyrosine kinase inhibitor of

VEGFR2/3 and PDGFR β, among other receptors. In

2017, Choi et al report partial response to sorafenib of

multiple small renal cell carcinomas and pancreatic cysts

in 2 VHL patients. Retinal and spinal hemangioblastomas

did not respond. Manageable diarrhea was reported as

a side effect.187

Biological Response Modifiers
Biological response modifiers are drugs that boost or mod-

ulate the host’s autologous immune response to neoplasia.

Some of these modifiers have been tested in vitro and in

small VHL patient groups: roquinimex, thalidomide, IFN-

α-2a, HIF2α inhibitors, octreotide, clarithromycin and

immunotherapy.

Roquinimex is a derivative quinoline that exerts its

anti-neoplastic potential by blocking angiogenesis and

decreasing TNF-alpha synthesis. Second, by stimulating

NK cell and macrophage activity, it also has immunosti-

mulant properties. In 1999, roquinimex caused a shrinking

of von-Hippel-Lindau paraganglioma xenografts in

mice.188 No further studies have followed.

Thalidomide acts as an immunosuppressive and anti-

angiogenic agent, by modulating the actions of several

cytokines. It was withdrawn from the market due to its

teratogenic side effects. However, in 2004, Tan et al used

thalidomide together with rofecoxib to control post-

radiation inflammatory reaction in a VHL patient with

a cerebral hemangioblastoma.189 In 2009, Sardi et al

describe the growth stabilization of two progressive spinal

hemangioblastomas, in a VHL patient treated with thali-

domide during a follow-up period of 37 months.190

IFN-α-2a binds to type 1 interferon receptors. It has

been previously applied as an antiviral agent in chronic

hepatitis C and as an antineoplastic agent in several types

of leukemia. In 2011, Niemela et al treated 3 VHL patients

with recombinant IFN-α-2a. They reported no significant

shrinking of retinal, cerebellar nor spinal hemangioblasto-

mas. Also, pancreatic and renal cysts remained stable.

A mild diminishment of blood flow was noticed in retinal

hemangioblastomas, potentially by inhibiting VEGF

secretion.191

Following VHL inactivation, HIF2α is constitutively

upregulated in sporadic and VHL-associated renal cell

carcinomas, stimulating tumor growth by activating multi-

ple downstream targets such as VEGF, PDGF, EGFR,
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TGFα, FGF, GLUT1, Epo, NO-synthase and cyclin

D. Therefore, a strong rationale exists for directly inhibit-

ing HIF2α, instead of VEGF alone.

In 2015, Metelo et al reported that pharmacological

HIF2α mRNA inhibition in zebrafish improved VHL phe-

notype (decreasing erythrocytosis and blood vessel forma-

tion in the retina, brain, liver and kidney). Further preclinical

pharmacologic moderations are needed before its implemen-

tation in clinical studies.192 A remaining question is whether

HIF2α inhibitors also influence VHL-associated hemangio-

blastomas, or (extra-adrenal) paragangliomas, which can be

either HIF-driven or non-HIF driven.193

In 2017, Sizdahkhani et al demonstrated the presence

of somatostatin receptors (1, 2a, 4 and 5) in VHL related

hemangioblastomas. They discovered apoptosis of cul-

tured VHL hemangioblastoma cells that were treated

with the somatostatin analogue octreotide. Octreotide

also caused volume and symptom reduction of an inoper-

able suprasellar hemangioblastoma in one VHL patient.194

Also in 2017, O’toole et al used octreotide in a VHL

patient with multiple pancreatic neuroendocrine tumors,

yielding partial response in all tumors.195

Yaghobi Joybari et al reported that octreotide/everoli-

mus caused symptom improvement in a VHL patient with

a metastatic pancreatic neuroendocrine carcinoma.

Radiological follow-up data were not available.196

Clarithromycin, an antibiotic, has been repurposed as

an anti-cancer agent. By modulating cytokine biology and

VEGF expression, it has inhibitory effects on inflamma-

tion and angiogenesis. In 2019, Ma et al used clarithromy-

cin to treat a VHL patient with a progressive ELST tumor.

After 3 months, the ELST tumor remained stable on CT

imaging. Pancreatic and renal lesions shrunk or remained

stable. Some renal lesions showed progressive growth. No

side-effects were observed.197

Only little data are available on immunotherapy in VHL

disease. In 1993, Weidmann et al established in vitro sensi-

tization of lymphocytes to autologous renal cell carcinoma

tumor cells in two VHL patients. Combined with the injec-

tion of interleukin-2, the sensitized lymphocytes caused

volume reduction of pulmonary metastasis, without affect-

ing renal cell carcinoma volume.198

Miscellaneous
Based on its previous success rates with infantile heman-

giomas, in 2015 Albiñana et al investigated the effect of

propranolol on hemangioblastomas in VHL disease.

Acting as a nonselective β1 and β2-adrenergic antagonist,

propranolol caused apoptosis and inhibition of down-

stream HIF targets in hemangioblastoma cell cultures

(such as VEGF and FGF). However, its exact mechanism

of action was unknown.199 Two years later, the same

research group used propranolol to treat 7 VHL patients

with retinal hemangioblastomas. There was no effect on

tumor volume. Resorption of tumor exudate was seen in

two patients.142 Another two years later, Albiñana et al

applied a highly specific β2-adrenergic receptor blocker

(ICI-118,551), which exhibited similar effects on heman-

gioblastoma cells in vitro.200

In 2018, Shepard et al conducted a similar experiment

with propranolol on in vitro VHL hemangioblastoma and

renal cell carcinoma cells. Both tumor cell types

responded with signs of apoptosis. Propranolol also

reduced tumor volume of renal cell carcinoma xenografts

in mice. Afterwards, Shepard et al retrospectively ana-

lyzed the effect of propranolol on 66 hemangioblastomas

in 3 VHL patients who used to receive propranolol for

other clinical reasons. Median growth rate of hemangio-

blastomas was reduced, but did not stop, during a 2.1-year

median follow-up.144

Up to date, there are no reports on alkylating agents

nor antimetabolites used in VHL patients. However, VHL

mutation status is an important predictor for response to

alkylating agents in sporadic renal cell carcinomas.201

Halofuginone, a plant derivate, decreases gene expres-

sion of collagen type 1 and matrix metalloproteinases;

thereby thwarting VEGF-regulated angiogenesis. In 2003,

Gross et al discovered that halofuginone led to angiogenic

inhibition of a VHL pheochromocytoma xenograft in

mice. There was no tumor regression. The authors sug-

gested the future investigation of its applicability as

a chemotherapeutic in the early stages of highly vascular

VHL tumors.202

Little is known about radiopharmacological treatment.

In 1995, Pujol et al report near-complete regression of

a metastatic pheochromocytoma in a VHL patient treated

with Iodine-131 metaiodobenzylguanidine ([131I]

MIBG).203

Conclusion
Even though randomized prospective trials are needed,

intravitreal bevacizumab injections may be considered

for refractory and exudative retinal hemangioblastomas.

The effects and safety profile of ranibizumab and pegap-

tanib are less well studied, neither are the effects of bev-

acizumab on other VHL-related tumors.
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Regarding monoclonal antibodies, larger randomized

trials including control groups are needed to differentiate

therapeutic stabilization from natural tumor behavior.

Semaxanib causes symptomatic improvement in some cen-

tral nervous system hemangioblastomas, without affecting

tumor volume. We believe that the same temporary relief

may be expected from corticosteroids. The effects of suni-

tinib and pazopanib are potentially depending on different

factors such as VEGFR activity, and range from disease

stability to partial response in (metastatic) renal cell carci-

nomas and (metastatic) pancreatic neuroendocrine tumors.

Complete regression of one metastatic renal cell carci-

noma has been described for both semaxanib and suniti-

nib. The effect of pazopanib on renal cell carcinomas

seems slightly greater. Sunitinib causes disease stability

to partial response in some pheochromocytomas. Sunitinib

and pazopanib do not seem to affect hemangioblastoma

tumor volumes, but some patients experienced sympto-

matic improvement after treatment with pazopanib.

Sunitinib and pazopanib have severe side effects.

The in vitro effect of propranolol on hemangioblas-

toma and renal cell carcinoma cell cultures seems promis-

ing. Again, larger randomized trials including control

groups are needed to differentiate therapeutic stabilization

due to propranolol, from natural tumor behavior.

Agents such as sorafenib, thalidomide, HIF2α, octreo-
tide and immunotherapy may seem promising, but more

preclinical and larger patient studies are needed to assess

their efficacy and safety profile.
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