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Abstract

Impervious encapsulation around Ahmed glaucoma valve (AGV) results in surgical failure

raising intraocular pressure (IOP). Dysregulation of extracellular matrix (ECM) molecules

and cellular factors might contribute to increased hydraulic resistance to aqueous drainage.

Therefore, we examined these molecules in failed AGV capsular tissue. Immunostaining for

ECM molecules (collagen I, collagen III, decorin, lumican, chondroitin sulfate, aggrecan and

keratan sulfate) and cellular factors (αSMA and TGFβ) was performed on excised capsules

from failed AGVs and control tenon’s tissue. Staining intensity of ECM molecules was

assessed using Image J. Cellular factors were assessed based on positive cell counts.

Histopathologically two distinct layers were visible in capsules. The inner layer (proximal to

the AGV) showed significant decrease in most ECM molecules compared to outer layer.

Furthermore, collagen III (p = 0.004), decorin (p = 0.02), lumican (p = 0.01) and chondroitin

sulfate (p = 0.02) was significantly less in inner layer compared to tenon’s tissue. Outer layer

labelling however was similar to control tenon’s for most ECM molecules. Significantly

increased cellular expression of αSMA (p = 0.02) and TGFβ (p = 0.008) was detected within

capsular tissue compared to controls. Our results suggest profibrotic activity indicated by

increased αSMA and TGFβ expression and decreased expression of proteoglycan (decorin

and lumican) and glycosaminoglycans (chondroitin sulfate). Additionally, we observed

decreased collagen III which might reflect increased myofibroblast contractility when cou-

pled with increased TGFβ and αSMA expression. Together these events lead to tissue dys-

function potentially resulting in hydraulic resistance that may affect aqueous flow through

the capsular wall.
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Introduction

Glaucoma drainage devices are useful in treating refractory glaucoma [1]. Commercially avail-

able glaucoma drainage devices (GDDs) are Ahmed (New World Medical, Inc., Rancho Cuca-

monga, CA, USA), Baerveldt (Advanced Medical Optics, Inc., Santa Ana, CA, USA), Krupin

(Eagle Vision, Inc., Memphis, TN, USA) and Molteno implants (Molteno Ophthalmic Ltd.,

Dunedin, New Zealand). They share a common design consisting of a small caliber silicone

tube that is inserted into the eye and drains aqueous humor to an episcleral plate [2]. The

episcleral plates of these devices differ in surface area, shape, thickness, the presence or absence

of a valve and technique of surgical installation [3]. The overall success rate of these drainage

devices appears to be similar in controlling IOP and a major cause of attenuated long-term

success is attributed to excessive fibrous reaction of the capsular tissue [4].

The success of drainage devices surgery depends on the formation and maintenance of a

permeable capsule around the episcleral plate, through which the aqueous percolates into sur-

rounding tissues by simple diffusion [2, 5, 6]. The capsule around the shunt plate provides the

primary resistance to aqueous outflow through the drainage device [7]. As a result, the most

important factor in determining the long term intraocular pressure control is the permeability

of the capsule surrounding the plate [6, 8, 9]. Progressive capsular fibrosis around the implant

and relative impermeability of the shunt capsule in many cases results in clinical failure, neces-

sitating further medical or surgical management.

The tissue related factors that determine the permeability of the capsule have been investi-

gated and although better understood, still remain unclear [10]. Active wound healing after

glaucoma shunt surgery results in excessive and persistent ECM deposition particularly colla-

gen compromising capsular permeability [11–13]. Molteno implant capsules have been

described to consist two distinct layers. These include a thin external fibroproliferative moder-

ately cellular layer showing small blood vessels and normal appearing collagen as well as an

inner (in proximity to the shunt plate) thicker, relatively hypocellular and avascular fibrode-

generative layer with altered collagen [5, 6, 14, 15].

The hydraulic resistance of interstitium influences many aspects of body fluid physiology

including fluid drainage from anterior chamber of the eye. Such resistance is attributed to the

nature of extracellular matrix that includes the collagens, proteoglycans and glycosaminogly-

cans (GAGs) [16]. We hypothesized that abnormal expression of extracellular matrix (ECM)

proteins and components of tissue fibroblasts may be involved in altered permeability of cap-

sules surrounding the shunt plate and may contribute to the increased hydraulic resistance,

and was the basis of this study.

Materials and methods

Patients

All patients were seen at King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia. The medi-

cal records of patients who underwent revision of Ahmed glaucoma valve implant (Models S1

and S2, New World Medical, Inc., Rancho Cucamonga, CA) for uncontrolled IOP with maxi-

mal tolerated medical therapy were reviewed retrospectively to obtain clinical information

where available. Failure was defined as intraocular pressure that was above target levels on

maximum medical therapy as determined by the treating physician. Inclusion criteria included

patients with poorly controlled IOP above target as determined by the treating physician

(range 22–40 mm Hg) where excision of the capsule was deemed, in the opinion of the physi-

cian to be beneficial in controlling IOP. Exclusion criteria included neovascular glaucoma or

glaucoma where additional factors may influence the tissue response. The revisions were
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performed at KKESH between year 1995 and 2010. The Ahmed valve revision in all patients

involved excision of the varying amounts of capsule surrounding the implant. Archived paraf-

fin embedded tissue blocks from the capsules excised during the revision were retrieved from

pathology archives for light microscopy and immunohistochemistry. Control tenon’s tissue

obtained during primary insertion of Ahmed valves was processed and embedded in paraffin

for the study. Archived tissue blocks were utilized for the study and data was accessed and ana-

lysed anonymously.

The study was approved by the Institutional Review Board of King Khaled Eye Specialist

Hospital and followed the principles established in the Declaration of Helsinki. The IRB

waived the need for consent.

Histopathology and immunohistochemisty

Formalin-fixed paraffin embedded (FFPE) tissue from excised capsules and control tenon’s tis-

sue were sectioned at 5 μm thickness and mounted on coated glass slides. The sections were

stained with haematoxylin and eosin for histological evaluation and thickness of the two layers

measured. The thickest area of the inner and outer wall was identified and measured in an area

that was well demarcated. The measurement was done using Olympus CELLSENS software

measurement tools (Olympus America Inc, Center Valley, PA, USA). Indirect immunohis-

tochemistry was performed using a Dako automated stainer (Autostainer Link 48, Dako,

Glostrup, Denmark). Briefly, deparaffinised slides were treated with antigen retrieval solution

(Dako, Denmark) in the Pt link module (Dako, Denmark) processed for staining and the reac-

tion was visualized by using Envision Flex Visualization system (Dako, USA). For some sam-

ples limited tissue was available during staining, and repeat staining was also not possible in

these cases. Hence only those cases were considered where data could be reliably reported and

specified accordingly in the results for each antibody. Appropriate positive and negative con-

trol tissue were used. Table 1 lists the antibodies used in the study and their role in scarring.

Quantification of immunohistochemistry with Image J

Digital images were captured using Olympus BX 53 Microscope (Olympus America Inc, Cen-

ter Valley, PA, USA). The photographs were taken at a standardized exposure time to evaluate

and quantify color intensity using ImageJ-color-deconvolution. The deconvolution method

has been used to separate the brown DAB chromogen from hematoxylin counterstain on a

microscope slide and the measurement of color intensity of specific stains [31, 32]. Briefly, the

deconvolved DAB image was subjected to histogram analysis using NIH-ImageJ program

(NIH Bethesda, MD, USA). The output of this analysis contains number of pixels at each pixel

intensity ranging between 0–255, histogram value in the NIH, Image J histogram list, where 0

was very dark and corresponded to dark/intense staining and 255 was very bright and corre-

sponded to very little staining. The data obtained included the mean, standard deviation, mini-

mum and maximum of values for areas of measurement. The capsule as described previously

in the literature [6] had two distinct layers and appeared to have staining that was different in

intensity. Therefore a total of at least four areas, two in each of the inner and outer layers of the

capsule were sampled during the quantitative assessment in a masked fashion by one observer.

Similarly four areas were sampled in control tenon’s tissue and since layer demarcations were

absent the values pooled for analysis. αSMA and TGFβ labelling was reported as cell counts.

Statistical methods

Statistical Package for Social Studies (SPSS-19) IBM Chicago, USA) was used for statistical

analysis. Descriptive statistics were used to report demographic characteristics. The intensity
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of labelling measured was reported as median, 25% quartile and range. The label intensity

between cases and control was compared using non parametric analysis and validated by Krus-

kal Wallis Test. A two sided ‘p’- value of less than 0.05 was considered as statistically significant.

Results

We studied 14 excised AGV capsules and 8 normal tenon’s tissues as controls. The clinical pro-

file of these subjects is summarized in Table 2. The diagnosis included congenital glaucoma

(71.4%), secondary glaucoma (14.3%), and primary open angle glaucoma (14.3%). AGV

model S2 was inserted in 86%, while 14% received the S1 model. The mean IOP prior to AGV

revision was 38.6±11.6 mmHg. The median interval between AGV insertion and valve revision

was 13.5 months (Range 3–156; 25% Quartile; 4 months). Excised capsule showed two distinct

layers in all examined tissues. This included an outer layer that consisted of loosely arranged

collagen bundles, spindle shaped fibroblasts and mature blood vessels that were variable in cal-

ibre and an inner layer that was composed of dense compact collagen bundles with several

spindle shaped fibroblast and few mature thin walled blood vessels (Fig 1). The mean thickness

of the inner and outer layers of the capsule was 444.6 μm and 393.2 μm respectively (Table 2).

The intensity of immunostaining for all the examined markers in capsules and controls is

detailed in Table 3. Both the capsules and controls expressed most of the molecules that were

included in this study. To examine whether the ECM markers were differentially expressed

in the inner and outer capsular layers, we compared the biomarker density in these layers

(Table 3). We observed a statistically significant decrease in labelling in the inner layer of the

capsule for ECM molecules collagen I (p = 0.0002) and collagen III (p = 0.0002), decorin

(p = 0.0003), lumican (p = 0.01), chondroitin sulfate (p = 0.0002), aggrecan (p = 0.01) and kera-

tan sulfate (p = 0.01) (Table 3). Having found these differences, we compared ECM staining

separately for each inner and outer layer between the capsules and controls. Notably, significant

Table 1. Antibody markers used in the study.

Antibody Company

(Catalogue #)

Dilution Label target Role in scarring

Collagen I Abcam (ab

34710)

1:500 Extracellular Matrix

component (Fibrillar)

Fiber-forming ECM components, provides structural support,

remodelled during wound healing, deregulated expression

causes tissue dysfunction [17].Collagen III Biogenex

(ab167-5M)

Ready to

use

Decorin Abcam

(ab115744)

1:100 Extracellular Matrix

component (Proteoglycan)

Natural antagonists and regulators of TGFβ activity [18, 19].

Interact with and inhibit collagen fibrillogenesis [20, 21].

Lumican USBiological

(L6025)

1:100

Aggrecan (chondroitin

sulfate proteoglycan 1)

Abcam (ab 3778) 1:50 Extracellular Matrix

component (Proteoglycan)

Structural constituents of ECM, among other functions maintain

osmotic pressure and proper collagen organization [22],

modulates profibrogenic TGFβ signalling [23].

Chondroitin sulfate

proteoglycan (CSPG)

Abcam (ab

11570)

1:50 Extracellular Matrix

component (Sulphated

GAG)

Synthesized by fibroblasts, interfibrillary ECM ground substance,

provides lubrication and acts as a spacer between moving

collagen fibers, maintains tissue hydration, important for

architecture of healing tissue provides structural and regulatory

function [24–27].
Keratan sulfate

proteoglycan

Iowa (MZ15-S) 1:6 Extracellular Matrix

component (Sulphated

GAG)

Alpha smooth muscle

Actin (αSMA)

Abcam (ab7817) 1:50 Activated fibroblasts

(Myofibroblasts)

Myofibroblasts play key role in normal wound repair and are

responsible for wound modulation, wound closure through

contraction, secretion of ECM and other pro-fibrotic molecules

[28, 29].

TGFβ Abcam (ab

66043)

1:100 Cellular and secreted Growth Factor, mediator of fibrosis, controls secretion of ECM

molecules [30].

https://doi.org/10.1371/journal.pone.0187506.t001
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Table 2. Demographic data and clinical parameters of patients who underwent AGV revision and control (Tenon’s) cases.

Capsules Tenon’s

(n = 14) (n = 8)

Age (years) Median (Quartile) 8 (4.75) 24 (18)

Minimum—Maximum 1–58 1–86

Gender Male 10 (71%) 5(63%)

Female 4 (29%) 3(37%)

Diagnosis Congenital Glaucoma 10 (71.4%) -

Secondary Glaucoma 2 (14.3%) -

Primary Open Angle Glaucoma 2 (14.3%) 8 (100%)

Type of implant S1 2 (14%) -

S2 12 (86%) -

Preoperative Glaucoma medications Median (Quartile) 3 (3) -

Minimum—Maximum 2–4 -

Preoperative IOP (mm Hg) Mean (± SD) 38.6 (±11.6) -

Interval between primary implant and revision (months) Median (Quartile) 13.5 (4.0) -

Minimum—Maximum 3–156 -

Thickness of capsular layers (μm) Mean (± SD)

Inner 444.6 (194.2) -

Outer 393.2 (163.2) -

Duration of Follow up after revision (years) Median (Quartile) 7.8 (4.7) -

Minimum—Maximum 0.1–16 -

Final IOP (mm Hg) Mean (± SD) 22.8 (±9.5) -

https://doi.org/10.1371/journal.pone.0187506.t002

Fig 1. Histology and immunohistochemical staining of select ECM molecules. Excised capsule around Ahmed valve (upper panel) and control tenon’s

tissue (bottom panel). Haematoxylin and eosin stained sections (A and B), Collagen III (C and D), Decorin (E and F) and Lumican (G and H). * Indicates bleb

cavity around Ahmed valve, O and I mark the inner and outer layers respectively. 100X magnification.

https://doi.org/10.1371/journal.pone.0187506.g001
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differences were observed in the inner layer compared to control tenon’s tissue. This included a

significantly decreased expression of collagen III (p = 0.004), decorin (p = 0.02), lumican

(p = 0.01) and chondroitin sulfate (p = 0.02) in the inner layer of the capsule (Table 3 and Fig

1). Expression trend of ECM in the outer layer was similar to the controls and differences were

not statistically significant except with collagen III (p = 0.04) and keratan sulfate (p = 0.03)

where lower expression was seen in the outer layer of the capsule (S1 Table).

We also observed increased cellular expression of αSMA (p = 0.02) and TGFβ (p = 0.008) in

the fibroblasts within the capsules compared to the controls (Table 3). The distribution of the

marker positive cells was not layer specific and not limited to either inner or outer layers of the

capsule (Fig 2).

Discussion

Fibrosis of the capsule surrounding a glaucoma implant remains the main cause of suboptimal

pressure control and failure of drainage procedures [33]. In this study, we examined fibrous

Table 3. Summary of immunolabels and differences in biomarkers in inner and outer layers of the excised capsules and in control tenon’s.

Median

(Minimum—Maximum)

25% Quartile KW test

(p value)a
KW test

(p value)b

Collagen I Capsule outer layer 163.8 (106–184) 146.2 0.0002c

n = 14 Capsule inner layer 177.9 (151–201) 166.3 0.9

Tenon 174.3 (149.2–205.6) 154

Collagen III Capsule outer layer 145.6 (118–173) 129.6 0.0002c

n = 14 Capsule inner layer 184 (138–216) 165.1 0.004 c

Tenon 95.2 (60.7–222.3) 66.7

Decorin Capsule outer layer 132.1 (81–202) 92.7 0.0003c

n = 13 Capsule inner layer 190.9 (124–225) 152.6 0.02c

Tenon 138.1 (69.7–205.4) 102.7

Lumican Capsule outer layer 146.4 (107–172) 119.3 0.01c

n = 12 Capsule inner layer 190.4 (154–214) 166.1 0.01c

Tenon 150.6 (105–194) 138.3

Chondroitin sulfate Capsule outer layer 157.3 (134–188) 143.5 0.0002c

n = 14 Capsule inner layer 215.4 (169–235) 203.3 0.02c

Tenon 200.7 (106.1–230.2) 179

Aggrecan Capsule outer layer 211.1 (182–240) 197.5 0.01c

n = 12 Capsule inner layer 214.4 (183–240) 203.3 1.0

Tenon 218.1 (188.0–223.1) 204

Keratan sulfate Capsule outer layer 196.3 (184–203) 189.4 0.01c

n = 12 Capsule inner layer 198.9 (191–210) 196.4 0.08

Tenon 191.8 (150.2–209.4) 187

αSMA Capsule 17 (3–50) 11.5 0.02 d

n = 13 Tenon 5.3 (2–23) 2

TGFβ Capsule 210.4 (94.5–288) 59.0 0.008 d

n = 10 Tenon 64.3 (12.3–245) 37.5

All markers except αSMA and TGFβ were as graded by the Image J software in the inner and outer layers of the capsule and control tenon’s tissue. Note

that a lesser value indicates greater intensity of label for these molecules. n = 10–14 cases for excised capsules as specified above for each antibody, n = 8

for control tenon’s tissue except for lumican where n = 7. Kruskal Wallis test, two sided p value was performed to validate differences in label intensity

between inner and outer capsular layers (a), and between inner capsular layer and control tenon’s (b) with significantly lower expression in the inner

capsular layer (c), αSMA and TGFβ are reported as manual cell counts with significantly higher positivity in the excised capsules (d).

https://doi.org/10.1371/journal.pone.0187506.t003
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capsules surrounding failed Ahmed implant for expression of a number of extracellular matrix

proteins and cellular markers. We demonstrated a consistent trend of altered expression of

molecules that suggest profibrotic activity as indicated by increased expression αSMA and

TGFβ, together with decreased expression of ECM proteoglycan/GAGs such as decorin, lumi-

can and chondroitin sulfate as well as fibrillar collagen III. It was surprising to note altered

expression of several molecules in the excised capsule several months/years following shunt

implantation.

Histologic findings in the capsular tissue were similar to previous reports which described

an outer more vascular layer with loosely arranged matrix and an inner relatively avascular

layer with dense connective tissue [6, 34]. The outer layer however was similar to control ten-

on’s in terms of histopathological characteristics as well as expression trend for most of ECM

molecules used in this study. Tenon’s capsule is a vascular connective tissue that drapes the

shunt plate, absorbs and drains aqueous in the initial period after surgery [6, 35]. It is believed

that tenon’s tissue fibroblasts contribute largely to the encapsulation and several studies have

utilized tenon’s tissue fibroblasts to understand bleb failure after glaucoma surgery [36–40].

Therefore as a baseline tenon’s control helps to provide the evidence to speculate several

potentially important interactions.

Increased expression of αSMA, an indicator of activated myofibroblasts which are key

effector cells of fibrosis, was seen in our samples as reported [11, 12]. The presence of this

Fig 2. Immunohistochemical staining for αSMA and TGFβ. Excised capsule around Ahmed valve (upper panel) and

control tenon’s tissue (bottom panel) for αSMA (A and B), TGFβ (C and D). *Indicates bleb cavity around Ahmed valve, O and I

mark the inner and outer layers respectively. 200X magnification.

https://doi.org/10.1371/journal.pone.0187506.g002

Deregulated extracellular matrix in failed Ahmed capsules

PLOS ONE | https://doi.org/10.1371/journal.pone.0187506 November 9, 2017 7 / 13

https://doi.org/10.1371/journal.pone.0187506.g002
https://doi.org/10.1371/journal.pone.0187506


smooth muscle protein is linked to contractile nature of myofibroblasts, which when persistent

can cause distortion of tissue architecture, thus promoting disease pathogenesis [41]. We also

demonstrated increased expression of TGFβ protein, a known inducer of myofibroblast trans-

formation [42], [43], and provide evidence for the presence of an intrinsic trigger in the capsu-

lar tissue. It has been suggested that growth factors including TGFβ present in aqueous humor

might trigger the fibrotic response [44–46]. However, our data is consistent with a recent

study in which our group showed an increase in transcripts for matrix molecules as down-

stream targets of activated TGFβ pathway [47]. Saika et al. have also reported increased TGFβ
protein expression in tissue from a trabeculectomy filtering bleb [48].

Accompanying increased expression of TGFβ in our samples was the decrease in ECM mol-

ecule decorin. Proteoglycan decorin is a naturally occurring TGFβ antagonist [18] that pre-

vents fibrosis and improves surgical outcome of glaucoma filtration surgery in rabbits [49].

Additionally, we also observed a significantly decreased labelling with lumican, chondroitin

sulfate and collagen III. Like decorin, lumican is also an endogenous inhibitor of TGFβ activity

[19] which binds TGFβ receptor 1 (ALK5) and downregulates TGFβ signalling [50]. Although

the mechanisms have not yet been defined, lumican has been implicated in regulating aqueous

humor outflow in the trabecular meshwork [51, 52]. Furthermore, we and others have shown

increased levels of MMPs in capsular tissue [47, 53]. It is known that degradation and cleavage

of decorin and lumican is induced by matrix metalloproteinases (MMPs), a family of protein-

ases that can cleave extracellular matrix molecules [54, 55]. Degradation of these proteoglycans

by MMPs may also explain the decreased decorin and lumican seen in our samples. Thus,

besides increased expression, downregulation of these endogenous inhibitors might be another

mechanism for activation of the profibrotic TGFβ signal in the capsular tissue.

Furthermore, decrease in decorin and lumican might influence the assembly of collagen in

the inner capsular layer. In normal cornea lumican maintains orderly collagen fibril arrange-

ment that is vital for corneal transparency [56–58]. In contrast down regulation of both decorin

and lumican result in thicker and mal-oriented collagen fibres as well as decreased inter fibrillar

distance in the corneas of knockout models [59, 60]. Morphology of opacified corneal stroma in

knockout mice bears some resemblance to that seen in the inner layer of the excised capsules

where compact, thick irregularly arranged collagen fibres are observed. Due to their role in col-

lagen fibrillogenesis and wound healing, decreased expression of chondroitin sulfate glycosami-

noglycans as seen in our capsules might also structurally alter the collagen scaffold [61, 62]. We

also found significantly decreased expression of collagen III in the inner layer of our capsular

samples. Fibrillar collagens form a major component of the ECM and diminished collagen III

expression in haploinsufficient (Col III+/–) mice has been reported to accelerate cutaneous

wound closure by promoting myofibroblast differentiation and increased scar formation [63].

We recognize that our study has limitations and further investigations will be needed in

this regard. Capsules from functional AGV devices would probably be ideal second compara-

tive controls for this study. However, functional capsules are not commonly excised and were

not available for this study. Also, capsules examined in our study were mostly late excisions

and expression changes in early stages of shunt failure could not be determined. It has been

suggested that thickness and permeability of capsule around the implant is regulated by

inflammatory/proliferative and apoptotic processes occurring during wound remodelling of

the capsular tissue as a result of exposure to glaucomatous aqueous humor [64, 6]. However, in

capsular tissue excised several years after implantation, we did not observe an inflammatory

response. Furthermore, although clinical observation suggests that tenon’s capsule thins with

age and measured by optical coherence tomography (OCT) is variable in thickness [65].

Whether this change in physical characteristics of the capsule affects molecular changes is

unclear. Nevertheless, tenon’s fibroblasts derived from young versus old human eyes do show
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growth differences in vitro; however, wound closure/migration and collagen synthesis rates

were reported to be similar [66]. Increasing the sample size while utilizing age matched capsu-

lar and tenon’s tissue in future studies would likely give better statistical power to allow for cor-

relation of expression changes with clinical parameters such as age, type of glaucoma, revision

time and other variables. TGFβ is a pleiotropic molecule with complex roles, its relation to

other pathways affecting glaucoma surgery such as inflammation and angiogenesis also

requires further investigations [67, 68].

ECM has structural functions and increased expression of ECM molecules could be expected

to explain the hydraulic resistance. Paradoxically, we found decreased expression of proteo-

glycans (decorin and lumican), GAGs (chondroitin sulfate) and collagen III. Together with

increased TGFβ and αSMA this decrease of ECM molecules might indicate interplay of mole-

cules potentially sustaining a profibrotic environment leading to myofibroblast contractility and

tissue dysfunction. Such a role for the ECM as regulators of cell signalling is receiving increasing

support [69, 70] and research in this area has demonstrated the importance of re-establishing a

functional ECM in chronic wounds. Although our study points out an important role for ECM

molecules, much remains to be understood in the context of wound healing in glaucoma filtra-

tion surgery to decrease outflow resistance and improve long-term IOP control.

Supporting information

S1 Table. Difference of biomarker density between outer capsular layer and in control ten-

on’s.

(DOCX)

S2 Table. Minimal data set.

(XLSX)

Author Contributions

Conceptualization: Alka Mahale, Sami Al Shahwan, Deepak P. Edward.

Formal analysis: Fatma Fikri, Khitam Al Hati, Rajiv Khandekar, Deepak P. Edward.

Investigation: Fatma Fikri, Khitam Al Hati.

Methodology: Deepak P. Edward.

Project administration: Alka Mahale, Deepak P. Edward.

Resources: Sami Al Shahwan, Ibrahim Al Jadaan, Hind Al Katan, Rajiv Khandekar, Azza Mak-

tabi, Deepak P. Edward.

Supervision: Deepak P. Edward.

Validation: Alka Mahale, Fatma Fikri, Khitam Al Hati, Deepak P. Edward.

Visualization: Alka Mahale, Deepak P. Edward.

Writing – original draft: Alka Mahale.

Writing – review & editing: Alka Mahale, Sami Al Shahwan, Ibrahim Al Jadaan, Hind Al

Katan, Rajiv Khandekar, Azza Maktabi, Deepak P. Edward.

References
1. Mosaed S, Minckler DS. Aqueous shunts in the treatment of glaucoma. Expert Rev Med Devices. 2010

Sep; 7(5):661–6. https://doi.org/10.1586/erd.10.32 PMID: 20822388

Deregulated extracellular matrix in failed Ahmed capsules

PLOS ONE | https://doi.org/10.1371/journal.pone.0187506 November 9, 2017 9 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0187506.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0187506.s002
https://doi.org/10.1586/erd.10.32
http://www.ncbi.nlm.nih.gov/pubmed/20822388
https://doi.org/10.1371/journal.pone.0187506


2. Gedde SJ, Parrish RK, Budenz DL, Heuer DK. Update on aqueous shunts. Exp Eye Res. 2011 Sep; 93

(3):284–90. https://doi.org/10.1016/j.exer.2011.03.013 PMID: 21443872

3. Minckler DS, Francis BA, Hodapp EA, Jampel HD, Lin SC, Samples JR, et al. Aqueous shunts in glau-

coma: a report by the American Academy of Ophthalmology. Ophthalmology. 2008 Jun; 115(6):1089–

98. https://doi.org/10.1016/j.ophtha.2008.03.031 PMID: 18519069

4. Hong C-H, Arosemena A, Zurakowski D, Ayyala RS. Glaucoma drainage devices: a systematic litera-

ture review and current controversies. Surv Ophthalmol. 2005 Feb; 50(1):48–60. https://doi.org/10.

1016/j.survophthal.2004.10.006 PMID: 15621077

5. Dempster AG, Molteno ACB, Bevin TH, Thompson AM. Otago glaucoma surgery outcome study: elec-

tron microscopy of capsules around Molteno implants. Invest Ophthalmol Vis Sci. 2011; 52(11):8300–9.

https://doi.org/10.1167/iovs.11-7772 PMID: 21908581

6. Molteno ACB, Fucik M, Dempster AG, Bevin TH. Otago Glaucoma Surgery Outcome Study: factors

controlling capsule fibrosis around Molteno implants with histopathological correlation. Ophthalmology.

2003 Nov; 110(11):2198–206. https://doi.org/10.1016/S0161-6420(03)00803-0 PMID: 14597530
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