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Abstract

Motivation: The extraction of k-mers is a fundamental component in many complex analyses of large next-
generation sequencing datasets, including reads classification in genomics and the characterization of RNA-seq
datasets. The extraction of all k-mers and their frequencies is extremely demanding in terms of running time and
memory, owing to the size of the data and to the exponential number of k-mers to be considered. However, in sev-
eral applications, only frequent k-mers, which are k-mers appearing in a relatively high proportion of the data, are
required by the analysis.

Results: In this work, we present SPRISS, a new efficient algorithm to approximate frequent k-mers and their fre-
quencies in next-generation sequencing data. SPRISS uses a simple yet powerful reads sampling scheme, which
allows to extract a representative subset of the dataset that can be used, in combination with any k-mer counting al-
gorithm, to perform downstream analyses in a fraction of the time required by the analysis of the whole data, while
obtaining comparable answers. Our extensive experimental evaluation demonstrates the efficiency and accuracy of
SPRISS in approximating frequent k-mers, and shows that it can be used in various scenarios, such as the compari-
son of metagenomic datasets, the identification of discriminative k-mers, and SNP (single nucleotide polymorphism)
genotyping, to extract insights in a fraction of the time required by the analysis of the whole dataset.

Availability and implementation: SPRISS [a preliminary version (Santoro et al., 2021) of this work was presented at
RECOMB 2021] is available at https://github.com/VandinLab/SPRISS.

Contact: fabio.vandin@unipd.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The study of substrings of length k, or k-mers, is a fundamental task
in the analysis of large next-generation sequencing datasets. The ex-
traction of k-mers, and of the frequencies with which they appear in
a dataset of reads, is a crucial step in several applications, including
the comparison of datasets and reads classification in metagenomics
(Wood and Salzberg, 2014), the characterization of variation in
RNA-seq data (Audoux et al., 2017), the analysis of structural
changes in genomes (Liu et al., 2017; Li and Waterman, 2003),
RNA-seq quantification (Patro et al., 2014; Zhang and Wang,
2014), fast search-by-sequence over large high-throughput sequenc-
ing repositories (Solomon and Kingsford, 2016), genome compari-
son (Sims et al., 2009) and error correction for genome assembly
(Kelley et al., 2010; Salmela et al., 2016).

k-mers and their frequencies can be obtained with a linear scan
of a dataset. However, due to the massive size of the modern data-
sets and the exponential growth of the k-mers number (with respect
to k), the extraction of k-mers is an extremely computationally

intensive task, both in terms of running time and memory (Elworth
et al., 2020), and several algorithms have been proposed to reduce
the running time and memory requirements (see Section 1.2).
Nonetheless, the extraction of all k-mers and their frequencies from
a reads dataset is still highly demanding in terms of time and mem-
ory [e.g. KMC 3 (Kokot et al., 2017), one of the currently best per-
forming tools for k-mer counting, requires more than 2.5 hours, 34
GB of memory and 500 GB of space on disk on a sequence of 729
Gbases (Kokot et al., 2017), and from our experiments more than
30 minutes, 300 GB of memory and 97 GB of disk space for count-
ing k-mers from Mo17 dataset (Using k ¼ 31, 32 workers, and max-
imum RAM of 350 GB. See Supplementary Table S2 for the size of
Mo17.)].

While some applications, such as error correction (Kelley et al.,
2010; Salmela et al., 2016) or reads classification (Wood and
Salzberg, 2014), require to identify all k-mers, even the ones that ap-
pear only once or few times in a dataset, other analyses, such as the
comparison of abundances in metagenomic datasets (Benoit et al.,
2016; Danovaro et al., 2017; Dickson et al., 2017; Pellegrina et al.,
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2020) or the discovery of k-mers discriminating between two data-
sets (Liu et al., 2017; Ounit et al., 2015), hinge on the identification
of frequent k-mers, which are k-mers appearing with a (relatively)
high frequency in a dataset. For the latter analyses, tools capable of
efficiently extracting frequent k-mers only would be extremely bene-
ficial and much more efficient than tools reporting all k-mers (given
that a large fraction of k-mers appear with extremely low fre-
quency). However, the efficient identification of frequent k-mers
and their frequencies is still relatively unexplored (see Section 1.2).

A natural approach to speed-up the identification of frequent
k-mers is to analyze only a sample of the data, since frequent k-mers
appear with high probability in a sample, while unfrequent k-mers
appear with lower probability. A major challenge in sampling
approaches is how to rigorously relate the results obtained analyz-
ing the sample and the results that would be obtained analyzing
the whole dataset. Tackling such challenge requires to identify a
minimum sample size which guarantees that the results on the
sample well represent the results to be obtained on the whole data-
set. An additional challenge in the use of sampling for the identifi-
cation of frequent k-mers is due to the fact that, for values of k of
interest in modern applications (e.g. k 2 ½20; 60�), even the most
frequent k-mers appear in a relatively low portion of the data (e.g.
10�7–10�5). The net effect is that the application of standard sam-
pling techniques to rigorously approximate frequent k-mers results
in sample sizes larger than the initial dataset.

1.1 Our contributions
In this work, we study the problem of approximating frequent k-mers
in a dataset of reads. In this regard, our contributions are:

• We propose SPRISS, SamPling Reads algorIthm to eStimate fre-

quent k-merS (https://vec.wikipedia.org/wiki/Spriss). SPRISS is

based on a simple yet powerful read sampling approach, which

renders SPRISS very flexible and suitable to be used in combin-

ation with any k-mer counter. In fact, the read sampling scheme

of SPRISS returns a subset of a dataset of reads, which can be

used to obtain representative results for down-stream analyses

based on frequent k-mers.
• We prove that SPRISS provides rigorous guarantees on the qual-

ity of the approximation of the frequent k-mers. In this regard,

our main technical contribution is the derivation of the sample

size required by SPRISS, obtained through the study of the pseu-

dodimension (Pollard, 1984), a key concept from statistical

learning theory, of k-mers in reads.
• We show on several real datasets that SPRISS approximates fre-

quent k-mers with high accuracy, while requiring a fraction of

the time needed by approaches that analyze all k-mers in a

dataset.
• We show the benefits of using the approximation of frequent

k-mers obtained by SPRISS in three applications: the compari-

son of metagenomic datasets, the extraction of discriminative

k-mers and SNP genotyping. In all these applications, SPRISS

significantly speeds up the analysis, while providing the same

insights obtained by the analysis of the whole data.

1.2 Related works
The problem of exactly counting k-mers in datasets has been exten-
sively studied, with several methods proposed for its solution
(Audano and Vannberg, 2014; Kokot et al., 2017; Kurtz et al.,
2008; Marçais and Kingsford, 2011; Melsted and Pritchard, 2011;
Pandey et al., 2017; Rizk et al., 2013; Roy et al., 2014). Such meth-
ods are typically highly demanding in terms of time and memory
when analyzing large high-throughput sequencing datasets (Elworth
et al., 2020). For this reason, many methods have been recently
developed to compute approximations of the k-mers abundances to
reduce the computational cost of the task (e.g. Chikhi and

Medvedev, 2014; Melsted and Halldórsson, 2014; Mohamadi et al.,
2017; Pandey et al., 2017; Sivadasan et al., 2016; Zhang et al.,
2014). However, such methods do not provide guarantees on the ac-
curacy of their approximations that are simultaneously valid for all
(or the most frequent) k-mers. In recent years, other problems close-
ly related to the task of counting k-mers have been studied, includ-
ing how to efficiently index (Harris and Medvedev, 2020; Marchet
et al., 2020a,b; Pandey et al., 2018), represent (Almodaresi et al.,
2018; Chikhi et al., 2014; Dadi et al., 2018; Guo et al., 2021;
Holley and Melsted, 2020; Marchet et al., 2019; Rahman and
Medvedev, 2020), query (Bradley et al., 2019; Marchet et al., 2021;
Solomon and Kingsford, 2016, 2018; Sun et al., 2018; Yu et al.,
2018) and store (Hernaez et al., 2019; Hosseini et al., 2016;
Numanagi�c et al., 2016; Rahman et al., 2021) the massive collec-
tions of sequences or of k-mers that are extracted from the data. See
also Chikhi et al. (2021) for a unified presentation of methods to
store and query a set of k-mers.

A natural approach to reduce computational demands is to
analyze a small sample instead of the entire dataset. To this end,
methods that perform a downsampling of massive datasets have
been recently proposed (Brown et al., 2012; Coleman et al., 2019;
Wedemeyer et al., 2017). These methods focus on discarding reads
of the datasets that are very similar to the reads already included
in the sample, computing approximate similarity measures as each
read is considered. Such measures (i.e. the Jaccard similarity) are
designed to maximize the diversity of the content of the reads in
the sample. This approach is well suited for applications where
rare k-mers are important, but they are less relevant for analyses,
of interest to this work, where the most frequent k-mers carry the
major part of the information. Furthermore, these methods have a
heuristic nature, and do not provide guarantees on the relation be-
tween the accuracy of the analysis performed on the sample w.r.t.
the analysis performed on the entire dataset. SAKEIMA (Pellegrina
et al., 2020) is the first sampling method that provides an approxi-
mation of the set of frequent k-mers (together with their estimated
frequencies) with rigorous guarantees, based on counting only a sub-
set of all occurrences of k-mers, chosen at random. SAKEIMA per-
forms a full scan of the entire dataset, in a streaming fashion, and
processes each k-mer occurrence according to the outcome of its ran-
dom choices. SPRISS, the algorithm we present in this work, is instead
the first sampling algorithm to approximate frequent k-mers (and
their frequencies), with rigorous guarantees, by sampling reads from
the dataset. In fact, SPRISS does not require to receive in input and to
scan the entire dataset, but, instead, it needs in input only a small sam-
ple of reads drawn from the dataset, sample that may be obtained, for
example, at the time of the physical creation of the whole dataset.
While the sampling strategy of SAKEIMA could be analyzed using the
concept of VC dimension (Vapnik, 1998), the reads-sampling strategy
of SPRISS requires the more sophisticated concept of pseudodimen-
sion (Pollard, 1984), for its analysis.

In this work, we consider the use of SPRISS to speed up the com-
putation of the Bray-Curtis distance between metagenomic datasets,
the identification of discriminative k-mers and the SNP genotyping
process. Computational tools for these problems have been recently
proposed (Benoit et al., 2016; Saavedra et al., 2020; Sun and
Medvedev, 2018). These tools are based on exact k-mer counting
strategies, and the approach we propose with SPRISS could be
applied to such strategies as well.

2 Preliminaries

Let R be an alphabet of r symbols. A dataset D ¼ fr1; . . . ; rng is a
bag of jDj ¼ n reads, where, for i 2 f1; . . . ;ng, a read ri is a string of
length ni built from R. For a given integer k, a k-mer K is a string of
length k on R, that is K 2 Rk. Given a k-mer K, a read ri of D and a
position j 2 f0; . . . ; ni � kg, we define the indicator function /ri ;KðjÞ
to be 1 if K appears in ri at position j, that is
K½h� ¼ ri½jþ h� 8h 2 f0; . . . ;k� 1g, while /ri ;KðjÞ is 0 otherwise.
The size tD;k of the multiset of k-mers that appear in D is
tD;k ¼

P
ri2Dðni � kþ 1Þ. The average size of the multiset of k-mers

that appear in a read of D is gD;k ¼ tD;k=n, while the maximum value
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of such quantity is gmax;D;k ¼ maxri2Dðni � kþ 1Þ. The support
oDðKÞ of k-mer K in dataset D is the number of distinct positions of

D where k-mer K appears, that is oDðKÞ ¼
P

ri2D
Pni�k

j¼0

/ri ;KðjÞ. The

frequency fDðKÞ of a k-mer K in D is the fraction of all positions in
D where K appears, that is fDðKÞ ¼ oDðKÞ=tD;k.

The task of finding frequent k-mers (FKs) is defined as follows:
given a dataset D, a positive integer k and a minimum frequency
threshold h 2 ð0;1�, find the set FKðD;k; hÞ of all the k-mers whose
frequency in D is at least h, and their frequencies, that is
FKðD; k; hÞ ¼ fðK; fDðKÞÞ : K 2 Rk; fDðKÞ � hg.

The set of frequent k-mers can be computed by scanning the
dataset and counting the number of occurrences for each k-mers.
However, when dealing with a massive dataset D, the exact compu-
tation of the set FKðD;k; hÞ requires large amount of time and mem-
ory. For this reason, one could instead focus on finding an
approximation of FKðD; k; hÞ with rigorous guarantees on its qual-
ity. In this work, we consider the following approximation, intro-
duced in (Pellegrina et al., 2020).

Definition 1.Given a dataset D, a positive integer k, a frequency thresh-

old h 2 ð0; 1�, and an accuracy parameter e 2 ð0; hÞ, an e-approximation

C ¼ fðK; fKÞ : K 2 Rk; fK 2 ½0; 1�g of FKðD; k; hÞ is a set of pairs ðK; fKÞ
with the following properties:

• C contains a pair ðK; fKÞ for every ðK; fDðKÞÞ 2 FKðD; k; hÞ;
• C contains no pair ðK; fKÞ such that fDðKÞ < h� e;
• for every ðK; fKÞ 2 C, it holds jfDðKÞ � fKj � e=2.

Intuitively, the approximation C contains no false negatives (i.e.
all the frequent k-mers in FKðD;k; hÞ are in C) and no k-mer whose
frequency in D is much smaller than h. In addition, the frequencies
in C are good approximations of the actual frequencies in D, i.e.
within a small error e=2.

Definition 2.Given a dataset D of n reads, we define a reads sample S of

D as a bag of m reads, sampled independently and uniformly at random,

with replacement, from the bag of reads in D.

A natural way to compute an approximation of the set of
frequent k-mers is by processing a sample, i.e. a small portion of
the dataset D, instead of the whole dataset. While previous
work (Pellegrina et al., 2020) considered samples obtained by draw-
ing k-mers independently from D, we consider samples obtained by
drawing entire reads. Note that the development of an efficient
scheme to effectively approximate the frequency of all frequent
k-mers by sampling reads is highly non-trivial, due to dependen-
cies among k-mers appearing in the same read. As explained in
Section 1.1, our approach has several advantages, including the
vfact that it can be combined with any efficient k-mer counting pro-
cedure, and that it can be used to extract a representative subset of the
data on which to conduct down-stream analyses obtaining, in a frac-
tion of the time required to process the whole dataset, the same
insights. Such representative subsets could be stored and used for ex-
ploratory analyses, with a gain in terms of space and time require-
ments compared to using the whole dataset. In addition, note that
SPRISS can approximate both canonical and non-canonical k-mers.

3 Method and algorithm

In this section, we develop and analyze our algorithm SPRISS, the first
efficient algorithm to approximate frequent k-mers by read sampling.

Let D be a bag of n reads. We define I‘ ¼ fi1; i2; . . . ; i‘g as a bag
of ‘ indexes of reads of D chosen uniformly at random, with replace-
ment, from the set f1; . . . ; ng. Then we define an ‘-reads sample S‘
as a collection of m bags of ‘ reads S‘ ¼ fI‘;1; . . . ; I‘;mg. Let k be a
positive integer. Define the domain X as the set of bags of ‘ indexes
of reads of D. Then define the family of real-valued functions F ¼

ffK;‘; 8K 2 Rkg where, for every I‘ 2 X and for every fK;‘ 2 F , we
have fK;‘ðI‘Þ ¼ minð1; oI‘ ðKÞÞ=ð‘gD;kÞ, where oI‘ ðKÞ ¼P

i2I‘

Pni�k

j¼0

/ri ;KðjÞ counts the number of occurrences of K in all the ‘

reads of I‘. Therefore, fK;‘ðI‘Þ 2 0; 1
‘gD;k

n o
8fK;‘ and 8I‘. Note that,

for a given bag I‘, the functions fK;‘ have value equal to 1=‘gD;k even

if K appears more than once in all the ‘ reads of I‘, thus ignoring
multiple occurrences of K in the bag. We define the frequency fS‘ ðKÞ
of a k-mer K obtained from the sample S‘ of bags of reads as

fS‘ ðKÞ ¼ 1
m

P
I‘;i2S‘

oI‘ ðKÞ=ð‘gD;kÞ, which is an unbiased estimator of

fDðKÞ (i.e. E½fS‘ ðKÞ� ¼ fDðKÞ). While the unbiased estimate fS‘ ðKÞ is
the frequency reported by SPRISS as the estimated frequency of a
k-mer K, SPRISS selects the k-mers to produce in output using a

different estimate, namely f̂ S‘
ðKÞ ¼ 1

m

P
I‘;i2S‘

fK;‘ðI‘;iÞ, which is a

‘biased’ version of fS‘ ðKÞ since multiple occurrences of K in a bag
are ignored. For the technical motivation to use the biased fre-

quency f̂ S‘
ðKÞ, see the analysis in Supplementary Section S3.

Our algorithm SPRISS (Algorithm 1) starts by computing the num-
ber m of bags of ‘ reads as in Equation (1), based on the input parame-
ters k; h; d; e; ‘ and on the characteristics (gD;k; gmax;D;k; r) of dataset
D. It then draws a sample S of exactly m‘ reads, uniformly and inde-
pendently at random, with replacement, from D. Next, it computes
for each k-mer K the number of occurrences oSðKÞ of K in sample S,
using any exact k-mers counting algorithm. We denote the call of this
method by exact_counting(S, k), which returns a collection T of
pairs ðK;oSðKÞÞ. The sample S is then randomly partitioned into m
bags, where each bag contains exactly ‘ reads. For each k-mer K,
SPRISS computes the biased frequency f̂ S‘

ðKÞ and the unbiased fre-
quency fS‘ ðKÞ, reporting in output only k-mers with biased frequency
at least h� e=2. Note that, the estimated frequency of a k-mer K
reported in output is always given by the unbiased frequency fS‘ ðKÞ.

SPRISS (Algorithm 1) is motivated by our main technical result,
Proposition 1, which establishes a rigorous relation between the
number m of bags of ‘ reads and the guarantees obtained by approx-
imating the frequency fDðKÞ of a k-mer K with its (biased) estimate
f̂ S‘
ðKÞ (the full analysis is in Supplementary Section S3—see

Supplementary Proposition S13).

Proposition 1. Let k and ‘ be two positive integers. Consider a sample S‘
of m bags of ‘ reads from D. For fixed frequency threshold h 2 ð0; 1�,
error parameter e 2 ð0; hÞ and confidence parameter d 2 ð0; 1Þ, if

m � 2

e2

1

‘gD;k

 !2

b log2minð2‘gmax;D;k; r
kÞc þ ln

1

d

� �� �
(1)

then, with probability at least 1� d:

i. for any k-mer K 2 FKðD; k; hÞ such that fDðAÞ � ~h ¼
gmax;D;k

gD;k
ð1� ð1� ‘gD;khÞ1=‘Þ it holds f̂ S‘

ðKÞ � h� e=2;

ii. for any k-mer K with f̂ S‘
ðKÞ � h� e=2 it holds fDðKÞ � h� e;

iii. for any k-mer K 2 FKðD; k; hÞ it holds fDðKÞ � f̂ S‘
ðKÞ � e=2;

iv. for any k-mer K with ‘gD;kðf̂ S‘
ðKÞ þ e=2Þ � 1 it holds

fDðKÞ � gmax;D;k
gD;k
ð1� ð1� ‘gD;kðf̂ S‘

ðKÞ þ e=2ÞÞð1=‘ÞÞ.

SPRISS builds on Proposition 1, and returns the approximation of
FKðD;k; hÞ defined by the set A ¼ fðK; fS‘ ðKÞÞ : f̂ S‘

ðKÞ � h� e=2g.
Therefore, with probability at least 1� d the output of SPRISS provides
the guarantees stated in Proposition 1. Note that, given a sample S‘ of
m bags of ‘ reads from D, with m satisfying the condition of
Proposition 1, the set A is almost an e-approximation of FKðD; k; hÞ:
Proposition 1 ensures that all k-mers in A have frequency fDðKÞ � h� e
with probability at least 1� d, but it does not guarantee that all k-mers
with frequency 2 ½h; ~hÞ will be in output. However, we show in Section
4.2 that, in practice, almost all of them are reported in output by
SPRISS. Furthermore, we remark that it is possible to obtain different
guarantees on the approximation computed by SPRISS by modifying
the criteria used to report k-mers in output; for example, in some
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applications, perfect recall may be particularly important. To this aim,
we note that by reporting all k-mers with upper bound � h (where the
upper bound to fDðKÞ is given by (iv) in Proposition 1), we obtain that
all frequent k-mers are in the approximation, with relaxed guarantees
on the precision (i.e. some k-mers with frequency < h� e may be in
the output). Moreover, in applications in which obtaining tight confi-
dence intervals on all exact frequencies fDðKÞ is important, an approxi-
mation scheme based on using multiple values of ‘, analogous to the
one described in Section 3.3 of Pellegrina et al. (2020), is directly applic-
able to SPRISS.

In practice, in Algorithm 1, the partition of S into m bags and
the computation of SK could be highly demanding in terms of
running time and space, since one has to compute and store, for
each k-mer K, the exact number SK of bags where K appears at least
once among all reads of the bag. We now describe a much more effi-
cient approach to approximate the values SK, without the need to
explicitly compute the bags. The number of reads in a given bag
where K appears is well approximated by a Poisson distribution
PoissonðR½K�=mÞ, where R½K� is the number of reads of S where
k-mer K appears at least once. Therefore, the number SK of bags
where K appears at least once is approximated by a binomial distri-
bution Binomialðm; 1� e�R½K�=mÞ. Thus, one can avoid to explicitly
create the bags and to exactly count SK, by replacing line ‘f̂ S‘

ðKÞ  
SK=ðm‘gD;kÞ’ with ‘f̂ S‘

ðKÞ  Binomialðm; 1� e�R½K�=mÞ=ðm‘gD;kÞ’.
Corollary 5.11 of Mitzenmacher and Upfal (2017) guarantees that,
by using this Poisson distribution to approximate SK, the output of
SPRISS satisfies the properties of Proposition 1 with probability at
least 1� 2d. This leads to the replacement of ‘lnð1=dÞ’ with ‘lnð2=dÞ’
in the computation of m.

However, the approach described above requires to compute, for
each k-mer K, the number of reads R½K� of S where K appears at
least once. We believe such computation can be obtained with min-
imal effort within the implementation of most k-mer counters, but
we now describe a simple way to approximate R½K�. Since most k-
mers appear at most once in a read, the number of reads R½K� where
a k-mer K appears is well approximated by the number of occur-
rences T½K� of K in the sample S. Thus, instead of using “f̂ S‘

ðKÞ  
Binomialðm; 1� e�R½K�=mÞ=ðm‘gD;kÞ” we can replace it with
‘f̂ S‘
ðKÞ  Binomialðm;1� e�T½K�=mÞ=ðm‘gD;kÞ’, which only requires

the counts T½K� obtained from the exact counting procedure
exact_counting(S, k) (see Algorithm S2 in Supplementary

Material). Note that approximating R½K� with T½K� leads to over-
estimating the frequencies of few k-mers who reside in very repeti-
tive sequences, e.g. k-mers composed by the same k consecutive
nucleotides, for which T½K� � R½K�. However, since the majority
of k-mers reside in non-repetitive sequences, we can assume
R½K� � T½K�.

4 Experimental evaluation

In this section, we present the results of our experimental evaluation.
In particular:

• We assess the performance of SPRISS in approximating the set of

frequent k-mers from a dataset of reads. In particular, we evalu-

ate the accuracy of estimated frequencies and false negatives in

the approximation, and compare SPRISS with the state-of-the-

art sampling algorithm SAKEIMA (Pellegrina et al., 2020) in

terms of sample size and running time.
• We evaluate SPRISS’s performance for the comparison of meta-

genomic datasets. We use SPRISS’s approximations to estimate

abundance-based distances (e.g. the Bray-Curtis distance) be-

tween metagenomic datasets, and show that the estimated dis-

tances can be used to obtain informative clusterings of

metagenomic datasets from the Sorcerer II Global Ocean

Sampling Expedition (Rusch et al., 2007) (https://www.imicrobe.

us) in a fraction of the time required by the exact distances com-

putation (i.e. based on exact k-mers frequencies).
• We test SPRISS to discover discriminative k-mers between pairs

of datasets. We show that SPRISS identifies almost all discrim-

inative k-mers from pairs of metagenomic datasets rom (Liu

et al., 2017) and the Human Microbiome Project (HMP) (https://

hmpdacc.org/HMASM/), with a significant speed-up compared

to standard approaches.
• We evaluate SPRISS for approximate SNP genotyping, by com-

bining the sampling scheme of SPRISS with previously proposed

genotyping algorithms. We show that we achieve accurate

approximations of the most common performance measures

(precision, sensitivity and F-measure), obtaining a significant

speed-up of the genotyping process.

4.1 Implementation, datasets, parameters and

environment
We implemented SPRISS as a combination of Cþþ scripts, which
perform the reads sampling and save the sample on a file, and as a
modification of KMC 3 (Kokot et al., 2017) (available at https://
github.com/refresh-bio/KMC), a fast and efficient counting k-mers
algorithm. We used KMC 3 with the default option to count canon-
ical k-mers. Note that our flexible sampling technique can be com-
bined with any k-mer counting algorithm. [See Supplementary
Material for results, e.g. Supplementary Figure S1, obtained using
JELLYFISH v. 2.3 (available at https://github.com/gmarcais/Jellyfish)
as k-mer counter in SPRISS.] We use the variant of SPRISS that
employs the Poisson approximation for computing SK (see end of
Section 3). SPRISS implementation, information about how to re-
trieve the data used in this work, and scripts for reproducing all
results are publicity available (available at https://github.com/
VandinLab/SPRISS). We compared SPRISS with the exact k-mer
counter KMC and with SAKEIMA (Pellegrina et al., 2020) (avail-
able at https://github.com/VandinLab/SAKEIMA), the state-of-the-
art sampling-based algorithm for approximating frequent k-mers. In
all experiments we fix d ¼ 0:1 and e ¼ h� 2=tD;k. If not stated
otherwise, we considered k¼31 and ‘ ¼ b0:9=ðhgD;kÞc in our experi-
ments. For SAKEIMA, as suggested in Pellegrina et al. (2020) we set
the number gSK of k-mers in a bag to be gSK ¼ b0:9=hc. We remark
that a bag of reads of SPRISS contains the same (expected) number

Algorithm 1: SPRISSðD; k; h; d; e; ‘Þ
Data: D, k, h 2 ð0;1�; d 2 ð0; 1Þ; e 2 ð0; hÞ, integer ‘ � 1

Result: Approximation A of FKðD; k; hÞ with probability at

least 1� d

m d2
e2

1

‘gD;k

 !2

b log2minð2‘gmax;D;k; r
kÞc þ ln

1

d

� �� �
e;

S sample of exactly m‘ reads drawn from D;

T  exact countingðS; kÞ;

S‘  random partition of S into m bags of ‘ reads each;

A 1;

for all the ðK;oSðKÞÞ 2 T do

SK  number of bags of S‘ where K appears;

f̂ S‘
ðKÞ  SK=ðm‘gD;kÞ;

f S‘
ðKÞ  oSðKÞ=ðm‘gD;kÞ;

if f̂ S‘
ðKÞ � h� e=2 then A A [ ðK; fS‘ ðKÞÞ

return A;
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of k-mers positions of a bag of SAKEIMA; this guarantees that
both algorithms provide outputs with the same guarantees, thus
making the comparison between the two methods fair. To assess
SPRISS in approximating frequent k-mers, we considered six large
metagenomic datasets from HMP, each with �108 reads and aver-
age read length �100 (see Supplementary Table S1). For the evalu-
ation of SPRISS in comparing metagenomic datasets, we also used
37 small metagenomic datasets from the Sorcerer II Global Ocean
Sampling Expedition (Rusch et al., 2007), each with �104 � 105

reads and average read length �1000 (see Supplementary Table
S4). For the assessment of SPRISS in the discovery of discrimina-
tive k-mers we used two large datasets from (Liu et al., 2017), B73
and Mo17, each with �4� 108 reads and average read length ¼
250 (see Supplementary Table S2), and we also experimented with
the HMP datasets. To evaluate the benefits of using SPRISS for
SNP genotyping, we used an Illumina WGS dataset from
NA12878, with �1:55� 109 reads and average read length ¼ 148
(see Supplementary Table S3), available from the Genome In A
Bottle (GIAB) consortium (Zook et al., 2014). All experiments
have been performed on a machine with 512 GB of RAM and 2
Intel(R) Xeon(R) CPU E5-2698 v3 at 2.3 GHz, with one worker,
if not stated otherwise. All reported results are averages over
five runs.

4.2 Approximation of frequent k-mers
In this section, we first assess the quality of the approximation of
FKðD; k; hÞ provided by SPRISS, and then compare SPRISS with
SAKEIMA.

We use SPRISS to extract approximations of frequent k-mers
on six datasets from HMP for values of the minimum frequency
threshold h 2 f2:5� 10�8; 5� 10�8;7:5� 10�8; 10�7g. The output
of SPRISS satisfied the guarantees from Proposition 1 for all five
runs of every combination of dataset and h. In all cases the esti-
mated frequencies provided by SPRISS are close to the exact ones
(see Fig. 1a for an example). In fact, the average (across all
reported k-mers) absolute deviation of the estimated frequency
w.r.t. the true frequency is always small, i.e. one order of magni-
tude smaller than h (Fig. 1b), and the maximum deviation is very
small as well (Supplementary Fig. S2B). In addition, even if the val-
ues of ~h [see (i) in Proposition 1] are always between 4:15�10�6

and 1:81�10�5; SPRISS results in a very low false negative rate
(i.e. fraction of k-mers of FKðD;k; hÞ not reported by SPRISS),
which is always been below 0.012 in our experiments.

In terms of running time, SPRISS required at most 64% of the
time required by the exact approach KMC (Fig. 1c). In addition,
SPRISS used at most 30% of the RAM memory required by the
exact approach KMC. This is due to SPRISS requiring to analyze at
most 34% of the entire dataset (Fig. 1d). Note that the use of collec-
tions of bags of reads is crucial to achieve useful sample size, i.e.
lower than the whole dataset. In fact, the sample sizes obtained
from less sophisticated statistical tools, e.g. Hoeffding’s inequality
combined with union bound (see Supplementary Section S1), and
pseudodimension without collections of bags (see Supplementary
Section S2), are much greater than the dataset size:�1016 and
�1015, respectively, which are useless sample sizes for datasets of
�108 reads. These results show that SPRISS obtains very accurate
approximations of frequent k-mers in a fraction of the time required
by exact counting approaches.

We then compared SPRISS with SAKEIMA. In terms of quality
of approximation, SPRISS reports approximations with an average
deviation lower than SAKEIMA’s approximations, while
SAKEIMA’s approximations have a lower maximum deviation.
However, the ratio between the maximum deviation of SPRISS
and the one of SAKEIMA are always below 2. Overall, the quality
of the approximation provided by SPRISS and SAKEIMA are,
thus, comparable. In terms of running time, SPRISS significantly
improves over SAKEIMA (Fig. 1c), and processes slightly smaller
portions of the dataset compared to SAKEIMA (Fig. 1d).
Summarizing, SPRISS is able to report most of the frequent k-mers
and estimate their frequencies with small errors, by analyzing
small samples of the datasets and with significant improvements
on running times compared to exact approaches and to state-of-
the-art sampling algorithms.

(a) (b)

(c) (d)

Fig. 2. (a) Comparison of the approximations of the Bray-Curtis (BC) distances

using approximations of frequent k-mers provided by SPRISS (�) and by SAKEIMA

(•), and the exact distances, for h ¼ 2:5� 10�8. (b) Running time to approximate

BC distances for all pairs of datasets with SPRISS, with SAKEIMA and the exact ap-

proach. (c) Average linkage hierarchical clustering of GOS datasets using Jaccard

similarity. (d) Same as (c), using estimated BC similarity from SPRISS with 50% of

the data (see also larger Supplementary Figs S4–S6 for better readability of datasets’

labels and computed clusters)

(a) (b)

(c) (d)

Fig. 1. (a) k-mers exact frequency and frequency estimated by SPRISS for dataset

SRS024075 and h ¼ 2:5�10�8. (b) Average deviations between exact frequencies

and frequencies estimated by SPRISS (SP) and SAKEIMA (SK), for various datasets

and values of h. (c) Running time of SPRISS (SP), SAKEIMA (SK) and the exact

computation (E)—see also legend of (b). (d) Fraction of the dataset analyzed by

SPRISS (SP) and by SAKEIMA (SK)
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4.3 Comparing metagenomic datasets
We evaluated SPRISS to compare metagenomic datasets by comput-
ing an approximation to the Bray-Curtis (BC) distance between
pairs of datasets of reads, and using such approximations to cluster
datasets.

Let D1 and D2 be two datasets of reads. Let F 1 ¼ FKðD1;k; hÞ
and F 2 ¼ FKðD2;k; hÞ be the set of frequent k-mers, respectively,
of D1 and D2, where h is a minimum frequency threshold. The
BC distance between D1 and D2 considering only frequent k-mers
is defined as BCðD1;D2;F 1;F 2Þ ¼ 1� 2I=U, where I ¼P

K2F 1\F2
minfoD1

ðKÞ;oD2
ðKÞg and U ¼

P
K2F 1

oD1
ðKÞ þP

K2F 2
oD2
ðKÞ: Conversely, the BC similarity is defined as

1� BCðD1;D2;F 1;F 2Þ.
We considered six datasets from HMP, and estimated the BC dis-

tances among them by using SPRISS to approximate the sets of fre-
quent k-mers F 1 ¼ FKðD1;k; hÞ and F 2 ¼ FKðD2; k; hÞ for the
values of h as in Section 4.2. We compared such estimated distances
with the exact BC distances and with the estimates obtained using
SAKEIMA. Both SPRISS and SAKEIMA provide accurate estimates
of the BC distances (Fig. 2a and Supplementary Fig. S3), which can
be used to assess the relative similarity of pairs of datasets.
However, to obtain such approximations SPRISS requires at most
40% of the time required by SAKEIMA and usually 30% of the
time required by the exact computation with KMC (Fig. 2b).
Therefore SPRISS provides accurate estimates of metagenomic dis-
tances in a fraction of time required by other approaches.

As an example of the impact in accurately estimating distances
among metagenomic datasets, we used the sampling approach of
SPRISS to approximate all pairwise BC distances among 37 small
datasets from the Sorcerer II Global Ocean Sampling Expedition
(GOS) (Rusch et al., 2007), and used such distances to cluster the
datasets using average linkage hierarchical clustering. The k-mer-
based clustering of metagenomic datasets is often performed by
using presence-based distances, such as the Jaccard distance (Ondov
et al., 2016), which estimates similarities between two datasets by
computing the fraction of k-mers in common between the two data-
sets. Abundance-based distances, such as the BC distance (Benoit
et al., 2016; Danovaro et al., 2017; Dickson et al., 2017), provide
more detailed measures based also on the k-mers abundance, but are
often not used due to the heavy computational requirements to ex-
tract all k-mers counts. However, the sampling approach of SPRISS
can significantly speed-up the computation of all BC distances, and,
thus, the entire clustering analysis. In fact, for this experiment, the
use of SPRISS reduces the time required to analyze the datasets (i.e.
obtain k-mers frequencies, compute all pairwise distances and ob-
tain the clustering) by 62%.

We then compared the clustering obtained using the Jaccard dis-
tance (Fig. 2c) and the clustering obtained using the estimates of the
BC distances (Fig. 2d) obtained using only 50% of reads in the GOS
datasets, which are assigned to groups and macro-groups according
to the origin of the sample (Rusch et al., 2007). Even if the BC dis-
tance is computed using only a sample of the datasets, while the
Jaccard distance is computed using the entirety of all datasets, the
use of approximate BC distances leads to a better clustering in terms
of correspondence of clusters to groups, and to the correct cluster
separation for macro-groups. In addition, the similarities among
datasets in the same group and the dissimilarities among datasets in
different groups are more accentuated using the approximated BC
distance. In fact, the ratio between the average BC similarity among
datasets in the same group and the analogous average Jaccard is in
the interval ½1:25; 1:75� for all groups. In addition, the ratio between
(i) the difference of the average BC similarity within the tropical
macro-group and the average BC similarity between the tropical and
temperate groups, and (ii) the analogous difference using the Jaccard
similarity is �1:53. These results tell us the approximate BC-
distances, computed using only half of the reads in each dataset,
increase by �50% the similarity signal inside all groups defined by
the original study (Rusch et al., 2007), and the dissimilarities be-
tween the two macro-groups (tropical and temperate).

To conclude, the estimates of the BC similarities obtained using
the sampling scheme of SPRISS allows to better cluster metagenomic

datasets than using the Jaccard similarity, while requiring less than
40% of the time needed by the exact computation of BC similarities,
even for fairly small metagenomic datasets.

4.4 Approximation of discriminative k-mers
In this section, we assess SPRISS for approximating discriminative
k-mers in metagenomic datasets. In particular, we consider the fol-
lowing definition of discriminative k-mers (Liu et al., 2017). Given
two datasets D1;D2, and a minimum frequency threshold h, we de-
fine the set DKðD1;D2; k; h; qÞ of D1-discriminative k-mers as the
collection of k-mers K for which the following conditions both hold:
(i) K 2 FKðD1; k; hÞ; (ii) fD1

ðKÞ � qfD2
ðKÞ, with q ¼ 2. Note that

the computation of DKðD1;D2;k; h; qÞ requires to extract
FKðD1; k; hÞ and FKðD2; k; h=qÞ. SPRISS can be used to approximate
the set DKðD1;D2;k; h; qÞ, by computing approximations
FKðDi; k; hÞ of the sets FKðDi; k; hÞ, i¼1, 2, of frequent k-mers in
D1;D2, and then reporting a k-mer K as D1-discriminative if the
following conditions both hold: (i) K 2 FKðD1;k; hÞ; (ii)
K 62 FKðD2; k; hÞ, or fS1

‘
ðKÞ � qfS2

‘
ðKÞ when K 2 FKðD2;k; hÞ.

To evaluate such approach, we considered two datasets from
(Liu et al., 2017), and h ¼ 2�10�7 and q¼2, which are the parame-
ters used in (Liu et al., 2017). We used the sampling approach of
SPRISS with ‘ ¼ b0:02=ðhgD;kÞc and ‘ ¼ b0:04=ðhgD;kÞc, resulting in

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. As function of the sample rate, experimental results of combining SPRISS

with VarGeno and the standard pipeline in the SNP genotyping process: VarGeno’s

precision (a), sensitivity (c) F-measure (e), running time (g) and standard pipeline’s

precision (b), sensitivity (d) F-measure (f), running time (h)
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analyzing of 5% and 10% of all reads, to approximate the sets of
discriminative D1-discriminative and of D2-discriminative k-mers.
When 5% of the reads are used, the false negative rate is < 0.028,
while when 10% of the reads are used, the false negative rate is <
0.018. The running times are �1130 and �1970 s, respectively,
while the exact computation of the discriminative k-mers with KMC
requires �104 s (we used 32 workers for both SPRISS and KMC).
Similar results are obtained when analyzing pairs of HMP datasets,
for various values of h (Supplementary Fig. S7). These results show
that SPRISS can identify discriminative k-mers with small false nega-
tive rates while providing a remarkable improvement in running
time compared to the exact approach.

4.5 SNP genotyping
In this section, we evaluate SPRISS for approximate SNP genotyp-
ing. In particular, we assess the use of SPRISS in combination with
previously proposed algorithms for SNP genotyping in terms of pre-
cision, sensitivity and F-measure. The genotyping algorithms we
used are the standard pipeline [BWA (Li and Durbin, 2009) as
aligner, and BCFtools (Li, 2011) as variant caller], and VarGeno
(Sun and Medvedev, 2018). We considered hg19 as reference gen-
ome, and dbSNP (Sherry, 2001) as reference SNP database. We used
the gold standard of NA12878 individual provided by the Genome
In A Bottle (GIAB) consortium (Zook et al., 2014). The Illumina
WGS dataset D of reads from NA12878 we used has a coverage of
�75x. We used the sampling scheme of SPRISS to create samples of
12.5%, 25%, 50% and 75% of reads of D. The standard pipeline
was run with 64 threads. When evaluating the running time, we do
not include the time to obtain the sample, since once the sample is
created it can be reused several times. Moreover, the time to obtain
the sample is always a small fraction of the overall execution time
(e.g. even for a sample containing 75% of reads of D the required
time is < 3000 s).

The performance measures of the standard pipeline on D are the
following: 0.961 of precision, 0.959 of sensitivity and 0.960 of F-
measure. Figure 3 describes the running times and the performance
measures of the standard pipeline using samples of D from SPRISS.
Considering a sample of just 25% of reads of D, the sensitivity and
the F-measure decrease, respectively, by 0.02 and 0.004, while the
precision increases by 0.012. The increment of the precision is due
to a decrement in the number of false positive calls, which is
achieved by the reads sampling of SPRISS that filters out low cover-
age regions and erroneous k-mers. The speed-up of using a sample
of 25% of reads of D instead of the entire dataset D is �3:9x.

VarGeno achieves on D 0:974 of precision, 0.585 of sensitivity
and 0.731 of F-measure. With a sample from SPRISS of just 25% of
reads of D, we obtain a decrement of the performance of VarGeno
of 0.003 in precision, 0.015 in sensitivity, 0.013 in F-measure and a
speed-up of �4:5x with respect to the time required to analyze the
entire dataset D. The results for the other sample sizes are described
in Figure 3.

To conclude, the sampling scheme of SPRISS is very useful to re-
markably speed up genotyping algorithms, while achieving very
small decrements in the performance measures, and even improving
the precision in some cases.

5 Discussion

We presented SPRISS, an efficient algorithm to compute rigorous
approximations of frequent k-mers and their frequencies by sam-
pling reads. SPRISS builds on pseudodimension, an advanced con-
cept from statistical learning theory. Our extensive experimental
evaluation shows that SPRISS provides high-quality approximations
and can be employed to speed-up exploratory analyses in various
applications, such as the analysis of metagenomic datasets, the iden-
tification of discriminative k-mers and SNP genotyping. Overall, the
sampling approach used by SPRISS provides an efficient way to ob-
tain a representative subset of the data that can be used to perform
complex analyses more efficiently than examining the whole data,
while obtaining representative results.
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