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Recent advances in single-cell technologies enable joint profiling of multiple omics.
These profiles can reveal the complex interplay of different regulatory layers in single
cells; still, new challenges arise when integrating datasets with some features shared
across experiments and others exclusive to a single source; combining information
across these sources is called mosaic integration. The difficulties lie in imputing
missing molecular layers to build a self-consistent atlas, finding a common latent space,
and transferring learning to new data sources robustly. Existing mosaic integration
approaches based on matrix factorization cannot efficiently adapt to nonlinear
embeddings for the latent cell space and are not designed for accurate imputation
of missing molecular layers. By contrast, we propose a probabilistic variational
autoencoder model, scVAEIT, to integrate and impute multimodal datasets with mosaic
measurements. A key advance is the use of a missing mask for learning the conditional
distribution of unobserved modalities and features, which makes scVAEIT flexible to
combine different panels of measurements from multimodal datasets accurately and in
an end-to-end manner. Imputing the masked features serves as a supervised learning
procedure while preventing overfitting by regularization. Focusing on gene expression,
protein abundance, and chromatin accessibility, we validate that scVAEIT robustly
imputes the missing modalities and features of cells biologically different from the
training data. scVAEIT also adjusts for batch effects while maintaining the biological
variation, which provides better latent representations for the integrated datasets. We
demonstrate that scVAEIT significantly improves integration and imputation across
unseen cell types, different technologies, and different tissues.
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With new technological advances, researchers are able to measure a growing number
of molecular dimensions, including the genome, transcriptome and epigenome, on
millions of cells. The primary goals are to classify subtypes of cells, to understand cell
function, and to model basic biological processes such as early development and clinically
relevant traits, such as disorders and cancer. Integrating data from multiple modalities
(1) and whole-genome measurements presents new challenges in the analysis of single-
cell data. While no single technology can measure all relevant omics in a single cell,
recent developments facilitate the measure of several; for example, TEA-seq (2) and the
DOGMA-seq (3) simultaneously measure chromatin accessibility, gene expressions, and
protein abundances. However, obtaining single-cell multimodal datasets that measure
many modalities may be costly and this limits the sample sizes. Moreover, there is a
need to integrate new data sources with existing multimodal atlases and impute the
missing biological modalities. Therefore it is of fundamental importance to develop
methodologies that can perform integrative analysis and cross-modal translation on the
full range of jointly profiled multimodal single-cell datasets.

To integrate single-cell multimodal datasets, most existing methods identify anchors
either explicitly or implicitly. Depending on the choice of anchor, the integration methods
can be divided into three categories: horizontal integration, vertical integration, and
diagonal integration (4). Horizontal integration methods, including Seurat v3’s CCA
(5), Harmony (6), and LIGER (7), use common modalities and features as anchors
to link datasets containing different cells. Vertical integration approaches combine
different modalities from datasets measured across a common set of cells. Representative
works include 1) Seurat v4’s Weighted Nearest Neighbor (WNN) (8), which identifies
influential pairs of features based on the relative utility of each data modality and maps
query datasets to the reference dataset based on shared variable features, and 2) totalVI
(9), which models paired gene and protein measurements. On the other hand, there are
methods that perform horizontal and vertical integration to combine different samples
and modalities simultaneously. For example, MultiVI (10) models paired and unpaired
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measurements of gene and chromatin accessibility. Diagonal
integration is considerably more challenging because neither
modality nor cells are assumed to be shared. Extra cellular
information is required to align different modalities.

As noted by Argelaguet et al. (4), a more general and
challenging modern integration task is mosaic integration. For
this integration task, different data modalities are profiled in
different subsets of cells, or different subsets of cells are profiled
from different experiments or technologies. Mosaic integration
has two goals: 1) to map multimodal data to a common latent
space, which is achieved by obtaining a joint multimodal profile
for each cell, while utilizing the information from both shared
and unshared features; and 2) to transfer knowledge of a fully
trained model to a new dataset with partial modalities and
features measured. This latter is sometimes also known as transfer
learning (11, 12), and it is helpful in aligning cells and imputing
unmeasured modalities and features for new datasets at a relatively
low cost. Imputation of missing measurements and features is a
natural bi-product of the integration procedure.

Recent advances in mosaic integration mainly focus on finding
a common latent space while de-emphasizing the importance
of imputation accuracy. For example, the non-negative matrix
factorization algorithm UINMF (13) can align single-cell datasets
containing both shared and unshared features in the low
dimensional space; StabMap (14) first obtains low-dimensional
score matrices for different datasets and then re-weights them
based on features shared with the reference dataset. One common
limitation of the current approaches is that only simple linear
relationships between modalities are captured in the model (4).
And it is hard to incorporate different types of covariates for
batch effect adjustment while retaining biological variation (15–
17). Besides, it is difficult for matrix factorization algorithms to
align new datasets without training on the new dataset again.
In the age of million single-cell multimodal data, both joint
representations and transfer learning are indispensable. Although
deep generative models such as totalVI (9) and MultiVI (10)
can address the aforementioned limitations, they suffer from
model misspecification issues when some features are missing for
some cells. Specifically, existing deep generative methods either
ignore unshared features or simply set the missing quantities
to zero when performing integration, which induces biases.
Failing to consider missing patterns, their performances will likely
deteriorate when the proportion of unshared features increases
significantly. As a result, new computational approaches that
systematically model and utilize the information of missingness
for combining mosaic-type multimodal datasets in the two
scenarios are desirable.

We develop Single-Cell Variational AutoEncoder for
Integration and Transfer learning (scVAEIT), a probabilistic deep
learning algorithm (9, 18, 19) capable of performing mosaic
integration and imputation. The model allows for arbitrary
patterns of shared and unshared features and modalities, and
the integration does not require the input of any extra biological
information. In addition to great flexibility, a primary advantage
of the approach is its robustness to overfitting. By incorporating
a masking procedure, our model learns interpretable joint
representations for cells and the distributions of unobserved
features conditioned on an arbitrary subset of observed modalities
and features. Unlike the traditional generative models that
are fully unsupervised, imputing the masked features serves
as a supervised learning procedure, which is analogous to the
supervised PCA in Seurat’s WNN (8). The masking procedure
also acts as a form of regularization to mitigate overfitting, which

is typical of the deep generative models. In contrast, conventional
neural networks only focus on and remember, for example,
genes and proteins that are easy to predict in multitask learning.
scVAEIT is thus extremely useful for missing features imputation
and crossmodal generation, providing great flexibility and high
accuracy in learning a common latent space. Furthermore, it can
robustly transfer crossmodal knowledge to new single-modal and
multimodal datasets that only measure partial panels of features
of the training datasets, providing generalization on transfer
learning.

Results

Method Overview. An overview of the multimodal single-cell
data analysis pipeline with scVAEIT is shown in Fig. 1. Existing
single-cell data studies provide researchers with a variety of
multimodal and single-modal datasets, illustrated here with three
datasets of PBMCs (peripheral blood mononuclear cells) (3):
DOGMA-seq (RNA, protein, peaks), CITE-seq (RNA, protein),
and ASAP-seq (RNA, peaks). Building on deep generative
models, scVAEIT provides a flexible way to jointly analyze
multiple multimodal and single-modal single-cell datasets while
incorporating additional covariates for batch effect adjustments.
After the model is trained on the mosaic-type dataset, it can
then be applied to various downstream tasks. Specifically, it
enables joint latent representations (intermediate integration)
of all modalities and transfer learning to new data sources
(late integration). Most importantly, it can robustly impute the
missing quantities of the mosaic-type datasets. Though the model
we illustrate in this setting is applicable for general multi-omic
settings.

The critical innovation of scVAEIT lies in the introduction
of a mask M , incorporating information about missingness and
the complementary observed features XM c (Fig. 1B). Instead of
isolating shared and unshared features in multiple datasets, we
utilize a missing mask M for each cell to inform scVAEIT about
the missing pattern when performing mosaic integration. Hence,
scVAEIT enables integrative analysis of cells from different
sources with more or fewer features and modalities measured.
It differs from other deep generative models in that it explicitly
learns the conditional distributions of certain masked features
(or modalities) given unmasked features (or modalities). In
contrast, other variational inference models simply set the missing
quantities as zero, which biases the learned models.

Even though we do not impose any assumption on the
relationships between the shared and unshared features, scVAEIT
learns the interdependence among features and modalities during
the optimization process. This is achieved by sampling random
mask M to force the model to predict the masked features
based on the unmasked features. For example, masking out the
peaks for cells in the DOGMA-seq datasets helps to impute the
chromatin accessibility for cells in the CITE-seq datasets. This
is also valuable for dealing with structural missing problems as
we can exploit prior knowledge about data. On the other hand,
randomly masking out a small portion of features also acts as a
way of regularization, which prevents the model from overfitting
the training dataset.

Because scVAEIT is optimized by the mini-batch stochastic
gradient descent algorithm, its memory usage does not depend
on the number of cells, which makes it scalable for large datasets.
For instance, it can process the DOGMA-seq dataset with 13,763
cells and over 29,139 features (genes, proteins, and chromatin
accessibility) within 1 h for intermediate integration on a single
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Fig. 1. Overview of multimodal single-cell datasets mosaic integration with scVAEIT. (A) Multimodal sequencing techniques such as DOGMA-seq, CITE-seq,
and ASAP-seq simultaneously measure multiple modalities in single cells. Different datasets can measure different panels of features for the same modality,
producing mosaic count matrices for RNA, proteins and peaks. scVAEIT takes these matrices and an optional matrix containing continuous and categorical
covariates to learn cross-modality and cross-feature relationships. It also produces a joint representation of all modalities for each cell. (B) For each cell, scVAEIT
uses a mask to inform the missingness of the data. The actual or authentic mask isMa . During training, masks (M) are randomly generated and encoded for each
modality to force the model to learn to predict specific portions of the features based on other observed features (XMc ). In the first layer of the encoder and
the last layer of the decoder, different modalities and peaks in different chromosomes break into subconnections that greatly reduces model complexity. The
encoder then outputs the parameters of the posterior distributions for the latent variable Z, given the unmasked data XMc and the mask M. Next, samples from
the posterior distributions along with the mask and covariates are fed to a decoder neural network to predict the posterior mean of X . Ultimately unobserved
values are imputed and observed values are denoised.

Tesla v100-32 GPU. Once the model learns the cross-modality
and cross-feature relationship from the training dataset, it can
then robustly transfer its knowledge (late integration) to new
sources at a relatively low cost. For example, denoising and
imputing the previous DOGMA-seq dataset takes less than one
minute on a single GPU. As more and more multimodal single-
cell atlases become available, it is valuable to train scVAEIT on a
reference atlas for once and readily transfer learns the new sources
for cross-modality translation and imputation. Details of the
specifications of the model architecture and training procedures
are included in the Method section and SI Appendix.

Cross-Domain Translation with High Accuracy. To examine
cross-domain translation accuracy, we used a dataset consisting
of PBMCs processed by CITE-seq (8) (see the Methods section).
We held out one cell type for evaluation, trained different models
based on the remaining cells, and then imputed each modality
given the other for each held-out cell type. The two largest cell
types—Mono (n= 49,010 cells) and CD4 T (n= 41,001 cells)—
were examined, and the results are summarized in Fig. 2A. As
the held-out cell types were not present in the training set, high
accuracy on cross-domain translation indicates that the model
learns cross-modality relationships rather than memorizing the
training set.

We compared the imputation accuracy with Seurat v4′s
WNN (8) with multimodal anchor transfer and totalVI (9),
a deep generative model designed for CITE-seq datasets (see
the Methods section). In almost all cases, scVAEIT achieved
higher correlation and lower RMSE compared to Seurat’s WNN
method and totalVI. For protein imputation, Seurat v4 WNN
failed to extrapolate well on the unseen cell type because it is
based on protein-gene similarity in the training set instead of
learning the nonlinear relationship between proteins and genes

as scVAEIT. On the other hand, totalVI performed worst on
predicting protein counts given gene counts, as it is designed for
joint representation of proteins and genes and naturally fails to
translate between the two modalities. Overall, the results indicate
that scVAEIT captures the cross-modality relationships very well
and is accurate for imputing missing modalities.

Transfer Learning External Datasets. We next applied scVAEIT
to impute proteins of two external datasets without any additional
fine-tuning or training. Unlike the CITE-seq PBMC dataset we
used to train the model, the CITE-seq CBMC (cord blood
mononuclear cell) dataset was from a different tissue, while
the REAP-seq PBMC dataset was generated from a different
experimental protocol. Both of the two datasets measure genes
and proteins as well. Such datasets are challenging because of the
experimental biases and variances. Because both of the external
datasets consist of a few proteins, it is unlikely any model
can successfully impute gene expressions based on proteins.
Therefore, we only inspected how well the models can infer
the proteins in the external datasets when a partial panel of the
genes is observed. On these external datasets, scVAEIT aligned
more accurately with measured protein levels than Seurat and
totalVI (Fig. 2C and SI Appendix, Fig. S1). More specifically,
scVAEIT achieved strong positive correlation (median Pearson
correlation = 0.73, median Spearman correlation = 0.69) and
small RMSE of 1.70 Drop) on the CITE-seq CBMC dataset. At
the same time, it was more stable than totalVI on imputation
accuracy (Fig. 2B). We note that scVAEIT was not enforced
to focus on only a few proteins in these external datasets, as it
was trained on a panel of 227 proteins. The superior performance
across tissues and technical protocols is due to the training scheme
of random masking, which helps scVAEIT to give all-around
attention to individual proteins.

PNAS 2022 Vol. 119 No. 49 e2214414119 https://doi.org/10.1073/pnas.2214414119 3 of 10

https://www.pnas.org/lookup/doi/10.1073/pnas.2214414119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2214414119#supplementary-materials


A

B

C

Fig. 2. Evaluation of protein imputation on two external datasets. (A) Performance of missing modality imputation on the hold-out cell types when the source
modality is fully observed. The evaluation metrics include Pearson correlation (rp), Spearman correlation (rs) and root mean square error (RMSE). RNA and
ADT (antibody derived tag) represent the gene and protein modalities, respectively. (B) Violin plots of the Pearson correlation, Spearman correlation and root
mean square error (RMSE) between the imputed and the true protein abundances on CITE-seq CBMC dataset and REAP-seq PBMC dataset. (C) Across tissue
correlations between imputed and measured protein abundance on the CITE-seq CBMC data: scVAEIT versus Seurat and scVAEIT versus totalVI.

Trimodal Integration and Imputation. The recently proposed
DOGMA-seq protocol revealed distinct changes in different
modalities during native hematopoietic differentiation and pe-
ripheral blood mononuclear cell stimulation. However, most
deep generative models are restricted to bimodal analysis. For
example, totalVI (9) jointly models genes and proteins, and
MultiVI (1) jointly models genes and chromatin accessibility.
Although the existing method BABEL (20) uses separate encoders
and decoders to model each modality and could be extended to
trimodal analysis, it is still conceptually hard to align different
modalities in the latent space. The difficulty of multimodal
analysis lies in combining and balancing information from
different modalities; thus, we would like to examine how
scVAEIT performs in such cases.

To quantify how leveraging trimodal information improves
dataset imputation, we compared our method with totalVI and
MultiVI. A stimulation indicator was provided for all three
methods as an extra covariate for batch effect correction. We
also included three-way weighted nearest neighbors (3-WNN)
in Seurat v4 (8) as a benchmarking method, using Harmony (6)
to integrate the stimulated and control data. We held out each
cell type in the DOGMA-seq dataset as the test set and trained
all models based on the remaining cells. Then the models were
evaluated by imputing each modality given the other modalities
(Fig. 3 and SI Appendix, Fig. S2).

scVAEIT achieved strong performance across different held-
out cell types and experimental conditions. For gene imputation,
other deep generative models could not extrapolate well on the
unseen cell types, producing large RMSEs, while Seurat’s anchor
transfer method failed to capture the relationships between
different modalities, resulting in low Pearson correlations and
Spearman correlations (Fig. 3A). scVAEIT, however, excelled
in both aspects for imputing the gene counts. The binary
versus continuous nature of the three modalities required us
to use different metrics for evaluating chromatin accessibility
predictions. Inferring peaks from gene and protein expressions,
it is on par with MultiVI on the area under the receiver
operating characteristic (AUROC) while significantly better on
accuracy (ACC) and RMSE (Fig. 3B). If we zoom in to look
at the density scatterplot of the normalized protein counts and
the imputed counts (Fig. 3C), we see that Seurat overestimated
the protein abundances of CD8a in the held-out CD4 T cell
type because the test cell type is similar to the CD8 T cell type,
where the CD8a protein highly expresses. For imputation of
sparse counts of genes MAML2, LINC00681, SOS1, FHIT,
and MYBL1, we also observed Seurat’s underestimation and
over smoothing (SI Appendix, Fig. S3). These results indicate
scenarios where Seurat’s map and query method might fail. On
the contrary, scVAEIT learned a nonlinear and more accurate
mapping from the expressions of all available modalities and
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Fig. 3. Trimodal imputation analysis on DOGMA-seq dataset. (A) Performance of gene imputation on the held-out cell types of the DOGMA-seq dataset.
(B) Performance of chromatin accessibility imputation on the held-out cell types of the DOGMA-seq dataset. (The metrics AUROC and ACC denote the area
under the receiver operating characteristic and accuracy, respectively). (C) Scatter plot of normalized protein counts versus imputed values on the held-out
CD4 T cell type of the DOGMA-seq dataset by scVAEIT and Seurat. Each dot represents one protein abundance for one CD4 T cell. Because CD4 T cells in the
query dataset are most similar to CD8 T cells in the reference dataset, Seurat simply memorizes the expression patterns of CD8a protein (within the red circle)
from CD8 T cells and consequently overestimates its expression for CD4 T cells.

features to the unknown features and hence achieved a more
reasonable imputation on the missing quantities even in the
unseen CD4 T cell type.

Robustness to Missing Features. As more and more single-
cell multimodal atlases become available, we could expect that
late integration would be increasingly essential and practical
for researchers to transfer knowledge from the atlases to the
new datasets; however, the new datasets may not contain all
the features measured in a reference atlas, leading to missing
data issues in practice. Therefore, we investigated how different
levels of missingness of the measured features might impact
the late integration of new datasets by using the DOGMA-seq
dataset. In the largest CD4 T cluster, a specific portion of genes,
proteins, and chromatin accessibility, was randomly held out as
a test set, and different models were trained on cells in other cell
types and then applied to impute these missing quantities based
on the observed features in the held-out cell type. The process
was repeated multiple times.

Except for scVAEIT, we observed that other deep generative
models have unstable behaviors on imputation accuracy under
the model misspecified scenario (Fig. 4 A and B for proteins
and chromatin accessibility imputation, and SI Appendix, Fig.
S4 for genes imputation). More specifically, the performance of
totalVI on gene and protein imputation deteriorated dramatically
when the missing proportion increased; MultiVI, on the other
hand, had a larger variance and uncertainty when facing a larger
degree of missingness. On the other hand, as a nonparametric
method, Seurat was more stable with respect to different levels of
missingness (Fig. 4A). It obtained better Pearson correlations for
gene imputation but worse Spearman correlation than MultiVI
(SI Appendix, Fig. S4), meaning that Seurat did not capture
nonlinear relationships well among sparse signals. As noted,
scVAEIT effectively combined the advantages of both methods,

and was robust and accurate even when features were missing
and the training model was misspecified to the new datasets.

Application to Multi-Source and Multimodal Mosaic Integra-
tion. We further applied scVAEIT to integrate the DOGMA-seq
dataset with a CITE-seq PBMC dataset and an ASAP-seq dataset
from Mimitou et al. (3). After filtering low-quality cells and
features (see the Methods section), the three datasets have 208
proteins in common, while the DOGMA-seq and the CITE-
seq datasets have only 880 shared genes, and the DOGMA-
seq and the ASAP-seq datasets have only 26,206 shared peaks
(SI Appendix, Table S1). We first considered the task of two-
phase mosaic integration, where the mosaic multimodal datasets
were combined through intermediate integration to remove the
effects of experiment conditions, and the new mosaic multimodal
datasets were imputed afterwards (late integration). Each cell
type from the three datasets was held out for imputation
and evaluation in turns, while the rest were used to perform
intermediate integration. As all datasets measure a shared panel
of proteins, it is easier to use protein counts to link these
datasets together. Instead, we inspected how protein counts can
be imputed based on other modalities in the held-out cell type.

We compared scVAEIT with Seurat’s 3-WNN and anchor
transfer method. Although the procedure of two-phase inte-
gration is straightforward for scVAEIT, it becomes much more
complicated for Seurat’s method. First, the multimodal reference
and query datasets need to be integrated with Harmony to
adjust for the stimulation effects separately, when performing
dimension reduction. Then the query dataset is mapped to
the reference dataset in the low-dimensional space. Finally, the
missing quantities are imputed based on the similarity between
the reference and query cells computed in the low-dimensional
space. In our experiments, the multimodal neighbor method
failed for integrating cells in the DC or Mono cell type because
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A B

Fig. 4. Incorporating masking information during training enables robust late integration with missing features. (A) Performance of protein imputation on the
held-out CD4 T cell type of the DOGMA-seq dataset with random missing. For each missing proportion, all methods are evaluated using the same observed
features across 10 runs and the shaded region is within one SD of the average performance. (B) Performance of chromatin accessibility imputation on the held-
out CD4 T cell type of the DOGMA-seq dataset with random missing (the metrics AUROC and BCE denote the area under the receiver operating characteristic
and binary cross entropy, respectively). For each missing proportion, all methods are evaluated using the same observed features across 10 runs and the
shaded region is within one SD of the average performance.

there were too few cells, no matter how we chose the number of
neighbors. As shown in Fig. 5A, scVAEIT achieved consistently
better performance on different cell types in terms of Pearson
correlation, Spearman correlation, and RMSE. The overall better
performance across the three different multimodal datasets also
indicated that scVAEIT learns to infer protein counts based
on gene expressions (CITE-seq), chromatin accessibility (ASAP-
seq), or both (DOGMA-seq).

Next, we refitted both models using all cell types and visualized
the cell embeddings in Fig. 5B. We also compared with matrix
the factorization method UINMF (13) (SI Appendix, Fig. S5A).
We performed Uniform Manifold Approximation and Projection
for Dimension Reduction (UMAP) (21) directly on the learned
latent variables for scVAEIT, while a similar UMAP visualization
based on the trimodal WNN graph was also shown for Seurat.
SI Appendix, Fig. S6A shows the same embeddings colored by
annotated cell types obtained from the original paper (3). The
majority of the CD4 T and the CD8 T cells, as identified in the
original paper, reside in the upper right half and the lower right
half of each cluster in Fig. 5B, respectively. Because a portion of
the cells in all datasets was stimulated with anti-CD3/CD28, the
stimulation-dependent changes within T cells can be observed.
More specifically, the activated CD4 T and CD8 T cells clusters
(clusters 5 and 16 in figure 5G of the original paper (3)) can be
easily recognized in scVAEIT’s embeddings. On the other hand,
integration based on Harmony and Seurat’s WNN removed not
only specific batch effects but also meaningful biological signals:
notably, it is not easy to identify stimulated T cells from Seurat’s
embeddings; UINMF failed to adjust for batch effects correctly.
By contrast, scVAEIT retained meaningful biological differences
when adjusting for the effect of experimental conditions. When
we visualized the source of datasets, we observed that scVAEIT
merges cells from different datasets more evenly than Seurat.
In scVAEIT’s embeddings, the cells from different datasets
were aligned based on the expression of features; hence, they
were not entirely mixed because of the differences in expression
distribution from different techniques. If the researchers assure
that such an effect should be eliminated, one can further apply

batch effect correction methods such as FastMNN (22) on the
latent variables and map all cells to the same source.

The dynamic changes in CD3, CD279, and CD69 protein
abundances of control and stimulated cells were also examined in
Fig. 5C and SI Appendix, Figs. S5B and S6 B and C. CD3 protein
is highly expressed (green) in the CD4 T cell type (the top right
cluster) and the CD8 T cell type (the bottom right cluster) in the
absence of stimulation, while the differences between cell types
become smaller in the stimulated cells, as expected. In the major
CD4 T cell type, we noticed that the expression level of control
cells gradually varied in scVAEIT’s embeddings while it remained
almost the same in Seurat’s embeddings. Similar results can also
be observed for CD279 and CD69 proteins (SI Appendix, Fig. S6
B and C), which have different expression patterns in the control
and the stimulated cells. Furthermore, scVAEIT also provided
a convenient way to visualize both denoised and imputed gene
expressions, especially when a gene is only measured in some
of the datasets (SI Appendix, Fig. S7). For example, the CD3E
gene is only available in the CITE-seq dataset (SI Appendix, Fig.
S7A), while the CD69 gene is only available in the DOGMA-seq
and CITE-seq datasets (SI Appendix, Fig. S7B). The denoised
and imputed expressions can then be used to test and identify
differential features on the integrated dataset (SI Appendix, Fig.
S10). Furthermore, this procedure can be naturally generalized
for differential expression testing between case and control groups
by applying the Bayesian inference framework (23, 24).

Discussion

scVAEIT is a highly adaptable procedure, designed for multiple
integration tasks, including joint representations (intermediate
integration 1), and transfer learning and imputation on new
datasets (late integration 1). First, scVAEIT utilizes information
from shared and unshared features of different modalities, such
as genes, proteins, and chromatin accessibility, to build an
integrative probabilistic model for intermediate integration. The
proposed model learns complex nonlinear relationships between
modalities, enables a common latent representation of different
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A

B C

Fig. 5. Integration of DOGMA-seq, CITE-seq, and ASAP-seq PBMC datasets. (A) Performance of protein imputation after two-phase integration with held-out
cell types of three multimodal datasets. The two smallest cell types of the three datasets - DC and Mono - contain too few cells for Seurat’s integration method
to find multimodal nearest neighbors, even with a reduced number of multimodal neighbors. (B) Joint embeddings of the three multimodal datasets after
intermediate integration. Seurat’s WNN with Harmony overcorrects the experimental condition effect, eliminating the difference between the stimulated and
control T cells. (C) Log-normalized expressions of CD3 protein in the control cells (first column) and the stimulated cells (second column) on scVAEIT’s and
Seurat’s embeddings. Purple and yellow dots correspond to lowly and highly expressed cells, respectively.

modalities for each cell, and can accurately impute the missing
quantities. Second, after training on some data source, scVAEIT
readily transfers its knowledge to a new data source, even
when the new dataset only contains partial measurements of
features or modalities of the training data, enabling robust cross-
modality translation. Third, scVAEIT is flexible in incorporating
different types of covariates and adjusting for batch effects
when combining single-cell datasets from various experiments,
tissues, and technologies. Surprisingly, even including single-
modal datasets can help with multimodal learning for scVAEIT,
as revealed in SI Appendix, Fig. S9. Compared to other deep
generative models, the success of scVAEIT relies on the masking
procedure that helps the model predict a certain portion of
features in a supervised manner. This not only makes great usage
of mosaic-type datasets but also serves a role of regularization.

The success of deep generative models (9, 10, 20) on single-
cell multimodal data analysis enables expressive and scalable
probabilistic representations of cells. Such models can harness
the strengths of each modality by combining multiple cellular
views in an end-to-end pipeline. The deep neural networks are
adequate to describe complex and heterogeneous relationships
between cells and modalities, and the probabilistic modeling
provides interpretability with uncertainty quantification. Despite
these promising results, the deep generative models can suffer
from model misspecification issues when facing mosaic datasets.
This happens when a model is used to perform intermediate

integration on multiple multimodal datasets with different
missing measurements or during late integration when a learned
model is applied to transfer knowledge to new datasets that
measure different panels of features from the training dataset. In
experimental results, when the degree of model misspecification
increases, the accuracy and stability of other deep generative
models can be hugely impacted, and their performance can
be inferior to nearest neighbor methods if the information of
missingness is not taken into consideration.

During the training process of scVAEIT, the masking pro-
cedure plays a vital role in learning conditional distributions
under arbitrary missing patterns. The supervised nature and
regularization effect of the masking procedure produce more
robust model constructions when learning from mosaic datasets
and transferring knowledge to new datasets. There is still
flexibility in choosing masks for training. For example, we can
incorporate specific structural missing patterns to generate the
masks with prior information on the predictable relationship
between features. It will be valuable when we try to efficiently
and systematically integrate more and more modalities.

Materials and Methods

Datasets Preprocessing. SI Appendix, Table S1 summarizes the information of
the preprocessed datasets. For the CITE-seq PBMC dataset (8), we first identified
the top 5,000 variable genes and then filtered out genes and proteins expressed
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in less than 500 cells. The filtered dataset consists of 161,764 cells with 4,686
genes and 227 proteins. For the CITE-seq CBMC dataset (25), we first filtered cells
that have less than 200 genes and then filtered out genes that are expressed in
less than 10 cells. The filtered dataset consists of 7,891 cells with 3,464 genes
and 10 proteins that are shared in the CITE-seq PBMC dataset. For the REAP-seq
PBMC dataset (26), we first filtered cells with less than 200 genes or more than or
equal to 5% mitochondrial counts and then filtered out genes expressed in less
than 500 cells. The filtered dataset consists of 7,092 cells with 3,864 genes and
38 proteins shared in the CITE-seq PBMC dataset. For genes and proteins in the
DOGMA-seq PBMC dataset, we applied the same procedure as above, resulting
in 2,166 genes and 208 proteins. For chromatin accessibility, we retained the
75% variable peaks and filtered out peaks that appear in less than 500 cells or
are on sex chromosomes, leaving 26,765 peaks. The CITE-seq PBMC and the
ASAP-seq PBMC datasets from Mimitou et al. (3) are filtered analogously.

After the low-quality cells and features were filtered, we size-normalized the
gene and protein counts separately, such that each cell’s counts sum to 10,000
counts per cell. Then we log-transformed the size-normalized counts. For peaks,
webinarizedthembyreplacingallnonzerovalueswithavalueof1.Preprocessing
external single-cell expression datasets with different measurements for transfer
learning and model evaluation required computing the median size factor for
observed measurements from the training set and performing log-normalization
afterward.

ProbabilisticModeling ofMultimodalDatasets. Inspired by recent advance-
ment on conditional variational inference (18, 27, 28) in the machine learning
community, we aim to model the missing features and missing modalities
problem altogether as a conditional probability estimation problem. Considerm
modalities measured in the single cells. For each cell, we denote its measurement
by X = (X1, . . . , Xm) ∈ Rd where Xi ∈ Rdi are samples of ith modality with
d = d1 + · · · + dm. We introduce a binary mask M ∈ {0, 1}d for X and its
bitwise complement Mc , such that the jth entry of the observed sample XMc is
Xj ifMj = 1 and 0 otherwise. Then, XM is defined to be X − XMc . The authentic
missing pattern Ma represents which components of X are actually missing,
while the distribution of M can be arbitrary during training. For example, if
we want to model missing completely at random, the entries of M could be
independent Bernoulli random variable. Furthermore, we can incorporate extra
structural information to model the situation of missing modality. To model the
conditional distribution of the observed modalities given the missing values or
modalities, we consider the following maximum likelihood problem:

max
θ

EX,M log pθ (XM | XMc , M).

In other words, we aim to determine the conditional distribution ofXM givenXMc

and M. Since there are totally 2d missing patterns, we can learn 2d conditional
distributions of XM|XMc , M separately, each of them is a function: XMc 7→ XM
for a given M. However, this is computationally infeasible. Instead, we jointly
model all conditional distributions by using a single neural network. Since
neural networks are universal approximators (28, 29), a neural network can well
approximate arbitrarily complex function: (XMc , M) 7→ XM when it has enough
capacity and non-polynomial activation functions. Therefore, we expect that a
single neural probabilistic model can approximate all conditional distributions
of unobserved features conditioned on any subset of observed features.

Since the above condition density itself is hard to formulate and optimize, we
follow the variational Bayesian approach (30) to maximize the negative evidence
lower bound (ELBO) instead:

log pθ (XM | XMc , M) ≥ Eqψ (Z|X,M) log pθ2(XM | Z, XMc , M)︸ ︷︷ ︸
Limpute

−KL(qψ (Z | X, M)‖pθ1(Z | XMc , M)) := LM, [1]

where Z ∈ Rm is a latent variable with approximate posterior distribution qψ ,
KL denotes the Kullback–Leibler divergence, and θ = (θ1, θ2). We specify the
distributions for data as follows.

In this paper, we consider trimodal analysis that includes gene expressions,
protein abundances and chromatin accessibility, though the method is readily
appliedformoregeneral settings.Thegene counts for thenthcellarerepresented
by a G-dimensional vector Xrna

n = (Xrna
ng )g∈[G] such that Xrna

ng is the observed
RNA count of gene g in cell n. Likewise, an A-dimensional protein counts vector
Xadt
n = (Xadt

ng )a∈[A] denotes the observed protein counts and an P-dimensional

binary vector Xatac
n = (Xatac

np )p∈[P] representing the occurrence of peaks for cell
n. Let Zn ∈ Rm and Mn be the associated joint latent variable and mask for
cell n.

Under the target distribution pθ1 , we assume that the latent variables are
normally distributed:

Zn | XnMc
n
, Mn ∼N (µθ1 , diag(σ 2

θ1 ,1
, . . . , σ 2

θ1 ,m)). [2]

Ideally, we want Zn generated from pθ1 to be as close as possible to the one
generated from the the proposal distribution qψ when Xn is fully observed
except for its authentic missing entries:

Zn | XnMc
a
, Ma ∼N (µψ , diag(σ 2

ψ ,1, . . . , σ
2
ψ ,m)). [3]

This formulation also allows us to compute the KL divergence analytically in
the ELBO Eq. 1, while it is possible to extend to normal mixtures to model
more complex latent structures (19). In our implementation, we simply set
qψ (Z | XMc

a
, Ma) = pθ1(Z | XMc , M) to reduce computational complexity.

Finally, qψ and pθ2 are modeled as two fully-factorized Gaussian distributions,
whose mean and variance are estimated by two neural networks respectively.
The generative distribution pθ1 are also assumed to be fully-factorized for XM
given Z, XMc and M. We use negative binomial (NB) distribution to model the
gene expression and the protein abundance. We assume that the counts are
generated based on Zn as follow

Xrna
ng | Zn, Mn ∼ NB(λrna

ng , θ
rna
g ), [4]

Xadt
na | Zn, Mn ∼ NB(λadt

na , θ
adt
a ), [5]

Xatac
np | Zn, Mn ∼ Bernoulli(µatac

np ), [6]

which are independent of M given Zn. Here the parameters λrna
ng and θ rna

g are
the expected total count and the inverse dispersion of the negative binomial
distribution, and the parameters λadt

ng and θadt
g are defined analogously for

protein counts. For each peak,µatac
np represents its posterior mean. The posterior

expectations λrna
ng , λadt

na , and µatac
np are outputted by the decoder, while the

dispersion parameters are treated as trainable variables. These parameters are
learned from the data.

The aforementioned probabilistic modeling Eq. 1 emphasizes missing
features and modalities imputation. On the other hand, we not only want
to impute the unobserved quantities, but also want to denoise the observed
quantities. Therefore, we also attempt to maximize the reconstruction likelihood

Lrec := Epθ2 (Z | XMc ,M) log pθ1(XMc | Z, M). [7]

Network Architecture. scVAEIT is implemented using the Tensorflow (31)
(version 2.4.1) Python library. scVAEIT consists of three main branches, the mask
encoder, the main encoder and the main decoder. For each cell n, a missing
mask Mn is embeded as En to a short dense vector through the mask encoder,
which greatly reduces the input dimension to the main encoder and decoder.
Then, the encoder takes data Xn (log-normalized gene and protein counts, and
binary peaks), a mask embedding vectorEn and (optional) covariatesCn as input,
and output the estimated posterior mean and variance of the distribution of the
latent variable Zn. Next, a realization is draw from this posterior distribution and
fed to the decoder along with the mask embedding vector En and the covariates
Cn. The decoder finally outputs the posterior mean of X.

We use subconnections at the first layer of the encoder and the last layer of
the decoder. In each of these layer, there are 256 and 128 units for genes and
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proteins respectively, and 16 units for peaks in each chromosome. The weights
are isolated between different blocks. The mask encoder outputs 32-dim, 16-
dim, and 2-dim vectors for genes, proteins, and peaks in each chromosome.
Besides these special layers, we also have one fully-connected hidden layer of
256 units in the encoder and the decoder, with LeakyReLU activation functions.

Model Training. scVAEIT is trained in an end-to-end manner. The objective
function is a convex combination of the ELBO Eq. 1 and the reconstruction
likelihood Eq. 7:

L := βLM + (1− β)Lrecon,

where β ∈ [0, 1] is a hyperparameter set to be 0.5 for all experiments. That
is, the parameters are optimized by Monte Carlo sampling to maximize the
weighted average of the reconstruction likelihood and the imputation likelihood,
while minimizing the KL divergence between masked posterior latent variable
Z | XMc , M and the authentic posterior latent variable Z | XMc

a
, Ma. During

training, with equal probability we observe the original data and the masked
data. The mask is repeatedly randomly generated for each cell at the beginning
of every gradient update step in each epoch during the optimization process,
such that each modality is observed with equal probability, and each entry
is further randomly masked out with probability 0.2. The sensitivity analysis
on the masking probability is also included in SI Appendix, Fig. S8. To
balance the magnitudes of different modalities, we calculated the weighted
likelihood using weights (wrna, wadt) = (0.15, 0.85) for bimodal datasets
and (wrna, wadt, watac) = (0.14, 0.85, 0.01). The default variable initializer
in Tensorflow is used, sampling weight matrix from a uniform distribution and
setting bias vectors to be zero. We train our model for 300 epochs using the
AdamW optimizer (32), a variant of the stochastic gradient descent algorithm,
with a batch size of 512, a learning rate of 10−3, and a weight decay of 10−4.
We also use batch normalization to aid in training stability. Because we use
mini-batches for training, scVAEIT’s memory usage does not effected by the
number of cells. Instead, it is only related to in the number of features in the
dataset and number of neural network parameters.

Benchmarking Methods. We compare scVAEIT with Seurat (8), totalVI (9), and
MultiVI (10). Seurat v4’s WNN is used to perform intermediate integration and
multimodal anchor-based transfer-learning method is used to perform transfer
learning to new datasets. Standard preprocessing procedures in Seurat are used
for evaluating Seurat’s results. More specifically, RNA counts are normalized
by LogNormalization method and protein counts are normalized by centered
log-ratio (CLR) method. When evaluating Seurat’s protein imputation result, we
revert the CLR normalized imputed counts and perform log-normalization. The
log-normalized gene counts and size-normalized protein counts are provided as
input to totalVI; the log-normalized gene counts and binary peaks are provided
as input to MultiVI. For stimulation effect correction, we use Harmony (6)’s
corrected dimension reductions for running Seurat’s WNN, and provide an
indicator variable as a covariate to totalVI and MultiVI. For running Harmony
and 3-WNN integration on DOGMA-seq datasets, we use the script provided
in the original paper (3) ( https://github.com/caleblareau/asap_reproducibility/
blob/master/pbmc_stim_multiome/code/11_setup.R). For running UINMF (13)
(version 1.1.0) on the three multimodal datasets, we first split each dataset
into two based on stimulation conditions. Then each of the six datasets are
preprocessed with functions normalize and scaleNotCenter according
to their tutorials. After that, the shared features and unshared features of
the six datasets are separated and supplied to function optimizeALS,
where the parameters are chosen by examining the results of functions
suggestK and suggestLambda. The imputed values are obtained with
function imputeKNN. For running totalVI and MultiVI, we set the latent
dimension as 32, early_stopping_patience as 15 and leaving all other
hyperparameters as default. All code required to reproduce our reported results,
including data preprocessing and model training, have been deposited on
GitHub (https://github.com/jaydu1/scVAEIT).

EvaluationMetric. We use multiple evaluation metrics for comparing different
methods on imputing gene counts, protein counts and peaks. As the log-
normalized gene and protein expressions are treated as continuous, we use
Pearson correlation and Spearman correlation to evaluate their imputation
quality. For n observations (x1, . . . , xn) and their prediction/imputation values
(y1, . . . , yn), the correlation metrics are defined as

rp =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
,

rs = 1−
6
∑

d2
i

n(n2 − 1)
,

where x and y are the mean of xi ’s and yi ’s respectively, and di = rank(xi) −
rank(yi) is the difference between the two ranks of each observation. The
imputation error is also quantified by the RMSE,

RMSE(x, y) =

√√√√ 1
n

n∑
i=1

(xi − yi)2.

For chromatin accessibility, the peaks are binarized while the imputed values are
continuous in [0, 1]. Thus we use area under the receiver operating characteristic
(AUROC), binary cross entropy (BCE) and RMSE to evaluate imputation accuracy
of binary peaks. The AUROC metric takes value between 0 and 1, which is
commonly used in statistics and machine learning community. A larger value of
AUROC indicates that the binary outcome is easier to predict based on imputed
value at various threshold settings. The BCE metric

BCE(x, y) = −
1
n

n∑
i=1

(xi log yi + (1− xi) log(1− yi)),

is equivalent to the negative log-likelihood of Bernoulli variables. Thus a smaller
value of BCE means a better fit of statistical models. For each evaluation metric,
we effectively consider each gene, protein, or peak in each cell a separate
observation.

Data, Materials, and Software Availability. All datasets used in this paper
are previously published and freely available. For bimodal datasets integration,
CITE-seq PBMC cells from Hao et al. (8) are in the GEO database under
accession code GSE164378 and a Seurat object containing filtered cells is
also provided in their tutorial https://satijalab.org/seurat/articles/multimodal_
reference_mapping.html; the CITE-seq CBMC cells from Stoeckius et al. (25)
are in the GEO database under accession code GSE100866 and a Seurat
object containing these cells is also available as ‘bmcite’ in the SeuratData
(v0.2.1) package; the REAP-seq PBMC cells from Peterson et al. (26) are in
the GEO database under accession code GSE100501. For trimodel datasets
integration, the DOGMA-seq, CITE-seq, and ASAP-seq PBMC cells from Mimitou
et al. (3) are in the GEO database under accession code GSE156478, and
the intermediate result files are retrieved from their Github repository https:
//github.com/caleblareau/asap_reproducibility. The Python package of scVAEIT
is publicly available at https://github.com/jaydu1/scVAEIT with MIT license.
Python and R scripts for reproducing all results in this paper are also provided
in the same repository.

ACKNOWLEDGMENTS. We thank the referees for helpful suggestions. This work
used Bridges-2 system at the Pittsburgh Supercomputing Center (PSC) through
allocations MTH210011 and BIO220140 from the Advanced Cyberinfrastructure
Coordination Ecosystem: Services & Support (ACCESS) program, which of the
former is supported by NSF grants OAC-1928147. This project was funded by
National Institute of Mental Health (NIMH) grant R01MH123184.

Author affiliations: aDepartment of Statistics and Data Science, Carnegie Mellon University,
Pittsburgh, PA 15213; bDepartment of Statistics, Iowa State University, Ames, IA 50011; and
cComputational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213

PNAS 2022 Vol. 119 No. 49 e2214414119 https://doi.org/10.1073/pnas.2214414119 9 of 10

https://www.pnas.org/lookup/doi/10.1073/pnas.2214414119#supplementary-materials
https://github.com/caleblareau/asap_reproducibility/blob/master/pbmc_stim_multiome/code/11_setup.R
https://github.com/caleblareau/asap_reproducibility/blob/master/pbmc_stim_multiome/code/11_setup.R
https://github.com/jaydu1/scVAEIT
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164378
https://satijalab.org/seurat/articles/multimodal_reference_mapping.html
https://satijalab.org/seurat/articles/multimodal_reference_mapping.html
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100866
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100501
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156478
https://github.com/caleblareau/asap_reproducibility
https://github.com/caleblareau/asap_reproducibility
https://github.com/jaydu1/scVAEIT


1. Z. Miao, B. D. Humphreys, A. P. McMahon, J. Kim, Multi-omics integration in the age of million
single-cell data. Nat. Rev. Nephrol. 17, 710–724 (2021).

2. E. Swanson et al., Simultaneous trimodal single-cell measurement of transcripts, epitopes, and
chromatin accessibility using TEA-seq. eLife 10 (2021).

3. E. P. Mimitou et al., Scalable, multimodal profiling of chromatin accessibility, gene expression and
protein levels in single cells. Nat. Biotechnol. 39, 1246–1258 (2021).

4. R. Argelaguet, A. S. Cuomo, O. Stegle, J. C. Marioni, Computational principles and challenges in
single-cell data integration. Nat. Biotechnol. 39, 1202–1215 (2021).

5. T. Stuart et al., Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).
6. I. Korsunsky et al., Fast, sensitive and accurate integration of single-cell data with harmony. Nat.

Methods 16, 1289–1296 (2019).
7. T. Stuart, R. Satija, Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).
8. Y. Hao et al., Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).
9. A. Gayoso et al., Joint probabilistic modeling of single-cell multi-omic data with totalvi. Nat.

Methods 18, 272–282 (2021).
10. T. Ashuach, M. I. Gabitto, M. I. Jordan, N. Yosef, Multivi: Deep generative model for the integration

of multi-modal data. bioRxiv (2021).
11. J. Wang et al., Data denoising with transfer learning in single-cell transcriptomics. Nat. Methods

16, 875–878 (2019).
12. Z. Zhou, C. Ye, J. Wang, R. Zhang, Surface protein imputation from single cell transcriptomes by

deep neural networks. Nat. Commun. 11, 1–10 (2020).
13. A. R. Kriebel, J. D. Welch, UINMF performs mosaic integration of single-cell multi-omic datasets

using nonnegative matrix factorization. Nat. Commun. 13, 1–17 (2022).
14. S. Ghazanfar, C. Guibentif, J. C. Marioni, Stabmap: Mosaic single cell data integration using

non-overlapping features. bioRxiv (2022).
15. H. T. N. Tran et al., A benchmark of batch-effect correction methods for single-cell RNA sequencing

data. Genome Biol. 21, 1–32 (2020).
16. M. D. Luecken et al., Benchmarking atlas-level data integration in single-cell genomics. Nat.

Methods 19, 41–50 (2022).
17. S. K. Chu, S. Zhao, Y. Shyr, Q. Liu, Comprehensive evaluation of noise reduction methods for

single-cell RNA sequencing data. Brief. Bioinform. 23, bbab565 (2022).

18. D. P. Kingma, M. Welling, “Auto-encoding variational Bayes” in 2nd International Conference on
Learning Representations, Y. Bengio, Y. LeCun, Eds. (2014).

19. J. H. Du, M. Gao, J. Wang, Model-based trajectory inference for single-cell RNA sequencing using
deep learning with a mixture prior. bioRxiv (2020).

20. K. E. Wu, K. E. Yost, H. Y. Chang, J. Zou, Babel enables cross-modality translation between
multiomic profiles at single-cell resolution. Proc. Natl. Acad. Sci. U.S.A. 118 (2021).

21. L. McInnes, J. Healy, N. Saul, L. Großberger, Umap: Uniform manifold approximation and
projection. J. Open Source Soft. 3, 861 (2018).

22. L. Haghverdi, A. T. Lun, M. D. Morgan, J. C. Marioni, Batch effects in single-cell RNA-sequencing
data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427
(2018).

23. R. Lopez, P. Boyeau, N. Yosef, M. Jordan, J. Regier, Decision-making with auto-encoding
variational Bayes. Adv. Neural Inform. Proc. Syst. 33, 5081–5092 (2020).

24. P. Boyeau et al., An empirical Bayes method for differential expression analysis of single cells with
deep generative models. bioRxiv (2022).

25. M. Stoeckius et al., Simultaneous epitope and transcriptome measurement in single cells. Nat.
Methods 14, 865–868 (2017).

26. V. M. Peterson et al., Multiplexed quantification of proteins and transcripts in single cells. Nat.
Biotechnol. 35, 936–939 (2017).

27. K. Sohn, H. Lee, X. Yan. “Learning Structured Output Representation using Deep Conditional
Generative Models." NIPS (2015).

28. O. Ivanov, M. Figurnov, D. Vetrov, “Variational autoencoder with arbitrary conditioning” in
International Conference on Learning Representations (2018).

29. K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal
approximators. Neural Netw. 2, 359–366 (1989).

30. D. M. Blei, A. Kucukelbir, J. D. McAuliffe, Variational inference: A review for statisticians. J. Am.
Stat. Assoc. 112, 859–877 (2017).

31. M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems (2015).
Software available from tensorflow.org.

32. I. Loshchilov, F. Hutter, “Decoupled weight decay regularization” in International Conference on
Learning Representations (2017).

10 of 10 https://doi.org/10.1073/pnas.2214414119 pnas.org


