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Programmed �1 ribosomal frameshifting (�1 PRF) is a translation mechanism that regulates the relative
expression level of two proteins encoded on the same messenger RNA (mRNA). This regulation is com-
monly used by viruses such as coronaviruses and retroviruses but rarely by host human cells, and for this
reason, it has long been considered as a therapeutic target for antiviral drug development. Understanding
the molecular mechanism of �1 PRF is one step toward this goal. Minus-one PRF occurs with a certain
efficiency when translating ribosomes encounter the specialized mRNA signal consisting of the
frameshifting site and a downstream stimulatory structure, which impedes translocation of the ribosome.
The impeded ribosome can still undergo profound conformational changes to proceed with translocation;
however, some of these changes may be unique and essential to frameshifting. In addition, most stimu-
latory structures exhibit conformational dynamics and sufficient mechanical strength, which, when
under the action of ribosomes, may in turn further promote �1 PRF efficiency. In this review, we discuss
how the dynamic features of ribosomes and mRNA stimulatory structures may influence the occurrence
of �1 PRF and propose a hypothetical frameshifting model that recapitulates the role of conformational
dynamics.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Protein synthesis in cells is catalyzed by ribosomes. The
ribosome and bound transfer RNA (tRNA) read and translate trinu-
cleotide codons from messenger RNA (mRNA) into the correspond-
ing amino acid sequences [1]. The mRNA reading frame is followed
strictly during translation, but errors can still occur when the ribo-
some shifts one nucleotide in a codon toward the 50 or 30 end of
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mRNA, resulting in �1 or +1 frameshifting, respectively. Sponta-
neous ribosomal frameshifting occurs at a frequency of <10�5

(see [2]). Proteins synthesized by this process may not be func-
tional because the produced amino acid sequence after the shifted
codon differs from the native sequence. However, the ability of
ribosomal frameshifting can be used to specifically modulate the
expression of two proteins from the same mRNA [2–7]. This mod-
ulation is called programmed �1 (or +1) ribosomal frameshifting
(�1 or +1 PRF).

Utilization of +1 PRF is found in viruses [6] and specific cellular
genes from some species [8,9]. In general, not many organisms
employ +1 PRF in translation regulation, but the ciliate Euplotes
is an exception [10,11]. A genome-wide study has identified
3,700 putative +1 PRF genes (more than 10% of the transcriptome)
in Euplotes octocarinatus [9]. A common feature shared by most of
the +1 PRF signals is that the frameshift site is followed by a stop
codon or a rare/hungry codon (decoded by low abundance tRNAs).
Nevertheless, the stimulating mechanisms of +1 frameshifting are
rather diverse [4].

In contrast to +1 PRF, �1 PRF is widely spread in a variety of
viruses [6]. Most �1 PRF occurs on a heptanucleotide slippery
sequence with a pattern of X XXY YYZ (where XXX and YYY repre-
sent three identical nucleotides, and codons are separated by
spaces) [6,12]. This pattern allows for a diverse selection of codons
in the slippery sequence and minimizes the difference between
codons after the shift to the �1 frame (XXX YYY Z). In fact, the free
energy difference of the codon-anticodon base-pairing between
these two frames can quantitatively determine frameshifting effi-
ciency [13]. Several factors are known to stimulate �1 frameshift-
ing, including a hungry codon at the YYZ position [14–17], mutant
elongation factor G (EF-G) that retards translocation [18], and the
cotranslational folding of nascent protein found in the Sindbis
virus [19]. Importantly, the more general stimulator found in many
�1 PRF signals is a structure (such as a hairpin or a pseudoknot) 5–
9 nucleotides downstream of the slippery sequence [3,6,20] (see
Fig. 1). The frameshifting signal (a slippery sequence with a stimu-
latory structure) from the human immunodeficiency virus type 1
(HIV-1; Fig. 1) can cause frameshifting in Escherichia coli (E. coli)
cells [21] and cell-free lysates [22], and the signal from severe
acute respiratory syndrome-associated coronavirus (SARS-CoV)
can cause frameshifting in several eukaryotic translation systems
with varying degrees of efficiency [23]. These studies suggest that
the primary determinant of frameshifting is the cis-acting elements
of mRNA and that efficiency is determined in part by architectural
differences in ribosomes.

An increasing body of evidence has shown that in addition to
structural stability, the conformational dynamics of an mRNA
Fig. 1. The �1 PRF signal from HIV-1. This signal consists of a slippery sequence
(underlined), a stimulatory hairpin, and an 8-nucleotide spacer in between.
Schematic presentation of the ribosome indicates relative positions between
functional sites of the ribosome and mRNA during �1 PRF.
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structure play a key role in the stimulatory effects on ribosomal
frameshifting [24–33]. In addition, ribosomes and tRNA also
undergo profound conformational changes during translocation
[34,35], though how their structures are involved in�1 PRF remain
unclear. Nevertheless, novel structures of ribosomes are visualized
by cryogenic electron microscopy (cryo-EM) when translation is
stalled by other regulatory signals [36,37], and resolution-
exchanged molecular dynamics (MD) simulations have also
revealed that similar ribosomal conformations may play a role in
�1 PRF [38].

Herein, we review recent advances in the study of �1 PRF and
discuss its underlying molecular mechanisms from the perspective
of the conformational dynamics of ribosomes and stimulatory
structures of mRNA.
2. Choreography of ribosomal motions during translation
elongation and regulation

Minus-one PRF occurs during the elongation stage of transla-
tion, when the ribosome’s P (peptidyl) and A (aminoacyl) sites
are localized at the slippery sequence and the mRNA entrance site
encounters a downstream stimulatory structure (Fig. 1). This stage
comprises cycles of aminoacyl-tRNA (aa-tRNA) selection, peptide
bond formation, and translocation (Fig. 2A). Selection of the aa-
tRNA for the A-site codon is conducted through binding of the
aa-tRNA�EF-Tu�GTP ternary complex to the ribosome; EF-Tu is an
elongation factor in bacteria, and GTP is guanosine triphosphate
(step 1, Fig. 2A; please refer to this figure for other steps described
in this paragraph). This process involves kinetic proofreading
mechanisms with highly coordinated conformational rearrange-
ments of the ribosome and tRNA [39,40]. After hydrolysis of GTP
into guanosine diphosphate (GDP) and dissociation of EF-Tu�GDP,
the aa-tRNA is accommodated into the A site (step 2), followed
by transfer of the polypeptide from the P- to the A-site tRNAs (step
3). Then, the small (30S in prokaryotes and 40S in eukaryotes) ribo-
somal subunit rotates counterclockwise with respect to the large
(50S in prokaryotes and 60S in eukaryotes) subunit by 4–12� (step
4) (Fig. 2B) [41,42]. The rotated state of the ribosome allows the 30

acceptor ends of the tRNAs in the A and P sites to move into the P
and E (exit) sites in the 50S subunit, respectively, whereas the anti-
codon stem-loops remain bound at the A and P sites in the 30S sub-
unit, respectively. These tRNAs in the hybrid configurations are
called A/P and P/E states [43]. To continue tRNA translocation,
EF-G�GTP binds to the rotated/pre-translocation ribosome (step
5) [44,45]. After hydrolysis of GTP, while the body domain of the
30S subunit rotates backward, the head domain of the 30S subunit
swivels counterclockwise with respect to the body domain by 18–
21� (step 6) (Fig. 2C) [46,47], widening the steric gap between adja-
cent tRNA-binding sites [48,49]. Finally, both tRNAs are positioned
in the classical P/P and E/E states when the 30S subunit revert to
the non-rotated/post-translocation states (step 7) [50–52], fol-
lowed by release of the E-site tRNA (step 8) [46,53].

In addition to regular translation, structural study of ribosomes
has also focused on stalled states with �1 PRF stimulatory struc-
tures, such as the pseudoknots derived from the infectious bron-
chitis virus (IBV) [54,55], human telomerase RNA [38], and SARS-
CoV-2 [56], as well as the hairpin from HIV-1 [57]. An early study
on cryo-EM revealed that the A/P-tRNA was distorted in IBV
pseudoknot-stalled ribosomes [54,55]; these results were recently
recapitulated in our coarse-grained simulation study [38]. We
reasoned that the tension built up during the structural unfolding
process induced 30S subunit rolling (Fig. 2D), distorted tRNAs, and
prompted tRNA slippage [38]. Although ribosomal rolling by
�1 PRF stimulators has not been directly visualized in structural
studies, it has been found in other translational regulations,



Fig. 2. Conformational changes of the bacterial ribosome during translation elongation. (A) Cycle of elongation. For clarity, only the aa-tRNA (red; instead of the ternary
complex) is shown in step 1, and the swiveling of the 30S head is not shown in steps 5–7. See the text for details. (B) 30S subunit rotation during translocation. Calculated by
superimposing the 50S subunit (not shown). (C) 30S head rotation (swiveling). Calculated by superimposing the 30S body. Rotational axes are calculated by pseudo-angular
momentum, and the non-rotated and rotated states of the ribosome are modeled as described [38]. (D) 30S subunit rolling during pseudoknot-induced �1 PRF [38]. The 50S
subunit (not shown) is superimposed. The rolling axis lies approximately along helix 44 (green ribbon). (B)–(D) are viewed from the solvent side. (E) mRNA entrance site of
the 30S subunit (PDB ID: 6BY1) [67]. uS3 is on the 30S head, while uS4 and uS5 are on the 30S body. R131, R132, and K135 of uS3, as well as K44 and R46 of uS4, are
highlighted in blue. The relative movement of the 30S head and body described in (C) are indicated with black arrows. The codons at positions +13 to +15, +10 to +12, and +7
to +9 are shown in yellow, red, and green ribbons, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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including nascent peptide-induced stalling [36] and translational
bypassing [37], in which the ribosome specifically skips 50 nucleo-
tides of the T4 gene 60 transcript in a highly coordinated manner
3582
[58]. The rolled motion of the ribosomes in translational bypassing
may appear only transiently before ribosomes transition to a
hyper-rotated state [59]. A hyper-rotated state has also been
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inferred from measurements of single-molecule Förster resonance
energy transfer (smFRET) [60,61] in a hairpin-stimulated �1 PRF
system [62], although similar conformation was not observed in
a recent study using the same method [57]. In addition, both the
frameshifting- and bypassing-programmed ribosomes undergo a
long pause in rotated state [63,64] and exhibit multiple rounds
of EF-G binding and GTP hydrolysis [59,63,65,66] (see below).
These similarities suggest that the noncanonical ribosomal confor-
mations may be generally involved in switching the ribosome into
a nonregular yet well-controlled translation mode whereby recod-
ing on the same mRNA can proceed. Further exploration of various
types of ribosomal recoding is required to confirm this.
3. Coupling of ribosomal motions to mRNA structural
unwinding

Because ribosomes translate mRNA in the single-stranded form,
they must overcome obstacles formed on the template, such as
RNA secondary structures [68], microRNA [69], and RNA-binding
proteins [70]. Despite the widespread mRNA structures within
transcriptomes [68], the intrinsic helicase activity of the ribosome
is sufficiently active to translocate through secondary structures
[71–74] by biasing thermal fluctuations toward their open states
and mechanically pulling apart closed junctions of the structure
[71]. Nevertheless, as discussed in the following sections, several
structural features are actively involved in stimulating �1 PRF.

Structural, biochemical, and computational studies have located
potential ribosomal helicase in the positively charged residues that
line up the mRNA entrance site at positions between +11 and +14
(the first nucleotide of mRNA at the P site is denoted by +1), includ-
ing R131, R132, and K135 in ribosomal protein uS3, and K44 and
R46 in uS4 [38,67,73,75,76] (Fig. 2E). A high-resolution X-ray struc-
ture [67] revealed that the residues in uS3 interact with and stabi-
lize the single-stranded form of mRNA at +12 to +14 with a binding
energy of approximately 9 kcal�mol�1 per codon [75]. Because uS3
is at the head and uS4 is at the body of the 30S subunit, uS3 and
uS4 are pulled away from each other when the head rotates during
translocation (Fig. 2E). While uS3 and mRNA move together and
their interaction is relatively unchanged, uS4 slides in the opposite
direction from +12 to +15 (from the red to the yellow regions in
Fig. 2E) [67,75]. This countermovement between the head and
body of the 30S subunit effectively stretches the mRNA tunnel by
one codon. Because the tunnel is too narrow to pass an mRNA
duplex, forward head rotation requires the base pairs (bp) to be
broken at least between +12 to +15 (around the yellow region in
Fig. 2E) [67,75]. Furthermore, simultaneous force and fluorescence
measurements indicate that mRNA hairpin opening occurs after
EF-G binding and during forward rotation of the 30S head domain
[72].

Interestingly, the HIV-1 stimulatory hairpin was found to dock
into the vacant A site and inhibit the aa-tRNA from binding to
the ribosome [57]. Without A-site tRNA, the ribosome can switch
to a slow �1 frameshifting pathway, which is independent of the
downstream stimulator [17]. How the long and stable hairpin
(with an 11-bp stem; see Fig. 1) is accommodated to the A site is
not clear, but before translation can continue, it must be either
unfolded or relocated to the mRNA entrance site, where ribosomal
helicase activity can normally occur.
4. Role of mRNA structural stability in Stimulating �1 PRF

Although ribosomes can translocate through mRNA secondary
structures, the translation rate is inversely correlated to structural
stability [71,74]. A stable structure can trigger the ribosome to
switch to a slower kinetic pathway of translocation [72]. Thus,
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downstream mRNA structures can function as roadblocks imped-
ing the translocation of ribosomes and may stimulate them to shift
backward when localized at a slippery sequence.

Several early studies have used the stimulatory hairpin from
HIV-1 as a model to suggest that the thermodynamic stability of
the whole stimulator is a key determinant for frameshifting effi-
ciency [77,78]. However, a later study showed that by measuring
a series of HIV-1 hairpin variants, only the local stability of the first
3–4 bp of the hairpin were positively correlated with frameshifting
efficiency [79]. Given that the proximal moiety of mRNA structures
closely interacts with the entrance site of the ribosome [75] and
that the ribosome translates one codon and concomitantly
unwinds 3 bp at a time [74], the observed correlation between
the local thermostability of stimulatory hairpins and frameshifting
efficiency is mechanistically reasonable.

The unfolding of mRNA structures by ribosomes involves a
mechanical process [71] in which the input work is generally
greater than the free energy of the structure, especially for fast pro-
cesses [80]. Thus, the mechanical stability of an RNA structure,
rather than its thermostability, is a more relevant target for assess-
ing the capacity to stimulate frameshifting. Optical tweezers
[81,82] are a convenient single-molecule tool for this task because
they impose modulable tension on the two ends of a tethered RNA
molecule to measure its unfolding force (Fig. 3A). Chen et al. [83]
constructed a series of structural variants of the DU177 pseudo-
knot (Fig. 3B), an artificial yet highly efficient frameshifting stimu-
lator derived from the human telomerase RNA [84], and altered the
content of their internal base triples, which are crucial for main-
taining structural stability. They found that the frameshifting effi-
ciency (0%–50%) was positively correlated with the structural
unfolding force [83], reaffirming the value of mechanical stability
in stimulatory structures. Similar correlations have been observed
in other stimulators, including pseudoknot variants derived from
the IBV [85] and the simian retrovirus type 1 (SRV-1) [86], as well
as a series of 32-mer RNA hairpins [87].

The unfolding force measured on optical tweezers is generally
the force required to disrupt the whole RNA structure in one step
and is dependent on the architecture and orientation of the struc-
ture during measurement. For those RNA variants derived from the
same structure (such as DU177 and its mutants), their unfolding
force is likely to reflect the mechanical barrier that translating
ribosomes encounter and thus can more clearly demonstrate a cor-
relation with frameshifting efficiency. However, the correlation
does not necessarily hold when the comparison is among different
stimulatory structures with varying sizes and architectures, espe-
cially for complex RNA pseudoknots [24]. A more relevant assess-
ment of pseudoknot stimulators involves measuring their
unzipping force for the 50 helix (stem S1), which is the first struc-
tural moiety to interact with the translating ribosome and is less
mechanically stable than the whole pseudoknot. Although a direct
measurement of the secondary structural component within an
intact tertiary RNA fold is technically challenging, a bimolecular
design that preserves most of the original intramolecular interac-
tions can provide a convenient assay platform on optical tweezers
for this purpose (Fig. 3C) [88]. With this design, we demonstrated
that stem S1 of the DU177 pseudoknot was involved in the interac-
tion network of the whole structure and that the measured unfold-
ing force of stem S1 could reflect the stability difference of its
corresponding intact pseudoknot [88].
5. Mechanisms of �1 PRF involving conformational dynamics of
mRNA

To identify a general feature that affects �1 PRF among various
stimulatory structures, Woodside and coworkers used optical



Fig. 3. Mechanical unfolding of RNA structures by optical tweezers. (A) One type of optical tweezers. The RNA structure of interest is held between two micron-sized
polystyrene beads by flanking the handles of RNA/DNA hybrids. One bead is placed in an optical trap for manipulation and force measurements. The figure is schematic and
not to scale. (B) DU177 pseudoknot. The structure contains two stems (S1 and S2) and two loops (L1 and L2). Red dotted lines indicate five base triples and one noncanonical
base pair. (C) Bimolecular design to mimic the DU177 pseudoknot. Pseudoknot is split into a hairpin (black) and an oligomer (blue) at the junction of S1 and L2. Expected
direction of pulling force when the structure is placed on optical tweezers is indicated by arrows. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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tweezers to measure nine RNA pseudoknots and found that the
propensity to fold into alternative structures, known as ‘‘conforma-
tional plasticity,” was positively correlated with frameshifting effi-
ciency [24]. Recently, the Shannon entropy was used to
quantitatively define the conformational plasticity and showed a
linear correlation with frameshifting efficiency in a certain force
range [89]. These alternative structures may include partially-
folded intermediates that are trapped during the folding process
and are less stable than the native conformation. Similar results
have also been observed in studies of other frameshifting stimula-
tors, including the HIV-1 hairpin [29] and two complex pseudo-
knots from human CCR5 mRNA [26] and the West Nile virus
(WNV) [32]. Remarkably, the WNV stimulatory structure, which
causes an extremely high frameshifting efficiency (up to 70%)
[27], shows extensive conformational plasticity [32]. The alterna-
tive folding propensity of stimulatory structures has also been
identified in other viruses, such as the turnip crinkle virus [28],
the potato leaf roll virus [30], and the recently identified SARS-
CoV-2 [33,90], through various methods. These results suggest that
conformational plasticity is a common feature for most, if not all,
frameshift-stimulating RNA structures.

How the propensity of folding into alternative structures is
correlated to the frameshift-stimulating potency of an RNA
is a pertinent concern. Several studies on smFRET have revealed
that EF-G-catalyzed translocations slow down when the
ribosome encounters the downstream stimulatory structures
[31,63,65,66,72,91]. During this prolonged translocation period,
EF-G samples the ribosome repeatedly [63,65,66] and the ribosome
undergoes multiple fluctuations between the classical and hybrid
conformational states [91]. These ribosomal fluctuations may per-
turb and even partially unwind the tightly associated RNA struc-
ture. At this stage, it was proposed that the partially unwound
structure can rapidly refold into another conformation having
increased stability, which then imposes an elevated energy barrier
to the ribosome in the late stage of translocation [31]. This is con-
sistent with the finding that frameshifting occurs at a late stage of
translocation [92]. In addition, profound transitions among inter-
mediate structures under mechanical force (mimicking the action
of ribosomes) were found in the highly efficient WNV frameshift-
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ing stimulator, and the most probable force under these intermedi-
ate interchanges fell within the range of 7–13 pN [32]. This force
range is just below the maximum tension (13 pN) that an actively
translating ribosome can generate [93], indicating that the ribo-
some is energetically capable of triggering structural rearrange-
ments of RNA stimulators. Indeed, when the ribosome was
translating along a hairpin-formingmRNA, the local RNA helix con-
tacting the ribosome was observed to undergo cycles of unfolding-
refolding transitions [94]. We recently found that a folding inter-
mediate of the DU177 pseudoknot can be induced to refold when
the first 2 nucleotides at the 50 end of stem S1 were sequestered
by a complementary DNA strand (mimicking the action of ribo-
somes), and then the refolded structure can retrieve the 2 nucleo-
tides to restore the fully-folded conformation [95]. These
observations support the idea that ribosomes can partially unwind
the 50 secondary structure of an RNA stimulator and prompt it to
resample alternative (or the native) structures.

The alternative folding feature is required for an RNA structure
to stimulate �1 PRF efficiently, but is not sufficient on its own. For
example, the study by Chen et al. has demonstrated that alterna-
tive structures are the predominant folding products (greater than
50% of the population) for all 11 variants of the DU177 pseudoknot,
including those with a frameshifting efficiency of approximately
zero [83]. As discussed in previous sections, the ability to form a
mechanically stable structure, especially in the 50 secondary struc-
ture (e.g., the first 3–4 bp of a hairpin or stem S1 of a pseudoknot),
is also required. The following examples offer additional evidence.
By using a short peptide nucleic acid (PNA) [96] to invade stem S1
of the SRV-1 pseudoknot (mimicking ribosomal unwinding), Yang
et al. showed that the PNA invasion was enhanced for the low-
efficiency mutants, in which base triple formation involving stem
S1 was disrupted [97]. Similarly, we found that stem S1 of the
highly efficient DU177 pseudoknot could outcompete an invading
complementary DNA strand, whereas a low-efficiency variant
could not [95]. The study in which researchers used optical tweez-
ers and steered MD simulations suggested that stem S1 stability of
the pseudoknot from the beet western yellow virus affected
frameshifting efficiency [98]. Finally, when an RNA strand was
pulled into an a-hemolysin protein nanopore mimicking the mRNA



Fig. 4. Hypothetical models for conformational changes of the ribosome and mRNA stimulatory structure during �1 PRF. Refolding of the downstream RNA intermediate
structure occurs when the ribosome translocates to (A) the first half of the slippery sequence (step a1) or (B) the second half of the slippery sequence (step b2). The slippery
sequence and the sequence under tension are shown in yellow and red, respectively. The partially-unwound downstream RNA structures before refolding are shown in red.
See the text for details. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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entrance site of the ribosome, vectorial unfolding of pseudoknots
from the 50 to 30 end were able to be measured, and the results
showed that the unzipping of stem S1 was the rate-limiting step
[99,100].

We propose two frameshifting models that can recapitulate the
refolding dynamics of RNA intermediates discussed above (Fig. 4;
also see [95]). In the first model (Fig. 4A), when the ribosome
translocates to the first half of the slippery sequence, the
downstream RNA intermediate structure is partially unwound by
the ribosomal helicase (step a1) and then induced to refold and
retrieve a few nucleotides from the ribosome to form a more stable
conformation (step a2). This creates tension alone the mRNA inside
the ribosome. After accommodation of the next aa-tRNA to the A
site, the ribosome proceeds to the pre-translocation state (step
a3). Minus-one frameshifting can occur at this step (step a4) or
during a later stage progressing to the post-translocation state
(step a5). In the second model (Fig. 4B), the RNA refolding occurs
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at a later step when the ribosome translocates from the first half
of the slippery sequence (step b1) to the second half (step b2, cor-
responding to step 6 in Fig. 2A). The refolded stable structure cre-
ates tension on the mRNA (step b3), and the tension can cause
backward slippage of the two tRNAs (step b4) before the head
and body domains of the 30S subunit revert completely to the
non-rotate state (step b5, corresponding to step 7 in Fig. 2A). In
these two models, the mRNA tension built between the
tRNA-binding sites and the mRNA entrance site is a key determi-
nant of the following frameshifting. We hypothesize that the
downstream RNA refolding accompanied by strand retrieving, as
opposed to a rigid and well-folded structure, is a more effective
way to create the mRNA tension under the action of the ribosome.
Although some features proposed here are hypothetical, they con-
solidate the roles of ribosomal conformations and structural
dynamics of mRNA in frameshifting and thus provides a conve-
nient platform for future testing.
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6. Concluding remarks

In contrast with its prevalence and critical role in viruses, �1
PRF is rare in the human genome [101]. This fact suggests that
�1 PRF is a potential target for drug- or host-factor-based antiviral
therapeutic strategies [102–107]. Annexin A2, a host RNA-binding
protein, can bind the IBV pseudoknot and reduce its frameshifting
efficiency [108]. Recently, Shiftless, the human interferon-
stimulated protein, was identified as a broad-spectrum suppressor
of various endogenous and viral �1 PRF signals [109], including
that of SARS-CoV-2 [110]. Modulating the expression of these pro-
tein factors in infected cells may effectively suppress viral prolifer-
ation with minimal perturbation to the host cell.

Forging a deeper understanding of the molecular mechanism of
�1 PRF will be a positive step torward realizing the goal of antiviral
therapeutics. Although our research has elucidated this matter,
additional insightful investigations based on state-of-the-art tech-
nology are still required. For example, cotemporal force and FRET
detection at the single-molecule level [72,111] may reveal how
the mechanical strength of stimulatory structures perturb translo-
cation of the ribosome. Time-resolved cryo-EM, which can reveal
several states of the ribosome when aa-tRNA is delivered [112],
may help identify various conformations of the stimulatory RNA
structure when interacting with the ribosome. These future inves-
tigations can assist in identifying novel antiviral therapeutic
strategies.
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