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Abstract. Diffuse large B cell lymphoma (DLBCL) is the 
most common hematological malignancy and is one of the 
most frequent non-Hodgkin lymphomas. Large-scale genomic 
studies have defined genetic drivers of DLBCL and their 
association with functional and clinical outcomes. However, 
the lymphomagenesis of DLBCL is yet to be fully understood. 
In the present study, four computational tools OncodriveFM, 
OncodriveCLUST, integrated Cancer Genome Score and 
Driver Genes and Pathways were used to detect driver genes 
and driver pathways involved in DLBCL. The aforementioned 
tools were also used to perform an integrative investigation of 
driver genes, including co-expression network, protein-protein 
interaction, copy number variation and survival analyses. The 
present study identified 208 driver genes and 31 driver path-
ways in DLBCL. IGLL5, MLL2, BTG2, B2M, PIM1, CARD11 
were the top five frequently mutated genes in DLBCL. 
NOTCH3, LAMC1, COL4A1, PDGFRB and KDR were the 
5 hub genes in the blue module that were associated with 
patient age. TP53, MYC, EGFR, PTEN, IL6, STAT3, MAPK8, 
TNF and CDH1 were at the core of the protein-protein interac-
tion network. PRDM1, CDKN2A, CDKN2B, TNFAIP3, RSPO3 
were the top five frequently deleted driver genes in DLBCL, 
while ACTB, BTG2, PLET1, CARD11, DIXDC1 were the top 
five frequently amplified driver genes in DLBCL. High EIF3B, 
MLH1, PPP1CA and RECQL4 expression was associated with 

decreased overall survival rate of patients with DLBCL. High 
XPO1 and LYN expression were associated with increased 
overall survival rate of patients with DLBCL. The present 
study improves the understanding of the biological processes 
and pathways involved in lymphomagenesis. The driver genes, 
EIF3B, MLH1, PPP1CA, RECQL4, XPO1 and LYN, pave the 
way for developing prognostic biomarkers and new therapeutic 
strategies for DLBCL.

Introduction

Diffuse large B-cell lymphoma (DLBCL) is an aggressive 
non‑Hodgkin lymphoma (1). The incidence rate is 6.3%, with 
an estimated 25,380 new cases in the United States in 2016 (2). 
DLBCL can be classified into three molecular subtypes; the 
germinal center B cell-like subtype, the activated B cell-like 
subtype and primary mediastinal B cell lymphoma (1). 
Cyclophosphamide, doxorubicin, vincristine and pred-
nisolone (CHOP) are the standard treatment for non-Hodgkin 
lymphoma (3). The 3‑year overall survival rate is ~60% 
following CHOP treatment in patients with DLBCL (4).

Large genomics studies have been conducted to characterize 
the genetic alterations in DLBCL genomes, which provide an 
unbiased view of the landscape of mutations and the pathogenesis 
of the disease (5-7). Lohr et al (5) performed exome sequencing 
on 55 paired tumor and normal samples of primary DLBCL and 
identified 58 significantly mutated genes, such as CD79b mole-
cule (CD79B), Tumor Protein P53 (TP53), caspase recruitment 
domain family member 11 (CARD11), MYD88 innate immune 
signal transduction adaptor (MYD88) and enhancer of zeste 2 
polycomb repressive complex 2 subunit (EZH2). Reddy et al (6) 
identified 150 genetic drivers by performing an integrative anal-
ysis of whole exome sequencing in a cohort of 1,001 patients 
with DLBCL. In the previously mentioned study, CRISPR-based 
knockout of 35 driver genes resulted in the decreased viability 
of DLBCL cells, suggesting these driver genes serve an onco-
genic function. MYC proto-oncogene (MYC), CD79B and 
zinc finger and AT‑hook domain containing (ZFAT) mutations 
were significantly associated with poor overall survival rate of 
patients with DLBCL. While, mutations in neurofibromin 1 
and serum/glucocorticoid regulated kinase 1 were associated 
with favorable overall survival rate of patients with DLBCL (5). 
Chapuy et al (7) integrated genetic drivers using consensus clus-
tering and identified 5 distinct DLBCL subgroups associated 
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with distinct pathogenic mechanisms and clinical outcomes. 
For example, tumors in the activated B cell (ABC) and germinal 
center B cell (GCB)-independent group are characterized by 
biallelic inactivation of TP53, cyclin dependent kinase inhib-
itor 2A loss, and associated with genomic instability (7).

Driver genes that are recurrently mutated in a large cohort 
of cancer samples have consistently been a focus of the previ-
ously published studies of DLBCL; however, the mutation 
frequency of numerous driver genes may remain relatively low 
(e.g. <1%) in tumors (8). Few studies have been conducted on 
the driver genes with low mutation frequency in DLBCL (5,6). 
In the present study, four computational tools were used to 
identify driver genes and conduct integrative analyses on 
these genes in 48 DLBCL samples. The study aimed to detect 
novel driver genes, driver pathways and their association with 
clinical characteristics of patients with DLBCL; enhancing 
the understanding of this disease and providing potential 
therapeutic targets in DLBCL.

Materials and methods

Data for analysis of somatic mutations in DLBCL. In total, 
16,918 somatic mutations of 8,672 genes were identified in 
48 patients with DLBCL (22 men and 26 women; age range, 
23‑82 years; mean age, 56.27 years) and obtained from The 
Cancer Genome Atlas (TCGA) database (9). The functional 
impact of somatic mutations was evaluated using Ensembl 
Variant Effect Predictor (10) and the mutations were classi-
fied into 9 categories according to their functional impact, 
including frame shift insertions and deletions (indels), in 
frame indels, missense mutation, nonsense mutation, RNA, 
silent and splice site. RNA denotes somatic mutations that 
are located in the 5'-untranslated region (UTR) or 3'-UTR 
and may be functional, but probably act by impacting RNA 
levels.

Prediction of driver genes and pathways. Driver genes were 
predicted using 4 distinct computational tools, including 
OncodriveCLUST v.0.4.1 (11), OncodriveFM v.0.0.1 (12), The 
integrated Cancer Genome Score (iCAGES,) (13) and Drivers 
Genes and Pathways (DrGaP v.0.1.0) (14). The parameters 
were set to default values. Driver genes were determined 
based on the following criteria: Genes with q-values <0.05 
were considered as driver genes using OncodriveCLUST and 
OncodriveFM; genes with iCAGES gene scores >0.5 were 
determined as drivers using iCAGES and genes or pathways 
with P-values <0.05 were regarded as driver genes or pathways 
using DrGaP. To further annotate the driver genes, the list of 
driver genes were compared with curated ONGene (15) and 
TSGene (16) databases.

Gene Ontology (GO) term and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analyses. In 
order to characterize the functional enrichment of all driver 
genes, GO (17) biological process terms and KEGG pathway 
enrichment analyses (18) were performed with The Database 
for Annotation, Visualization and Integrated Discovery 
(DAVID) (19). Driver genes were considered to be significantly 
enriched in GO terms or KEGG pathways using a cut‑off of 
Benjamini adjusted P-value of <0.05.

Co‑expression network analysis in patients with DLBCL. 
Normalized read counts of driver genes of 48 patients 
with DLBCL were downloaded from TCGA database 
(http://firebrowse.org/?cohort=DLBC&download_dialog=true). 
Co-expression networks were constructed with the R package 
of weighted gene co‑expression network analysis (WGCNA 
version 1.67) using normalized read counts of driver genes (20). 
The softpower and minimum number of genes were set as 7 
and 10 respectively, all other parameters were set to the default 
values. Identification of gene co-expression modules was 
conducted using hierarchical average-linkage clustering. The 
dynamic tree-cut algorithm was used to identify modules and 
genes in the same branch that could be assigned to different 
modules (20). Genes with high intramodular connectivity 
were considered as intramodular hub genes. The clinicopatho-
logic characteristics investigated in the study are patient age, 
sex, clinical stage [Ann Arbor staging system; (21)], radiation 
therapy, ethnicity, survival status and follow-up time and were 
obtained from the TCGA database. Module‑trait associations 
were estimated using the correlation between the module 
eigengene and clinical traits, which enables the identification 
of modules highly correlated with clinical features.

Protein‑protein interaction (PPI) network construction and 
analysis. A PPI network was constructed using the Search 
Tool for the Retrieval of Interacting Genes/Proteins (STRING) 
database (22). Visualization and calculation of degree value for 
each node was performed using Cytoscape software v3.7.2 (23). 
Degree centrality was defined as the number of connections 
one node has and was also analyzed using Cytoscape software. 
Hub nodes which have the highest degree of centrality connect 
most adjacent proteins in the PPI network (22). Furthermore, 
Molecular Complex Detection (MCODE) (24) was used to 
detect hub clustering modules in the PPI network with default 
parameters in Cytoscape. GO and KEGG pathway enrichment 
analyses were also conducted for genes in significant modules.

Copy number variation (CNV) analyses. Focal CNVs and 
gene‑level CNVs of 48 DLBCL samples were detected using 
the GISTIC algorithm (25) and were downloaded from 
TCGA database (9). Focal CNVs were considered statisti-
cally significant at the cut‑off value of q<0.25. The gene‑level 
copy-number alterations of the top 20 frequently altered driver 
genes were clustered using the heatmap.2 function of gplots 
package in R (26).

Bootstrap model validation of survival analyses. In order to 
confirm the associations of driver gene expression with overall 
survival rate in patients with DLBCL, bootstrap method-
ology (27) was used for validation. Bootstrapping methodology 
randomly selected 80% of samples with replacement from the 
original dataset as a ‘training’ set to determine the median 
values for driver genes. The original dataset was then used as 
a ‘testing’ set in which the patients were divided into high and 
low-expression groups according to the median values. The 
log-rank test was used to compare the difference in survival 
rates between the high- and low-expression groups using the 
R package of survival V3.1‑11 (28). This process was repeated 
1,000 times, generating 1,000 P‑values for each driver gene 
and the frequency of P<0.05 was counted for each driver gene.
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Statistical analysis. The difference in mutation density 
between groups were compared by Wilcoxon rank-sum test. 
Linear regression model was used to characterize the asso-
ciations between clinical features, driver genes and overall 
survival rate. To establish the association of driver gene 
expression with overall survival rate of patients with DLBCL, 
patients were assigned to the ‘high-expression’ group if they 
exhibited gene expression levels greater than the median values 
of driver gene expression and to the ‘low-expression’ group if 
they exhibited expression levels lower than the median value. 
Kaplan‑Meier survival analysis was performed, and survival 
curves generated. The log-rank test was used to compare the 
difference in survival rates between the high- and low-expres-
sion groups using the R package of survival v3.1‑11 (28). P<0.05 
was considered to indicate a statistically significant difference.

Results

Somatic mutations in patients with DLBCL. In total, 
16,918 somatic mutations were detected in patients with DLBCL 
(n=48). Somatic mutations were comprised of 9,623 missense, 
6,230 silent, 188 splice‑site, 353 nonsense, 9 RNA and 
515 indels. Of the 515 indels, 332 caused reading frame shifts, 
and 135 deletions and 48 insertions were located in open reading 
frames (Fig. S1A). C>T/G>A, A>G/T>C and C>A/G>T were 
the 3 predominant transitions, with mutation rates of 52.9, 17.5 
and 8.5% respectively (Fig. S1B). Indels accounted for 3.2% of 
variants in DLBCL (Fig. S1B). The somatic mutation density 
ranged between 0.68‑131.29 mutations/megabase (Mb) with 
an average mutation density of 9.64 mutations/Mb (data not 
shown). To understand the cause of the mutation density varia-
tion, mutation statuses in the DNA mismatch‑repair (MMR) 
pathway genes mutL homolog 1 (MLH1), mutL homolog 3 
(MLH3), mutS homolog 2 (MSH2), mutS homolog 3 (MSH3), 
mutS homolog 6 (MSH6) and PMS1 homolog 2 (PMS2) were 
analyzed. This revealed that 11 patients with DLBCL had muta-
tions in one of the MMR genes and the average mutation density 
in patients harboring an MMR mutation was significantly 
higher compared with wild-type MMR (23.97 mutations/Mb 
vs. 5.40 mutations/Mb; P<0.01; Fig. S1C). Notably, the DLBCL 
with the highest mutation density (131.29 mutations/Mb) had 1 
missense mutation in PMS2 (data not shown).

Prediction of driver genes and pathways. Overall, 8,672 genes 
were mutated in ≥ one DLBCL sample. There were 12, 47, 
109 and 59 driver genes predicted by OncodriveCLUST, 
Oncodr iveFM, iCAGES and DrGaP respect ively 
(Tables SI‑IV). Combining these 4 sets of driver genes, a 
total of 208 unique driver genes were detected using all 
4 tools. Zinc finger protein 814 (ZNF814), major histocompat-
ibility complex, class I, C (HLA‑C), CD79B, rhophilin Rho 
GTPase binding protein 2 (RHPN2), MYD88 and EZH2 
were the common genes identified by OncodriveCLUST and 
OncodriveFM. Suppressor of cytokine signaling 1 (SOCS1), 
TP53, signal transducer and activator of transcription 6 
(STAT6), actin beta (ACTB), protein tyrosine phosphatase 
non‑receptor type 6 (PTPN6) and LYN proto-oncogene 
(LYN) were common to OncodriveFM and iCAGES. Fas cell 
surface death receptor (FAS), inhibitor of nuclear factor kappa 
B kinase subunit beta (IKBKB), tumor necrosis factor (TNF) 

and TP53 were common driver genes detected by iCAGES 
and DrGaP. TP53, BTG anti-proliferation factor 2 (BTG2) and 
ubiquitin conjugating enzyme E2 A (UBE2A) were common to 
OncodriveFM and DrGaP, MLH1 was the overlapping driver 
gene found between OncodriveCLUST and iCAGES. TP53 
was the only driver gene predicted by OncodriveFM, iCAGES 
and DrGaP. Among the 208 driver genes; immunoglobulin 
lambda like polypeptide 5 (IGLL5), myeloid/lymphoid or 
mixed-lineage leukemia 2 (MLL2), BTG anti-proliferation 
factor 2 (BTG2), beta-2-microglobulin (B2M) and Pim‑1 
proto-oncogene, serine/threonine kinase (PIM1) were the top 
five recurrently‑mutated genes in patients with DLBCL with 
mutation rates of 41.7, 35.4, 33.3, 27.1, 25.0, respectively (Fig. 1; 
Table SV). The majority of driver genes were mutated at a low 
frequency in DLBCL with an average mutation rate of 6.1% 
(Table SV). By comparing the list of driver genes with curated 
ONGene and TSGene databases, numerous known oncogenes 
were identified in the current study, such as signal transducer 
and activator of transcription 3 (STAT3), epidermal growth 
factor receptor (EGFR), as well as tumor suppressor genes, 
such as ATM serine/threonine kinase (ATM), phosphatase and 
tensin homolog (PTEN). In addition to the list of driver genes, 
DrGaP also identified 31 driver pathways in DLBCL, including 
the MAPK signalling pathway, cytokine‑cytokine receptor 
interaction, cell cycle, apoptosis, p53 signalling pathway, path-
ways in cancer, pancreatic cancer, the Wnt signalling pathway 
and chronic myeloid leukemia (data not shown).

GO term and KEGG pathway enrichment analyses. GO term 
and KEGG pathway enrichment analyses were performed 
for 208 driver genes using DAVID. GO enrichment analysis 
indicated that driver genes were significantly overrepresented 
in 35 biological processes (Benjamini-adjusted P-value 
<0.05; Table SVI). The main GO biological processes 
exhibited a wide spectrum of functional processes, including 
‘IκB kinase/NF-κB signaling’, ‘extracellular matrix organiza-
tion’ and ‘regulation of phosphatidylinositol 3-kinase signaling’ 
DAVID also revealed driver genes were significantly enriched 
in 88 KEGG pathways, including ‘acute myeloid leukemia’, 
‘melanoma’, ‘colorectal cancer’, ‘non-small cell lung cancer’, 
‘T cell receptor signaling pathway’, ‘antigen processing and 
presentation’, ‘the mTOR signaling pathway’, ‘apoptosis’ and 
‘cell cycle’ (Benjamini‑adjusted P‑value <0.05; Table SVII).

Co‑expression network analysis. To construct the co-expres-
sion network of the 208 driver genes, WGCNA was used 
based on the expression correlation between driver genes in 
48 DLBCL samples. WGCNA analysis identified 3 distinct 
co-expression modules in DLBCL. These co-expression 
modules are demonstrated in different colors with 94, 83 and 
26 genes in the grey, turquoise and blue modules respectively 
(Fig. 2). The module-trait association analysis indicated that 
the turquoise module was positively correlated with radiation 
therapy and the blue module was negatively correlated with 
patient age (P<0.05; Fig. 3). Mitogen-activated protein kinase 8 
(MAPK8) was the hub gene in the turquoise module. Notch 
receptor 3 (NOTCH3) was the hub gene in the blue module.

Protein‑protein interaction (PPI) network construction and 
analysis. In addition to the co-expression network of driver 
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genes, the present study also characterized the interactions 
of driver genes at the protein level. STRING was used to 
construct a PPI network for driver genes. The PPI network 
comprised 208 nodes and 2,041 edges, with an average node 
degree of 19.6 (Fig. 4A). The PPI network had significantly 
more interactions than expected for a random set of proteins 
of similar size (PPI enrichment; P<0.0001). The nodes 
which have high degrees possess intensive interactions with 
other nodes and may serve as key nodes in the PPI network. 
A total of 9 candidate hub nodes, the degree of which was 
>4 times the corresponding median values were identified, 
namely, TP53, MYC, EGFR, PTEN, interleukin 6 (IL6), 
signal transducer and activator of transcription 3 (STAT3), 
mitogen-activated protein kinase 8 (MAPK8), tumor necrosis 
factor (TNF) and cadherin 1 (CDH1) (Fig. 4A). Furthermore, 
module analysis was performed to obtain the top 3 modules 
with high scores using MCODE (Fig. 4B-D). The 9 candidate 
hub nodes were contained in the three modules. In relation 
to GO enrichment analysis, genes in module 1 (Fig. 4B) were 
significantly correlated with 208 GO terms, including ‘positive 
regulation of apoptosis’, ‘programmed cell death’, ‘cell migra-
tion’ and ‘response to hypoxia.’ Genes in module 2 (Fig. 4C) 
were primarily enriched in ‘regulation of apoptotic process’, 
‘cell proliferation’, ‘MAPK cascade’ and ‘phosphatidylino-
sitol-mediated signaling’. Genes in module 3 (Fig. 4D) were 
not significantly enriched in any GO terms. With respect to 
KEGG pathway enrichment analysis, the genes in module 1 
were enriched in ‘leukocyte transendothelial migration’, ‘mela-
noma’ and ‘Toll-like receptor signaling pathway’. The genes 

in module 2 mainly were predominantly enriched in ‘chronic 
myeloid leukemia’, ‘acute myeloid leukemia’, ‘p53 signaling 
pathway’ and the ‘hypoxia‑inducible factor 1 signaling 
pathway’. The genes in module 3 were significantly implicated 
in the ‘cell cycle’, ‘microRNAs in cancer’, ‘small‑cell lung 
cancer’ and the ‘NF-κB signaling pathway’.

Copy number variation (CNV) analyses. Focal CNVs 
of 48 patients with DLBCL were obtained from TCGA. 
Significant focal gains and deletions (q<0.25) were identified 
at 40 loci (14 amplifications and 26 deletions) in 93.8% (45/48) 
of DLBCL samples. Among them, deletions at 6q14.1 and 
9p21.3, and amplifications at 1q24.2, 2p16.1 and 7p22.3 were 
the top 5 most frequent CNVs in DLBCL, with occurrence 
rates of 35.4 (17/48), 35.4 (17/48), 33.3 (16/48), 33.3 (16/48) 
and 33.3% (16/48), respectively (Fig. S2). PR/SET domain 1 
(PRDM1), cyclin dependent kinase inhibitor 2A (CDKN2A), 
cyclin dependent kinase inhibitor 2B (CDKN2B), TNF alpha 
induced protein 3 (TNFAIP3) and R-spondin 3 (RSPO3) 
were the top five most frequently deleted driver genes in 
DLBCL, while actin beta (ACTB), BTG anti-proliferation 
factor 2 (BTG2), placenta expressed transcript 1 (PLET1), 
CARD11 and DIX domain containing 1 (DIXDC1) were the 
top five most frequently amplified driver genes in DLBCL 
(Fig. S3).

Prognosis of patients with DLBCL. Linear regression model 
analysis demonstrated overall survival rate was not significantly 
associated with patient age, clinical stage, radiation therapy, 

Figure 1. Analysis of somatic mutations of the top 20 frequently mutated driver genes in patients with DLBCL (n=48). The left panel demonstrates the 
mutation rates of the 20 driver genes, blue and red denote synonymous and non-synonymous mutations respectively. The right panel demonstrates the distri-
bution of mutations with different classes of functions in patient samples. UTR, untranslated region; IGR, intergenic region; DLBCL, diffuse large B cell 
lymphoma; Ins, insertion; Del, deletion; IGLL5, Immunoglobulin lambda like polypeptide 5; MLL2, myeloid/lymphoid or mixed‑lineage leukemia 2; BTG2, 
BTG anti‑proliferation factor 2; B2M, beta‑2‑microglobulin; PIM1, Pim‑1 proto‑oncogene; CARD11, caspase recruitment domain family member 11; ATM, 
ATM serine/threonine kinase; TNFAIP3, TNF alpha induced protein 3; STAT3, signal transducer and activator of transcription 3; P2YR8, P2Y receptor 
family member 8; EGFR, epidermal growth factor receptor; ZNF184, zinc finger protein 184; RHPN2, rhophilin Rho GTPase binding protein 2; PDE4DIP, 
phosphodiesterase 4D interacting protein; MYD88, MYD88 innate immune signal transduction adaptor; IRF4, interferon regulatory factor 4; HLA‑C, major 
histocompatibility complex class I C; DOCK5, dedicator of cytokinesis 5; CREBBP, CREB binding protein; AGA, aspartylglucosaminidase.
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sex and ethnicity in DLBCL (all P>0.05; Table SVIII). To 
evaluate the association of driver gene expression with patient 
survival, patients with DLBCL were divided into low- and 
high-expression groups based on the median expression values 
of the driver genes. Kaplan‑Meier survival analysis indicated 
that patients with high eukaryotic translation initiation factor 3 
subunit B (EIF3B), mutL homolog 1(MLH1), protein phos-
phatase 1 catalytic subunit alpha (PPP1CA) and RecQ like 
helicase 4 (RECQL4) expression levels exhibited improved 
overall survival rate compared with those with low EIF3B, 
MLH1, PPP1CA and RECQL4 expression levels (Fig. 5). 
Patients with high exportin 1 (XPO1) and LYN expression 
exhibited a less favorable prognosis compared with patients 
with low XPO1 and LYN expression (all P<0.05; Fig. 5). To 
further verify the aforementioned findings, driver genes were 
evaluated for their associations with overall survival rate 
using Kaplan‑Meier survival analysis with 1,000 bootstrap 
resampling. EIF3B, MLH1, PPP1CA, RECQL4, XPO1 and 
LYN were significantly associated with overall survival rate in 
patients with DLBCL across the 1,000 bootstrapped samples. 
EIF3B, MLH1, PPP1CA, RECQL4 and XPO1 exhibited a 
P‑value <0.05 in >60% of the 1,000 testing datasets (EIF3B, 
82.6%; MLH1, 94.1%; PPP1CA, 83.2%; RECQL4, 93%; and 
XPO1, 64.8%), while LYN had a P‑value <0.05 in only 29.2% 

of the testing datasets (data not shown). The current results 
indicate that EIF3B, MLH1, PPP1CA, RECQL4 and XPO1 
may represent potential prognostic biomarkers for patients 
with DLBCL in the future.

Discussion

Cancer is initiated by the accumulation of driver mutations 
in cancer genes, which confers a proliferation advantage to 
cancer cells (29). The average mutation rate is 9.64 muta-
tions/Mb in DLBCL, which is higher compared with the 
mutation rate in other hematopoietic malignancies, such as 
chronic lymphocytic leukemia and other leukemias (29,30), 
and multiple myeloma (31). In the present study, the muta-
tion density varied considerably across DLBCL samples with 
increased mutation rates in MMR-mutant samples. Moreover, 
the DLBCL sample with the highest mutation density had 
one missense mutation in PMS2, which is a key component 
of the mismatch repair system to correct DNA mismatches 
and small indels that occur during DNA replication and 
homologous recombination (32). The results of the present 
study suggested that mutation density variation is, to a large 
extent, attributable to mutations in the DNA mismatch repair 
genes in DLBCL.

Figure 2. Hierarchical clustering results of co‑expression modules in the patients with DLBCL (n=48). WGCNA was applied to perform the hierarchical 
clustering. These co‑expression modules are demonstrated in different colors with 83 and 26 genes in the turquoise and blue modules, respectively. The grey 
color represents no genes in any modules.
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Figure 4. PPI network and module clustering analyses identified several hub proteins in the PPI network. (A) PPI network of all driver genes. (B) Module 1 
(MCODE score=15.81). (C) Module 2 (MCODE score=13.17). (D) Module 3 (MCODE score=5.65). MCODE was used to detect hub clustering modules in the 
PPI network, with default parameters in Cytoscape. Deep node color and increased node size were associated with increased degree value. PPI, protein-protein 
interaction; MCODE, Molecular Complex Detection.

Figure 3. Module-trait associations between mutated genes and clinical features in patients with DLBCL, established using weighted gene correlation network 
analysis. Heatmap presents the correlation between module eigengenes and clinical traits. The corresponding correlation coefficients were presented above the 
parentheses and P‑values were shown within the parentheses. P<0.05 was considered to be statistically significant. The bar on the right demonstrates the degree of 
correlation between module eigengenes and clinical traits, with red and blue representing positive and negative correlation, respectively. ME, Module Eigengene.
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The widely applied approach for the detection of driver 
genes identifies significantly mutated genes in a cohort of 
cancer samples as compared with the background muta-
tion rate (33,34). In the present study, 4 computational tools, 
OncodriveCLUST, OncodriveFM, iCAGES and DrGaP were 
used to detect driver genes using somatic mutations of patients 
with DLBCL (n=48). MLL2, TP53, CD79B, B2M, CARD11 
and EZH2 were predicted as driver genes in DLBCL in the 
present study, which is consistent with previously published 
reports (5,6). By comparing the list of driver genes with curated 
oncogene (15) and tumor suppressor gene (16) databases, 
numerous known oncogenes were identified in the current 
study, such as EGFR, STAT3, as well as tumor suppressor 
genes, such as ATM, PTEN. Notably, in the present study a 
large fraction of driver genes had low mutation frequencies 

and were first reported as driver genes in DLBCL, such as 
CSNK2A1, RECQL4, LARP1B and GAB1. Therefore, the 
combination of the 4 tools enabled the detection of recurrently 
and rarely mutated driver genes.For instance, DrGap detected 
a new driver gene IGLL5, which was not identified via the other 
3 computational tools. This may be due to DrGaP predicting 
driver genes and driver signaling pathways according to a 
different algorithm. DrGaP integrates biological knowledge 
of the mutational process in tumors, including the length 
of protein-coding regions, transcript isoforms, variation in 
mutation types, differences in background mutation rates, 
redundancy of the genetic code and multiple mutations in 
one gene. DrGaP use a Poisson process to model the random 
nature of somatic mutations, a Bayesian model to estimate 
background mutation rates and a likelihood ratio test to test 

Figure 5. Survival analysis of 6 driver genes in patients with DLBCL. (A) EIF3B, (B) MLH1, (C) PPP1CA, (D) RECQL4 expression, (E) XPO1 and (F) LYN 
expression levels were significantly associated with overall survival rate of DLBCL patients. Red and blue curves represent high‑ and low‑expression groups, 
respectively. P<0.05 was considered to be statistically significant. EIF3B, eukaryotic translation initiation factor 3 subunit B; MLH1, mutL homolog 1; PPP1CA, 
protein phosphatase 1 catalytic subunit alpha; RECQL4, RecQ like helicase 4; XPO1, exportin 1; LYN, LYN proto‑oncogene.
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the significance of driver genes and pathways. The newly 
identified driver genes in the present study provide promising 
candidates for functional validation in future studies.

By performing WGCNA analysis in the present study, 
3 co-expression modules were detected, the turquoise module 
was positively associated with radiation therapy and the blue 
module was negatively associated with patient age. MAPK8 
was the hub gene in the turquoise module. NOTCH3 was the 
hub gene indicating that these genes were correlated with other 
genes at the mRNA expression level. Therefore, they may 
have key roles in the co-expression network. The PPI network 
analysis also identified 9 candidate hub nodes, namely, TP53, 
MYC, EGFR, PTEN, IL6, STAT3, MAPK8, TNF and CDH1, 
and 3 modules. The 9 nodes identified in the present study 
were major hub nodes and the 3 modules may represent the 
key biological characteristics in the PPI network.

Finally, in the present study 5 driver genes were signifi-
cantly associated with the overall survival rate of patients with 
DLBCL, including EIF3B, MLH1, PPP1CA, RECQL4 and 
XPO1. Of the five genes, XPO1 has been reported to be oncogene 
and a negative prognostic factor in mantle cell lymphoma (35), 
lung adenocarcinoma (36) and gastric cancer (37). XPO1 
encodes a protein which functions as the trafficker of a wide 
range of proteins, including tumor suppressors, growth regula-
tory, proinflammatory and antiapoptotic proteins (38). XPO1 
serves oncogenic and anti-apoptotic roles in transformed cells 
and is upregulated in mantle cell lymphoma (35), lung adeno-
carcinoma (36) and gastric cancer (37). In concordance with the 
findings of the present study, upregulated expression of XPO1 
is associated with poor prognosis in gastric carcinoma (37), 
acute myeloid leukemia (39), pancreatic cancer (40) and lung 
adenocarcinoma (31). The results obtained in the present study, 
combined with previously published reports (35-39), indicate 
that XPO1 may exert oncogenic functions and represent a 
negative prognostic factor in cancers.

Expression analysis of EIF3B, MLH1, PPP1CA, RECQL4 
and XPO1 may be valuable in clinical settings. Cytological or 
surgical specimens of DLBCL exhibiting high expression of 
EIF3B, MLH1, PPP1CA, RECQL4 and low expression of XPO1 
may be associated with a favorable clinical outcome, which needs 
to be verified in large‑scale and more vigorous future studies.

Despite enhancing the understanding of pathogenesis 
of DLBCL, the present study is not without limitations. For 
example, there was a lack of functional validation for the novel 
driver genes. Furthermore, the overall survival rate-associated 
genes were not validated in an independent DLBCL dataset, 
due to lack of publicly available DLBCL data. Overall, the 
present study discovered a set of driver genes and driver path-
ways in DLBCL, and demonstrated that the driver genes, such 
as EIF3B, MLH1, PPP1CA, RECQL4 and XPO1 may serve 
as potential prognostic biomarkers for patients with DLBCL.
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