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Lima, Peru, 2 Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New

York, United States of America, 3 Department of Obstetrics and Gynecology, University of Rochester Medical

Center, Rochester, New York, United States of America, 4 Department of Public Health, University of

Rochester Medical Center, Rochester, New York, United States of America, 5 Research & Development,

Medical Innovation & Technology, Lima, Perú
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Abstract

Ultrasound imaging is a vital component of high-quality Obstetric care. In rural and under-

resourced communities, the scarcity of ultrasound imaging results in a considerable gap in

the healthcare of pregnant mothers. To increase access to ultrasound in these communities,

we developed a new automated diagnostic framework operated without an experienced

sonographer or interpreting provider for assessment of fetal biometric measurements, fetal

presentation, and placental position. This approach involves the use of a standardized vol-

ume sweep imaging (VSI) protocol based solely on external body landmarks to obtain imag-

ing without an experienced sonographer and application of a deep learning algorithm (U-

Net) for diagnostic assessment without a radiologist. Obstetric VSI ultrasound examinations

were performed in Peru by an ultrasound operator with no previous ultrasound experience

who underwent 8 hours of training on a standard protocol. The U-Net was trained to auto-

matically segment the fetal head and placental location from the VSI ultrasound acquisitions

to subsequently evaluate fetal biometry, fetal presentation, and placental position. In com-

parison to diagnostic interpretation of VSI acquisitions by a specialist, the U-Net model

showed 100% agreement for fetal presentation (Cohen’s κ 1 (p<0.0001)) and 76.7% agree-

ment for placental location (Cohen’s κ 0.59 (p<0.0001)). This corresponded to 100% sensi-

tivity and specificity for fetal presentation and 87.5% sensitivity and 85.7% specificity for

anterior placental location. The method also achieved a low relative error of 5.6% for biparie-

tal diameter and 7.9% for head circumference. Biometry measurements corresponded to

estimated gestational age within 2 weeks of those assigned by standard of care examination

with up to 89% accuracy. This system could be deployed in rural and underserved areas to

provide vital information about a pregnancy without a trained sonographer or interpreting
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provider. The resulting increased access to ultrasound imaging and diagnosis could improve

disparities in healthcare delivery in under-resourced areas.

Introduction

Ultrasound remains a vital component of antenatal care, allowing for evaluation of the fetal

presentation, fetal number, placental location, and fetal biometry [1–3]. However, for millions

in rural and underserved areas, there is limited access to ultrasound imaging, leading to poten-

tially preventable harm from associated pregnancy complications [4–6]. Increased detection of

these pregnancy complications through ultrasound can allow for appropriate referral for deliv-

ery care in more resourced centers with trained providers. We propose that this barrier to

ultrasound access may be overcome in a locally sustainable and resource-conscious way

through the use of standardized scanning protocols combined with artificial intelligence obvi-

ating the need for an interpreting provider and an experienced sonographer. Prior studies

demonstrate that individuals without prior ultrasound training (non-specialists) can obtain

diagnostic imaging for placental position, fetal presentation and number, and amniotic fluid

volume using volume sweep imaging (VSI) [7, 8]. Different fetal and placenta positions and

their significance are illustrated and described in Figs 1 and 2. Measurements of fetal biometry

are also often possible through this approach including evaluation of head circumference

(HC) and biparietal diameter (BPD) (Fig 3).

Fig 1. Fetal positions. Illustration of cephalic and non-cephalic fetal positions. Non-cephalic fetal presentations are

important to identify prior to delivery.

https://doi.org/10.1371/journal.pone.0262107.g001
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VSI is an imaging technique in which an operator sweeps the ultrasound probe over the tar-

get region to obtain a full volumetric acquisition of the target region [7]. Sweeps are standard-

ized and based solely on external body landmarks requiring no significant technical skills or

knowledge of anatomy. Each sweep is saved as a cine clip which is then interpreted by a spe-

cialist. While this approach removes the need for a trained sonographer, a trained medical pro-

vider is still required for interpretation. Building upon this, we sought to test whether artificial

intelligence and deep learning may be a strategy that can additionally eliminate the need for a

trained medical provider for study interpretation, thereby reducing the resource burden of

this technologic innovation for application in rural and under-resourced areas. Fig 4 demon-

strates the proposed system. In these settings, the alternative to artificial-intelligence assisted

diagnosis would be traveling to a health-clinic with ultrasound services, a VSI Obstetric ultra-

sound interpreted by an expert, or no imaging at all.

Deep learning is a representation learning approach, which is able to extract mid-level and

high-level features from images to perform automatic image analysis, such as detection, seg-

mentation, and classification [9]. Fetal biometry requires standardized imaging planes that

require technical skill and anatomic knowledge to obtain. Fully convolutional neural networks

have been previously used successfully for analyzing 2D ultrasound images associated with

fetal structures, but these rely on an imaging expert to find the structure and plane of interest

[10]. Once the standard planes are obtained, studies have shown that identification of disease

states like congenital heart conditions is possible with artificial intelligence [11–13]. Given the

difficulty in identifying the appropriate scan planes, other attempts have been made to identify

these fetal landmarks in live video to guide the operator into identifying the plane of interest

[14, 15]. While these approaches assist in a complex task, they would still require a somewhat

experienced sonographer to obtain the images, which limits deployment to under-resourced

areas. Finally, 3D ultrasound is an option to provide more detailed information than 2D

approaches regarding the spatial location of organs and structures [9]. However, 3D ultra-

sound is more expensive in terms of equipment and computational cost for deep learning

implementation. It is therefore unsuitable for application in under-resourced areas at this

time.

Fig 2. Placental positions. Illustration of different placental positions. The fundal position straddles anterior and posterior positions. Fundal, anterior, and

posterior placental positions have no significant clinical impact. However, they are vital to distinguish from placenta previa which can be life-threatening.

https://doi.org/10.1371/journal.pone.0262107.g002

PLOS ONE Artificial intelligence for prenatal detection in under-resourced areas

PLOS ONE | https://doi.org/10.1371/journal.pone.0262107 February 9, 2022 3 / 21

https://doi.org/10.1371/journal.pone.0262107.g002
https://doi.org/10.1371/journal.pone.0262107


The use of deep learning combined with standardized VSI imaging acquisitions offers a

new possibility for determination of spatial location of fetal structures using 2D ultrasound.

Such an approach would require neither a specialist nor an experienced sonographer (Fig 4).

This combination has been previously shown to successfully measure the fetal head circumfer-

ence using a VGG-Net and U-Net from images acquired using VSI and also detect placenta

position by using a U-Net-inspired network from images acquired using VSI [16, 17]. In this

study, we developed an automatic system based on the U-Net and VSI acquisitions obtained at

a clinic in Peru to identify fetal presentation, placental location, and assess fetal head biometry.

Segmentation with deep learning and a score-based algorithm were used to identify the fetal

presentation and placental position. Head biometry was determined using head segmentation

masks with post-processing algorithms. In addition, the diagnostic capacity of the automatic

system was assessed by evaluating data from a hold-out test set, which were not used in the ini-

tial U-Net training. Comparison was made both with the VSI acquisitions interpreted by an

Obstetrician and standard of care imaging obtained and interpreted by a radiologist.

Fig 3. Biometry measurements of the head circumference and biparietal diameter. Head circumference (ellipse) and biparietal diameter (line)

measurements are illustrated.

https://doi.org/10.1371/journal.pone.0262107.g003
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Materials and methods

Participants

Participants were 58 third trimester pregnant women presenting for routine prenatal ultra-

sound at the Conde de la Vega Health Center in Lima, Peru between October 2018 and March

2019. The average age of participants was 25.8 years with a standard deviation of 6 years and a

range of 18–41 years of age. All participants underwent VSI ultrasound performed according

to the specifications below. Subjects were recruited as a non-random convenience sample and

were included if over age 18. There were no exclusion criteria. Because this was a pilot study

and the data had already been collected, a priori sample size was not calculated. All participants

were informed about the procedure and provided written informed consent. This study was

authorized by the Institutional Review Board at the Hospital Nacional Docente Madre Nino

San Bartolome, and all the participants provided written informed consent.

Volume sweep imaging

VSI is an imaging technique that was developed to increase access to ultrasound in under-

served areas. In VSI, the operator requires no significant medical background or technical

ultrasound skill. Individuals have been shown to learn VSI after a few hours of training, and

no significant ultrasound experience or anatomical knowledge is required [7, 8, 18–20]. A VSI

Fig 4. Proposed system for automatic obstetric diagnosis without an experienced sonographer or radiologist.

Schematic diagram shows utilization of VSI combined with U-Net for rapid automatic image interpretation. The blue

arrows signify the input of information into the automatic diagnostic framework. The green arrows signify the output

of information.

https://doi.org/10.1371/journal.pone.0262107.g004
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protocol consists of a series of ultrasound probe sweeps over the target region demarcated by

easily recognized external body landmarks. The operator is not interpreting the images and is

instructed to focus on the probe position instead of looking at the ultrasound screen. Each

sweep of the probe is saved as a cine clip which can be then interpreted by a specialist or deep

learning algorithm. VSI has been successfully integrated into existing telemedicine infrastruc-

ture in Peru [7]. The Obstetric VSI examination is shown in Fig 5. This VSI protocol is based

on eight sweeps of the ultrasound probe which constitute a full volumetric examination of the

pregnant abdomen. Obstetric VSI has previously demonstrated excellent agreement with stan-

dard of care ultrasound performed by a radiologist [8].

Test methods

The primary reference test in this study was the physician specialist interpretation of VSI scans

for descriptive characteristics and quantitative measurements including fetal presentation, pla-

cental location, and fetal biometric parameters for the 58 pregnant women. All fetal measure-

ments were obtained using standard guidelines [3]. This primary reference standard was

chosen as opposed to standard of care ultrasound to isolate variables as the goal of this paper

was to evaluate the artificial intelligence algorithm derived from the VSI scans. Nonetheless, as

standard of care ultrasound would be considered the ultimate ground truth for both VSI and

artificial intelligence, we included these results as a second reference standard for consider-

ation. Previously VSI has shown statistically significant agreement with standard of care ultra-

sound in this same sample of patients [8]. The standard of care ultrasound exams used as a

reference standard were performed and interpreted concurrently at the time of the VSI scan

by an expert radiologist. This diagnostic examination was conducted in accordance with stan-

dardized guidelines [1]. The radiologist’s images from this separate examination were not used

in any artificial intelligence analysis. All imaging was performed using a portable Mindray DP-

Fig 5. Obstetric ultrasound volume sweep imaging protocol. Poster depicting each step in the VSI protocol.

https://doi.org/10.1371/journal.pone.0262107.g005
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10 ultrasound scanner (Mindray, China) with a 4.5 MHz transducer. An individual without

prior ultrasound experience acquired the VSI images after 8 hours of training and was blinded

to the results of the standard of care ultrasound. Similarly, the radiologist performing and

interpreting the standard of care ultrasound was blinded to the results of the VSI scan. Addi-

tionally, the Obstetrician interpreting the VSI scans was not given access to the clinical history.

Training, validation, and testing

The automatic system development was performed with the VSI acquisitions of the first 30

sequentially recruited participants using a leave-one-out approach described below. The entire

58 patient sample was not used in the leave-one-out cross-validation due to the labor-intensive

process of segmentation and limitations on access to the computational power for higher size

samples. From training, validation, and testing of these 30 patients, a file containing optimized

training weights from the U-Net network was obtained, allowing automated direct and rapid

diagnosis for novel data. The subsequent 28 recruited patients (not used in the initial leave-

one-out cross-validation) were analyzed using the weights file (hold-out test phase). There

were no differences in the patient population between the different samples. This hold-out test

set was used to determine the performance of the system when facing novel patients as if this

automatic system were implemented in clinical practice.

Leave-one-out cross-validation

Data preparation. The 2D ultrasound images from VSI exams were exported in MP4

cine clips or DICOM format and then converted from these formats to TIFF format using

ImageJ software (National Institutes of Health, Bethesda, MD). Preprocessing stages including

image conversion from RGB to grayscale, image cropping of the scan to avoid set-up parame-

ters of the device, and image resizing to 128×128 pixels were performed in MATLAB 2019b

(Mathworks, Natick, Massachusetts, USA). Ground truth segmentation of the fetal head and

placenta was performed by a single radiologist in 30 subjects to produce binary masks used in

training. Fig 6 depicts the region of interest for this study.

Network architecture and parameters. The architecture of the deep learning network

used in this study was the U-Net [21]. It consists of contracting and expansive paths and is

composed of 23 convolutional layers. A downsampled version of the ultrasound images (size

Fig 6. Representative 2D ultrasound images from VSI acquisition. Red arrows identify the head (A) and placenta

(B).

https://doi.org/10.1371/journal.pone.0262107.g006

PLOS ONE Artificial intelligence for prenatal detection in under-resourced areas

PLOS ONE | https://doi.org/10.1371/journal.pone.0262107 February 9, 2022 7 / 21

https://doi.org/10.1371/journal.pone.0262107.g006
https://doi.org/10.1371/journal.pone.0262107


of 128×128) and their corresponding segmentation masks were used as the input data of the

network. The weight parameters were initialized using He weight initialization [22]. As in the

original U-Net, the number of filters is doubled after each downsampling operation and halved

after each upsampling operation. Batch normalization was introduced to reduce internal

covariate shift and to accelerate training [23]. A rectified linear unit (ReLU) was used after

each convolutional layer. Additionally, a 2×2 max-pooling layer was used on the downsam-

pling side. Finally, the output layer was activated with a sigmoid function. A batch size of 16

frames was used for all experiments. The Adam optimizer was used to control the binary

cross-entropy loss, and both the Dice loss and Jaccard distance assessed convergence [24].

Training using the leave-one-out approach. A leave-one-out approach was used to maxi-

mize the data available for evaluating the model. In this approach, the number of evaluations

equals the number of patients. In this scheme, the learning model is applied once for each

patient (data test), and the remaining patients are used for training and validation. With 30

segmented patients, the process was repeated 30 times, each time using a different patient as

the single test case. This process is presented in detail in Table 1 and Fig 7. The training was

performed in Keras 2.4.3 [25]. From the training data of a single set (29 patients), 80% of the

frames with the structure of interest were randomly assigned for training and 20% of the

frames with the structure of interest were randomly assigned for validation. The model

received shuffled images for both training and testing.

This procedure aimed to segment the fetal head and placenta. The number of epochs for

avoiding overfitting of head and placenta segmentation was 20 and 40, respectively. Fig 8 dis-

plays the flowchart of the training and testing stages for head segmentation.

Image post-processing. We combined predictions obtained from the U-Net model and

the standardized nature of the VSI protocol to generate head and placental spatial location

likelihood. The construction of the likelihood map was started by representing the uterine area

in a 2D zero matrix. Then, based on the anatomical area covered by each sweep and the detec-

tion results, the likelihood map was progressively filled. Likelihood increased when frames

from several sweeps overlapped in the same position. Fig 9 presents an example of the proce-

dure for generating the spatial location likelihood of the fetal head. The size of the zero-matrix

is dependent on the size of the largest horizontal and vertical sweeps. From the example shown

in the figure, sweep 1 (a vertical sweep at midline from the maternal pelvis to upper abdomen)

was formed by 137 ultrasound frames. Here, the fetal head was detected between frames 77

and 92. The resulting 2D zero matrix had 137 samples in the axial direction, and the elements

between 77 and 92, indicated by the color block in the sweep direction, represent location of

the fetal head. Similarly, sweep 7 (a horizontal sweep from maternal right flank to left flank at

the level of the umbilicus) was formed by 144 ultrasound frames, with the color block indicat-

ing the location where the fetal head was detected along that sweep direction. A Gaussian filter

Table 1. Set formation using leave-one-out cross-validation.

Set Training data Test data

1 Data from patient 2, 3, 4, . . ., 28, 29, 30 Data from patient 1

2 Data from patient 1, 3, 4, . . ., 28, 29, 30 Data from patient 2

3 Data from patient 1, 2, 4, . . ., 28, 29, 30 Data from patient 3

..

. ..
. ..

.

28 Data from patient 1, 2, 3, . . ., 27, 29, 30 Data from patient 28

29 Data from patient 1, 2, 3, . . ., 27, 28, 30 Data from patient 29

30 Data from patient 1, 2, 3, . . ., 27, 28, 29 Data from patient 30

https://doi.org/10.1371/journal.pone.0262107.t001
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was applied on the filled matrix, and finally, the spatial location likelihood was formed. The 2D

map axis limits were normalized due to the abdominal area variation among all the partici-

pants. Fig 8 shows estimated masks of sweeps from head estimations used to generate a fetal

Fig 7. Image information contained in the training data set. The table shows the number of images labeled (blue)

and without labels (orange). Bar plots indicate the average number of images for each classification. The error bar

depicts the standard deviation between sets in leave-one-out cross-validation.

https://doi.org/10.1371/journal.pone.0262107.g007

Fig 8. Overview of the proposed training method. (a) Automatic segmentation using the U-Net model [21]. (b) Fetal

presentation prediction. (c) Placental location prediction.

https://doi.org/10.1371/journal.pone.0262107.g008
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presentation likelihood location map. Fig 9 represents the use of masks of the sweeps for esti-

mating the 2D map of the placenta location. By using the eight sweeps acquired per patient,

the localization of the placenta was then able to be determined.

Hold-out test set

Fetal head and placental location. The leave-one-out cross-validation yielded prediction

weights and detection/segmentation metrics for each one of the 30 evaluations. The prediction

weights corresponding to the best metrics were then stored and used for future predictions.

The 28 subsequently recruited patients were analyzed at this stage with the stored prediction

weights, and the fetal head and placental location were detected for each one.

Biometric parameters. The U-Net model yielded prediction masks for each test patient.

Automatic fetal head biometry was performed by fitting the predicted masks with an ellipse.

The algorithm selected the largest estimated mask. The BPD diameter was calculated by multi-

plying two times the minor axis length. The HC was measured by calculating the border of the

same selected mask.

Primary and secondary outcomes. Primary outcome variables were sensitivity, specific-

ity, and agreement in fetal presentation (cephalic versus non-cephalic) and placental location

(anterior, posterior, or fundal) by the U-Net model compared with the interpretations of the

VSI acquisitions by an Obstetrician. Additional comparison was made to standard of care

ultrasound separately obtained by a radiologist at the time of VSI examination.

This version of the Obstetric VSI protocol was not specifically designed for estimation of

fetal biometry because the proper imaging planes needed for accurate and reproducible bio-

metric measurements are not always present in the cine clips. Nonetheless, BPD and HC were

Fig 9. Scheme for the generation of the spatial location likelihood of the fetal head. Stage 1: The zero-matrix

represents the pregnant abdomen, and it is formed considering the largest number of frames for horizontal and

vertical sweeps. Sweeps with fewer frames are re-scaled to properly form the matrix. Stage 2: The frames containing the

fetal head are colored. Stage 3: A Gaussian filter is applied only for representative purposes to finally produce the

spatial location likelihood. Based on this map, the algorithm produces a diagnosis.

https://doi.org/10.1371/journal.pone.0262107.g009
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chosen as exploratory outcome variables for testing diagnostic capacity of automated measure-

ments of fetal biometry on VSI. Agreement and relative error of the U-Net model estimation

of fetal head measurements (BPD and HC) were investigated as secondary outcome variables.

Statistical analysis

Agreement on placental location and fetal presentation between physician assessment and

model determination was assessed by overall agreement and Cohen’s κ. Resultant κ values

were compared to a theoretical mean of 0 using a one-sample t-test. Biometry was compared

between physician assessment and model determination using intraclass correlation coeffi-

cients (ICC) and Bland-Altman analysis. ICC values were calculated using a two-way mixed

effects model for absolute agreement. Both ICC values and Bland-Altman bias were indepen-

dently compared to a theoretical mean of 0 using a one-sample t-test. For κ and ICC values,

0–0.2 was defined as slight agreement, 0.21–0.4 as fair agreement, 0.41–0.6 as moderate agree-

ment, 0.61–0.8 as substantial agreement, and 0.81–1 as almost perfect agreement [26]. All sta-

tistical analysis was performed using GraphPad PRISM (v6, GraphPad Software, Inc., San

Diego, CA) and SPSS (v26, IBM Corporation, Armonk, NY).

Results

Participants

Fifty-eight third trimester pregnant women (mean gestational age 32.6 +/- 2.6 weeks) were

studied. The women enrolled in the study were attending clinic for routine Obstetric follow-

up and had no documented significant past medical history. Standard of care ultrasound

revealed no developmental anomaly in any of the fetuses. The image diagnostic assessments

assigned by the specialist to be ground truth for the U-Net model for the 30 patients used in

the leave-one-out cross-validation and the 28 patients used in the hold-out testing phase are

shown in Tables 3 and 4.

Class imbalance

Our data had significant class imbalance with a minority of frames per patient containing fetal

head or placenta. Preliminary tests of the model were executed by performing data augmenta-

tion to overcome class imbalance. Data augmentation attempts included brightness correction,

image reflection (from left to right), blurring filter application, and contrast correction. As the

images were acquired with a convex probe with a standardized region of interest, we did not

attempt to perform image rotation. These attempts at data augmentation showed no significant

improvement in our outcomes. An additional strategy was to delete images with no information

instead of data augmentation. To do this we randomly deleted frames that did not contain fetal

head to obtain a 1:2 ratio (from 1:10) and randomly deleted frames that did not contain placenta

to obtain a 1:1 ratio (from 1:4). This again resulted in no improvement in metrics.

Predicted diagnoses with leave-one-out cross-validation

2D ultrasound images with overlaid prediction masks of each region of interest are shown in

Fig 10. The U-Net performance was evaluated considering the specialist’s manual segmenta-

tion as the ground truth. Table 2 shows the classification scores and metrics for fetal head and

placenta. Representative 2D heat maps illustrating a cephalic versus non-cephalic fetus and

anterior versus posterior placental location are seen in Fig 11. For the 30 subjects included in

the leave-one-out cross-validation, our system yielded 100% agreement (κ = 1, p<0.0001) with

the diagnostic assessment by a specialist for fetal presentation and 77% agreement (κ = 0.59,
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p<0.0001) for placental location (Table 3). When excluding cases where a fundal rating was

used, agreement was 100% (κ = 1, p<0.0001). No cases of placenta previa were identified in

either U-Net predictions or clinician assessment. The mean BPD and HC measurements pre-

dicted by the U-Net demonstrated low levels of relative error compared to specialist assigned

measurements from VSI (5.6% and 7.9%, respectively, Table 4), with moderate to substantial

agreement (BPD: ICC = 0.57; HC: ICC = 0.50). However, both predictions were significantly

lower than physician measurements (BPD: Bias = -2.8 mm (-14.4–8.8 95% confidence interval

(CI), p = 0.015); HC: Bias = -24.3 mm (-50.3–1.78 95% CI, p<0.0001)).

Predicted diagnoses in the hold-out test set

As a result of the prior analysis, 30 models for the head and 30 models for the placenta were

obtained (one model per set evaluated, each model with its corresponding trainable parame-

ters stored in a weights file). We selected the models for the placenta and head with the best

combination of evaluation parameters: sensitivity, specificity, positive predictive value (PPV),

negative predictive value (NPV), Jaccard index, pixel accuracy, and segmentation area error.

In order to determine the diagnostic capability of the proposed method, 28 unique new

patients were analyzed using these models. The agreement between the model and specialist’s

Table 3. Comparison of qualitative diagnostic assessment of fetal presentation and placenta location assigned by an obstetrician from VSI versus automatic

diagnosis.

Diagnostic

parameter

Leave-one-out Cross-validation (n = 30) Hold-out Test Set (n = 28)

Result from Obstetrician using VSI exam

imaging

Result from U-Net

model

Result from Obstetrician using VSI exam

imaging�
Result from U-Net

model

Presentation

Cephalic (n) 25 25 26 26

Non-cephalic (n) 5 5 2 2

Agreement (%) 100 100

Sensitivity (%) 100 100

Specificity (%) 100 100

PPV (%) 100 100

NPV (%) 100 100

Placental location

Anterior 16 16 16 18

Posterior 13 10 8 5

Fundal 1 4 3 5

Agreement (%) 76.7 81.5

Sensitivity (%) 87.5 100

Specificity (%) 85.7 81.8

PPV (%) 87.5 88.9

NPV (%) 85.7 100

�Obstetrician was unable to report placental position in one case in the hold-out test set which was ignored in calculations.

https://doi.org/10.1371/journal.pone.0262107.t003

Table 2. Average detection and segmentation metrics for leave-one-out cross-validation.

Anatomic site Detection Segmentation Number of images

Sensitivity Specificity Accuracy PPV NPV Jaccard index Area error (%) Region of interest (ROI) No ROI

Head 0.901 0.993 0.906 0.927 0.992 0.704 10.1 2402 27696

Placenta 0.733 0.950 0.80 0.80 0.946 0.862 25.6 6099 24014

https://doi.org/10.1371/journal.pone.0262107.t002

PLOS ONE Artificial intelligence for prenatal detection in under-resourced areas

PLOS ONE | https://doi.org/10.1371/journal.pone.0262107 February 9, 2022 12 / 21

https://doi.org/10.1371/journal.pone.0262107.t003
https://doi.org/10.1371/journal.pone.0262107.t002
https://doi.org/10.1371/journal.pone.0262107


assessment for fetal presentation was 100% (Table 3). The agreement for placental location was

81.5% (κ = 0.5, p<0.0001) with sensitivity and specificity of 100% and 81.8%, respectively.

When considering only anterior/posterior locations (excluding fundal), agreement was 90.9%

(κ = 0.74, p = 0.002), with 100% sensitivity and 66.7% specificity. No cases of placenta previa

were identified by U-Net or clinician assessment.

The relative error of the estimated BPD and HC measurements by the U-Net model were

3.4% and 5.6%, respectively (Table 4), with substantial to almost perfect agreement (BPD:

ICC = 0.82; HC: ICC = 0.66). U-Net predictions were again lower than physician measure-

ments for HC (Bias = -15.8 (-38.6–7.14 95% CI, p<0.0001)), though results were similar to

each other for BPD (Bias = -0.71 (-8.27–6.85 95% CI, p = 0.34)). These results are overall simi-

lar to those obtained in the previous tests, which sheds light on the robustness of the method

proposed for the automatic evaluation of novel patients.

Comparison to standard of care ultrasound

The automatic detection of placental location, fetal position, and biometry measurements

assigned by the U-Net also showed good agreement with standard of care ultrasound

Fig 10. Ultrasound images. 2D ultrasound images from two representative patients (patient 1, upper row; patient 2,

lower row) with overlaid color masks showing actual (yellow) versus predicted locations of the fetal head (blue) and

placenta (green).

https://doi.org/10.1371/journal.pone.0262107.g010

Table 4. Comparison of quantitative diagnostic assessment of fetal head circumference and biparietal diameter assigned by an obstetrician from VSI versus auto-

matic diagnosis.

Diagnostic

measurement

Leave-one-out Cross-validation (n = 30) Hold-out Test Set (n = 28)

Result from

Obstetrician using

VSI exam imaging

Result from

U-Net model

Relative

error (%)

Bland-Altman

Bias (95% CI, p

value)

Result from

Obstetrician using

VSI exam imaging

Result from

U-Net model

Relative

error (%)

Bland-Altman

Bias (95% CI, p

value)

Biparietal

Diameter (mm)

92.7±6.77 89.9 ± 6.73 5.6 -2.8 87.8 ± 6.42 87.1 ± 6.24 3.4 -0.71

(-14.4–8.8,

p = 0.015)

(-8.27–6.85,

p = 0.34)

Head

circumference

(mm)

322±20.8 298 ± 22.1 7.7 -24.3 302 ± 22.5 286 ± 19.2 5.6 -15.8

(-50.3–1.78,

p<0.0001)

(-38.6–7.14,

p<0.0001)

Bias is defined as value assigned by U-Net model–assigned by specialist.

https://doi.org/10.1371/journal.pone.0262107.t004
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(performed and interpreted by a radiologist) (Tables 5 and 6). During leave-one-out cross-vali-

dation, there was 90.4% agreement for placental position when examinations with fundal posi-

tion were excluded (Cohen’s κ 0.77, p = 0.002) with 93% sensitivity and 83% specificity for

anterior placenta position. In the hold-out test set, there was 90% agreement for placental posi-

tion when examinations with fundal position were excluded (Cohen’s κ 0.74, p = 0.003) with

100% sensitivity and 66.7% specificity for anterior placenta position. Standard of care ultra-

sound and U-Net both identified no cases of placenta previa. Agreement on fetal position dur-

ing leave-one-out cross-validation was 97% (Cohen’s κ 0.84, p = 0.001) with 96% sensitivity

and 100% specificity for the vertex position. Agreement on fetal presentation in the hold-out

test set was 96.2% (Cohen’s κ 0.65, p = 0.08) with 96% sensitivity and 100% specificity for ver-

tex position. During leave-one-out cross-validation there was 9.4% relative error for BPD and

6.6% relative error for HC. In the hold-out test set there was 8.4% relative error for BPD and

3.7% relative error for HC. S1 and S2 Tables include supplemental analysis for comparison of

VSI and standard of care ultrasound results. The comparison between VSI and standard of

care has been previously studied [8].

Fig 11. Heatmaps. Heatmaps of two representative patients showing the spatial locations of the fetal head and

placenta. (A) Cephalic fetal presentation. (B) Non-cephalic fetal presentation. (C) Placenta anterior. (D) Placenta

posterior.

https://doi.org/10.1371/journal.pone.0262107.g011
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Gestational age analysis

Analysis of gestational age calculations are shown in Table 7. U-Net and VSI showed signifi-

cant differences in gestational age in both leave-one-out cross-validation and the hold-out test

set. In leave-one-out cross-validation, U-Net predicted an estimated gestational age of 234

±19.2 days compared to VSI which showed an estimated gestational age of 252±19.6 days (p

<0.0001). In the hold-out test set, U-Net predicated an estimated gestational age of 225±16.5

days compared to VSI which showed an estimated gestational age of 235±19.1 days (p

<0.0001). In the analysis of U-Net compared to standard of care dating, estimated gestational

age calculated from these measures were not significantly different between U-Net and stan-

dard of care ultrasound. In leave-one-out cross-validation, U-Net predicted an estimated

Table 5. Comparison of qualitative diagnostic assessment of fetal presentation and placenta location assigned by a radiologist from standard of care imaging versus

automatic diagnosis.

Diagnostic

parameter

Leave-one-out Cross-validation (n = 30) Hold-out Test Set (n = 28)

Result from radiologist using standard of

care imaging�
Result from U-Net

model

Result from radiologist using standard of

care imaging�
Result from U-Net

model

Presentation

Cephalic (n) 26 25 25 26

Non-cephalic (n) 3 5 1 2

Agreement (%) 96.6% 96.2%

Sensitivity (%) 96.2% 96.0%

Specificity (%) 100% 100%

PPV (%) 100% 100%

NPV (%) 75.0% 50.0%

Placental location

Anterior 15 16 14 18

Posterior 9 10 10 5

Fundal 6 4 4 5

Agreement (%) 66.7% 71.4%

Sensitivity (%) 93.3% 100%

Specificity (%) 86.7% 71.4%

PPV (%) 87.5% 77.8%

NPV (%) 92.9% 100%

�Radiologist did not report the fetal position in 1 case during leave-one-out cross-validation and in 2 cases in the hold-out test set which were ignored in calculations.

https://doi.org/10.1371/journal.pone.0262107.t005

Table 6. Comparison of quantitative diagnostic assessment of fetal head circumference and biparietal diameter assigned by a radiologist from standard of care

imaging versus automatic diagnosis.

Diagnostic

measurement

Leave-one-out Cross-validation (n = 30) Hold-out Test Set (n = 28)

Result from radiologist

using standard of care

imaging

Result from

U-Net

model

Relative

error (%)

Bland-Altman

Bias (95% CI, p

value)

Assigned from

radiologist using

standard of care

imaging

Result from

U-Net

model

Relative

error (%)

Bland-Altman

Bias (95% CI, p

value)

Biparietal

Diameter (mm)

83.3±8.46 89.9±6.73 9.4% 6.64 (-7.65–20.9,

p<0.0001)

80.5±6.59 87.1±6.24 8.4% 6.57 (-1.44–14.6,

p<0.0001)

Head

circumference

(mm)

300±26.9 298±22.1 6.6% -1.87 (-53.5–49.8,

p = 0.70)

289.8±20.3 286±19.2 3.7% -3.62 (-29.7–22.5,

p = 0.16)

Bland-Altman bias is defined as value assigned by specialist (VSI)–assigned by radiologist (SOC)

https://doi.org/10.1371/journal.pone.0262107.t006
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gestational age of 234±19.2 days compared to standard of care which showed an estimated ges-

tational age of 229±22.6 days (p = 0.22). In the hold-out test set, U-Net predicated an estimated

gestational age of 225±16.5 days compared to standard of care which showed an estimated ges-

tational age of 223±19.9 days (p = 0.5).

Discussion

The majority of the world lacks access to ultrasound diagnostic imaging, a vital component of

high-quality Obstetric care. Obstacles to deploying Obstetric ultrasound in rural and under-

resourced areas relate to both limited trained healthcare personnel and infrastructure, such as

costly devices, and limitations of telemedicine such as high-speed internet. Through the inte-

gration of VSI and U-Net, this automatic model for detecting fetal position, placental position,

and fetal biometry offers a way to overcome resource limitations such as the lack of sonogra-

phers, radiologists, and high-speed internet (Fig 4). Furthermore, this approach can allow

rapid interpretation of imaging findings when a delay may adversely affect patient outcomes.

Therefore, this approach offers substantial promise in improving access to ultrasound in rural

areas.

In this study, there was 100% agreement between our automatic model’s prediction and a

specialist’s diagnostic assessment of fetal presentation when compared to VSI protocol and

96% agreement when compared to standard of care ultrasound. The discrepancy with standard

of care ultrasound may be attributed to dynamic fetal position between the standard of care

ultrasound and VSI exam. In general, false detection of fetal position could arise from the fetal

head not being in the optimal plane for analysis for enough frames. Clinically, these results

suggest this system has potential for accurate automatic detection of non-cephalic fetuses near

the time of delivery, which would allow for referral to a higher level of care for delivery

attended by trained healthcare providers.

Prediction of placental location by the automatic model showed 76.7% agreement when

compared to the VSI protocol, although this improved to 100% when the category of “fundal”

was removed and anterior versus posterior location were directly compared. In practice, fun-

dal position overlaps with both anterior and posterior placental positions, confounding analy-

sis of the agreement. In clinical practice, the main concern is to identify placenta previa. While

we had no cases of placenta previa to analyze, given the observed agreement in placental posi-

tion, the system would theoretically detect this positioning as well. Even though the system

was not “trained” with cases of placenta previa, presumably if a case of placenta previa was

introduced, the placenta would be identified and mapped to the lowest part of the 2D matrix.

The placental structure is irregular and the echogenicity uneven, making training of the

model challenging. In addition, the placental masks delineated by the specialist often spanned

several frames in the cine clips. The model was trained by shuffling data, which may alter con-

tinuity through frames. This contributed to the challenges in using the prediction model to

Table 7. Analysis of gestational age accuracy across U-Net, VSI, and standard of care imaging.

Comparison Data Set Within 7 days Within 14 days

U-Net and VSI Leave-one-out 16.7% 30.0%

Hold-out 28.6% 71.4%

U-Net and SOC Leave-one-out 40.0% 70.0%

Hold-out 64.3% 89.3%

VSI and SOC Leave-one-out 13.3% 36.7%

Hold-out 28.6% 60.7%

https://doi.org/10.1371/journal.pone.0262107.t007
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identify placental location. In the future, splitting the videos into several shorter clips for the

data training (instead of individual frames) can maintain continuity and may improve network

identification of placental location. The false detection of placenta location when excluding the

overlapping fundal position we observed may be due to the complexity of mapping the 3D pla-

cental structure on the 2D matrix. Clinically, the use of automatic detection of placental loca-

tion could allow for identification of low-lying placenta or placenta previa, which is associated

with maternal hemorrhage and death if undiagnosed prior to delivery. If the model detects a

placenta in the lower uterine body or near the cervix, patients could be referred for ultrasound

to confirm these suspected findings. In the current study, several patients had a non-cephalic

presentation, but there were no patients with pathologic location of the placenta (placenta pre-

via or low-lying near the internal cervical os) which is not surprising since the incidence of pla-

centa previa has been estimated to be 5 in 1000 pregnancies [27]. Future studies are necessary

to confirm our findings in an enriched population of subjects with a higher prevalence of

abnormal ultrasound findings, such as transverse/breech fetal lie or placenta previa.

We observed generally higher agreement between U-Net and VSI and standard of care

ultrasound in our hold-out test set. We hypothesize that this relates to data characteristics of

the hold-out sample. It may be that the planes needed to optimally locate the structures of

interest in the hold-out set were more often obtained due to random chance. Interestingly,

U-Net performed better than VSI when predicting fetal age when compared to standard of

care. This phenomenon may be due to miscalibration of the VSI teleultrasound system viewer.

Previous studies have shown VSI to over measure in both Obstetric and thyroid ultrasound

[8, 20].

Automated detection for measurement of fetal biometry demonstrated low levels of relative

error for HC and BPD measurements by the U-Net model compared to both VSI and standard

of care ultrasound. The are several possible reasons for differences in measurements from U-

net compared to our reference standards. Human error and differences in the plane the struc-

ture of interest was measured are two possibilities. In addition, VSI has been shown to overes-

timate measures which may be due to slight miscalibration of the system [8, 20]. Because

images are acquired by non-specialists using a standard protocol, fetal biometry planes to mea-

sure these structures may not continually be optimized in the video clips obtained. Prior study

has demonstrated that even when non-standard image planes (closely approximating but not

completely fulfilling standard imaging guidelines) are used to estimate fetal biometry measure-

ments from VSI scans, there is no significant difference in gross estimations of fetal size [8]. In

our experience, fetal head is the most likely structure to be oriented in the correct plane for

measurement when the standard sagittal or transverse sweeps across the maternal abdomen

are performed in the VSI protocol, and therefore these measurements were chosen as explor-

atory outcomes for this study. Further investigation is needed to determine the utility of auto-

mated detection of the abdominal circumference or femur length by the U-Net model. These

measurements are more challenging to obtain as they are more commonly oriented in oblique

planes outside the standard sweeps of the VSI protocol. Despite this, clinically, the use of fetal

head biometry alone for gross estimation of fetal size may be useful to identify pregnancies

which need referral to a higher level of care for ultrasound with a trained sonographer and spe-

cialist to diagnose fetal growth abnormalities. Future studies could investigate the model’s pre-

dictive capabilities for detecting femur length and abdominal circumference (for a complete

fetal biometry evaluation), as well as additional diagnostic tasks such as fetal heart rate or addi-

tional fetal anatomic structures.

Ultrasound segmentation is challenging because it depends on the image quality [28]. The

VSI scans in this study were completed on a portable ultrasound machine with relatively low

resolution. Fetal features were sometimes hard to distinguish, even by the specialist performing
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the diagnostic assessment. In the context of these limitations, these results of the automatic

model predictions are especially promising. A limitation of the current model methodology is

that U-Net requires ultrasound image size reduction for leave-one-out cross-validation. This

stage may alter the resolution of fetal structures and disturb the capability of the network to

segment the structures accurately. Enlarging both the contracting and expansive paths may

overcome this drawback. However, a larger image size would demand more graphics process-

ing unit memory. Convolutional neural networks have a computational cost for training. This

network can be improved by adding a generative adversarial network (GAN) to help the learn-

ing process. The GAN model has a generator and discriminator modules [29]. The generator

module can focus on the segmentation part, followed by the discriminator module, comparing

the segmentation with the ground truth.

There are profound health and healthcare inequalities between countries. The global distri-

bution of poor antenatal care across countries contributes to radically different health out-

comes for mothers and children across the globe [30–33]. Unfortunately, there are many

challenges to delivering healthcare to these rural and under-resourced areas. “Duffle bag medi-

cine” and medical tourism offer temporary attempts to address medical needs but do not offer

long-term responsibility, accountability, collaboration with local stakeholders, cultural sensi-

tivity, or a goal to reinforce the local medical infrastructure in a sustainable way [34]. Deploy-

ing innovative technologies and practices to reduce maternal and perinatal morbidity and

mortality can only be successful if implemented and disseminated within the capabilities of

existing local public health care structures and with consideration of available resources [35].

The potential impact on short- and long-term health outcomes extends to the public health

sector. Poor health infant outcomes put the infant at risk for social and behavioral issues (e.g.,

physical and learning disabilities), and place new demands on the mother, family and commu-

nity. These could include impact on household income, support to other children and addi-

tional requirements for services and support. Maternal morbidity and mortality impact the

family and community in similar ways.

This automatic diagnostic model shows potential to predict fetal presentation, placental

location, and fetal biometry from ultrasound images using an approach that eliminates the

need for trained sonographers, specialists, costly equipment, and high-speed internet. In this

study, there was excellent agreement with this automatic approach and expert interpretation

from a physician specialist. Obstetric VSI combined with the U-Net model predictions there-

fore offers a potential new horizon in sustainably expanding vital Obstetric ultrasound imaging

in rural areas.
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