
ONCOLOGY REPORTS  38:  2814-2824,  20172814

Abstract. Soft tissue sarcomas are rare and aggressive tumors 
arising from connective tissues. Adjuvant radiotherapy is 
a commonly used treatment approach for the majority of 
sarcomas. We attempted to identify a gene signature that can 
predict radiosensitive patients who are most likely to have 
a better treatment response from radiotherapy, compared 
with disease progression. Using the publicly available data 
of soft tissue sarcoma from The Cancer Genome Atlas, we 
developed a cross-validation procedure to identify a predic-
tive gene signature for radiosensitivity. The results showed 
that the predicted radiosensitive patients who received radio-
therapy had significantly improved treatment response. We 
further provide supportive evidence to validate our sensitivity 
prediction. Results showed that the predicted radiosensi-
tive patients who received radiotherapy had significantly 
improved survival than patients who did not. ROC analysis 
showed that the developed gene signature had a powerful 
prediction on treatment response. We further found that 
predicted radiosensitive patients who received radiotherapy 
had a significantly reduced rate of new tumor events. Finally, 
we validated our gene signature using a hierarchical cluster 
analysis, and found that the predicted sensitivities were well-
matched with results from the cluster analysis. These results 
are consistent with our expectation, suggesting that the 
identified gene signature and radiosensitivity prediction are 
effective. The genes involved in the signature may provide 

a molecular basis for prognostic studies and radiotherapy 
target discovery. 

Introduction

Soft tissue sarcomas are rare and aggressive malignancies that 
arise in any of the mesodermal tissues of the extremities, trunk 
and retroperitoneum, or head and neck. It includes approxi-
mately 50 histological types and account for approximately 
1% of all adult cancers. The reported incidence rates range 
from 1.8 to 5 per 100,000 per year (1). Estimated new cases 
and deaths from soft tissue sarcoma in the USA in 2016 are 
12,310 and 4,990, respectively (2). Sarcoma presenting at an 
advanced stage has a dismal prognosis. The patients survival 
has slightly improved over the last 20 years. A recent report 
from the National Cancer Institute shows that the 5-year 
relative survival rate for soft tissue sarcoma is approximately 
65% (3). Optimal systemic therapy options for sarcoma remain 
limited.

Adjuvant radiotherapy, as one of the major modalities of 
cancer therapy, playing an important role in integrated multi-
modality treatment of sarcoma. Radiotherapy technology for 
soft tissue sarcoma has significantly advanced over the past 
50 years (4). However, due to the complex heterogeneity of 
sarcoma, the treatment response of radiotherapy is different in 
patients. A retrospective study shows that preoperative radio-
therapy might be not suitable for all patients with primary soft 
tissue sarcoma of the limbs (5). Late and chronic toxicities of 
radiotherapy, such as severe induration, loss of subcutaneous 
tissue, subcutaneous fibrosis, hair loss, fractures, difficulty in 
thinking and headaches are often concerns (4,6-8). The clinical 
benefit of radiotherapy on soft tissue sarcomas has not been 
observed significantly (9-11). We argue that if we can identify 
a molecular signature predictive of radiotherapeutic sensitivity 
and response, we might be able to improve local control, side-
effects and overall survival in patients with soft tissue sarcoma.

Over the last 15 years, personalized medicine has evolved 
whereby clinical decisions are adjusted according to a patient's 
molecular profile. Genomic technologies such as microarrays 
provide powerful tools for identifying a genetic signature for 
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patients who are most likely to benefit from radiotherapy. 
Many gene signatures with specificity in terms of prognosis or 
prediction of response have been developed and validated in 
the past decades for radiotherapy indication. The gene signa-
ture has been used to predict sensitive patients in many cancer 
types including glioblastoma, cervical, breast, colorectal, head 
and neck cancer (12-18), but very few in sarcoma.

In the present study, RNAseq data for soft tissue sarcoma 
from The Cancer Genome Atlas (TCGA, http://cancergenome.
nih.gov/) was used to develop radiosensitive gene signature 
for predicting radiosensitive patients, defined as patients with 
relatively better response (e.g., complete response, partial 
response, or stable disease) after treatment, compared with 
disease progression. Since sarcoma is a rare disease, it is diffi-
cult, if not impossible, to find another independent dataset and 
enough RNAseq data to do independent-sample validation. 
In addition, due to the limitation of the small sample size in 
TCGA dataset, it is not ideal to do split-sample validation. To 
overcome these difficulties, we performed a cross-validated 
adaptive signature design that combined the gene signature 
development and the validation test in a single dataset, as 
introduced by Freidlin and Simon (19) and Freidlin et al (20). 
Following this novel framework, we improved this procedure 
and model to develop a radiosensitive gene signature for 
predicting radiosensitive patients in the rare sarcoma data.

Material and methods

Study samples. All data including clinical information and 
RNAseq expression were downloaded from TCGA (update at 
March 2016). Firstly, we combined the clinical information, 
including treatment outcome, radiotherapy, chemotherapy, 
new tumor event, survival time, and other clinical informa-
tion available for 261 patients downloaded from TCGA. 
Secondly, we filtered the records with missing treatment 
response and radiotherapy information, which reduced our 
sample to 219 patients. Expression data included 259 patients 
for 20,502 genes with clear gene names after removing dupli-
cate patients from raw data with 265 samples. We calculated 
the variance of expression for each gene, and kept the genes 
with variance of >20% quantile. We filtered the genes with 
a maximum expression value of 10 as they showed almost 
no expression. Furthermore, genes with proportion of zero 
expression >50% were also removed. Thirdly, we merged 
standardized expression data with clinical information, then 
obtained 218 patients with 15,702 genes expression profiles 
for final analysis. Finally, missing values in clinical data were 
filled by multiple imputation using the R package mice. The 
cleaned clinical data are summarized in Table I.

Methods
Gene signature development. In the present study, the 
radiosensitive patients are defined as a group of patients 
who have relatively better treatment response if they receive 
radiotherapy, including complete response, partial response 
and stable disease, compared with disease progression. To 
predict radiosensitive patients by molecular signature, we 
used the following modeling assumptions: there is a subset of 
S predictive (sensitive) genes that significantly interact with 
radiotherapy. The treatment response of radiotherapy is influ-

enced by these predictive genes through the following logistic 
model:

where μ is the intercept; λ is the effect of radiotherapy that all 
patients experience regardless of their gene expression levels; t 
is an indicator for radiotherapy with 1 indicating radiotherapy 
and 0 otherwise; b1 to bS are the main effects for these sensitive 
genes; x1 to xS denote the expression level of these sensitive 
genes; i1 to iS are radiotherapy-gene interaction effects that 
reflect the degree to which the effect of radiotherapy on 
treatment response is influenced by the expression levels of 
sensitive genes.

If the effects of radiotherapy-gene interaction are negative, 
patients who overexpress the sensitive genes will have a positive 
response after radiotherapy compared with no radiotherapy. 
We assume that a subgroup of patients overexpresses some 
(but not necessarily all) of the sensitivity genes. Then, if the 
total odds ratio (OR) is less than a preset threshold value (such 
as <1), this suggests that radiotherapy would help reduce the 
risk of disease progression for these patients, and thus, these 
patients are called radiosensitive patients. The above logistic 
model is different from our previous method (21), where a Cox 
model was used for predicting survival.

Cross-validation procedure. The procedure, a novel cross-
validated adaptive signature design, was developed to identify 
sensitive patients in one clinical trial (19-21). Following their 
framework, we improved this approach to develop a radiosen-
sitive gene signature for the current sarcoma data, described 
by the following two-step procedure.

Step 1. Training step. Split the data into K (K=10 used in 
the present study) parts with the same sample size randomly. 
Then, (K-1) parts are used to fit model as training data. The 
radiosensitive patients are predicted the in the k-th part (vali-
dation data). In the training data, for each gene j, fit a logistic 
model: log(p/(1 - p)) = µ + tλ + xjbj + rxjij. Then, the P-values for 
ij were used to rank the genes. The top significant g genes were 
used to build a gene signature, by calculating an index, called 
nominal OR (nOR) using the following equation:

for patients in the validation data (k-th part). Here, λ could 
be the value averaged over the estimates from g single gene 
model. Patient in the validation set who has nOR lower than a 
specified threshold R (R<1) will be predicted as radiosensitive 
patient.

Step 2. Validation step. Cycling the above procedures from 
k=1 to 10 in turn. Each patient only appears once in one of 
the validation data. After the cross-validation, each patient 
is predicted as either radiosensitive or not. For radiosensitive 
patients, univariate logistic analysis is then performed to test 
the association between radiotherapy and treatment outcome. 
A significant result with a small OR (<1) will indicate that 
radiotherapy is beneficial for predicted radiosensitive patients, 
then the g genes signature and the sensitivity prediction is 
considered effective and reasonable.

In the above procedure, there are two key tuning param-
eters: g and R in the Training step. The optimal values of the 
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tuning parameters g and R are usually not known in advance. 
One can use a nested inner loop of K-fold cross-validation 
approach on the training data to select the optimal tuning 
parameter value without affecting statistical validity of the 
procedure. A similar procedure and a work flow plot can 
be found in (21), which adopt a cox model. A more general 
description about the procedure is also available (19,20). 
In the present study, the 10-fold cross-validation is recom-
mended and used, because it permits the maximization of the 
portion of study patients contributing to the development of 
the diagnostic signature and the minimization of prediction 
error (22).

Results

Clinical information summaries. Table I summarizes the 
results of clinical information. There were 74 patients with 
progressive disease. There are 129, 5 and 15 patients with 
complete response, partial response and stable disease, respec-
tively, thus, considered as positive responders. Univariate and 
multivariate analyses indicate that radiotherapy is not a signifi-
cant benefit therapeutic treatment on the current dataset. We 
further performed a 10-fold cross-validation, showing that the 
clinical factors had a poor prediction on treatment response, 
with AUC=0.6.

Table I. Association among treatment response and clinical factors.

  Treatment responsea Univariate analysis Multivariable analysis
 -------------------------------------- ----------------------------------------------------------- ------------------------------------------------------------
Characteristics CR/PR/SD PD OR (95% CI) P-value OR (95% CI) P-value

Sex      
  Female 84 32 1.00  1.00
  Male 60 42 1.146 (1.011-1.298) 0.0346 1.105 (0.967-1.263) 0.1440
Age (median, 60; 
interquartile range, 52-70 years)
  <60 64 36 1.00  1.00
  ≥60 80 38 0.963 (0.848-1.093) 0.5570 0.998 (0.993-1.003) 0.4235
Raceb

  White 124 67 1.00  1.00
  Non-white 16 6 0.925 (0.750-1.141) 0.4670 0.980 (0.791-1.214) 0.8555
History of malignancy
  No 119 70
  Yes 25 4 0.793 (0.660-0.952) 0.0137 0.854 (0.707-1.032) 0.1048
Histologic diagnosis
  LMS 48 36 1.00  1.00
  DLS 27 21 1.009 (0.855-1.190) 0.9157 0.985 (0.817-1.189) 0.8784
  DT 2 0 0.651 (0.339-1.251) 0.1996 0.594 (0.306-1.152) 0.1247
  MPNST 6 3 0.909 (0.660-1.252) 0.5603 0.751 (0.520-1.084) 0.1279
  MFS 19 5 0.802 (0.650-0.991) 0.0422 0.818 (0.646-1.037) 0.0984
  SS 7 1 0.738 (0.527-1.035) 0.0795 0.668 (0.465-0.958) 0.0295
  UPS 35 8 0.785 (0.661-0.931) 0.0060 0.795 (0.655-0.964) 0.0205
Residual tumor
  R0 98 39 1.00  1.00
  R1+R2 31+2 23+2 1.158 (1.002-1.338) 0.0487 1.137 (0.973-1.328) 0.1071
  Rx 13 10 1.162 (0.944-1.431) 0.1590 1.196 (0.949-1.507) 0.1314
Chemothearpy
  No 113 48 1.00  1.00
  Yes 31 26 1.171 (1.016-1.350) 0.0304 1.142 (0.980-1.332) 0.0911
Radiotherapy
  No 89 49 1.00  1.00
  Yes 55 25 0.958 (0.841-1.092) 0.5250 1.060 (0.910-1.235) 0.4547

aCR/PR/SD denote complete response (129 patients), partial response (5 patients) and stable disease (10 patients); PD denotes progressive 
disease. bNon-white group includes African American (16 patients) and Asian (6 patients). There are 5 missing data. LMS, leiomyosarcoma; 
DLS, dedifferentiated liposarcoma; UPS, undifferentiated pleomorphic sarcoma; MFS, myxofibrosarcoma; DT, desmoid tumor; SS, synovial 
sarcoma; MPNT, malignant peripheral nerve sheath tumors.
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Table II. The 65 genes included in the radiosensitive gene signature and their interaction effects with radiotherapy.

  Main effects  Main effects of  Interaction
 Gene names of genes (SE) P-value radiotherapy (SE) P-values effects (SE) P-value

  1 CDC37L1 -0.027 (0.034) 0.419 -0.002 (0.065) 0.976 0.375 (0.089) 3.49E-05
  2 OSBPL2 -0.091 (0.038) 0.017 -0.037 (0.065) 0.570 0.259 (0.067) 1.65E-04
  3 ZNF880 -0.149 (0.047) 0.002 -0.043 (0.065) 0.514 0.235 (0.063) 2.46E-04
  4 AGFG1 0.083 (0.034) 0.017 -0.062 (0.065) 0.343 -0.318 (0.086) 2.68E-04
  5 ZYG11B -0.009 (0.032) 0.778 -0.023 (0.065) 0.720 0.495 (0.139) 4.64E-04
  6 NAT1 0.089 (0.035) 0.012 -0.052 (0.065) 0.431 -0.278 (0.079) 5.55E-04
  7 NExN -0.028 (0.039) 0.463 -0.023 (0.065) 0.728 0.231 (0.066) 6.10E-04
  8 PCNT -0.027 (0.032) 0.397 -0.005 (0.066) 0.943 0.844 (0.243) 6.36E-04
  9 TBC1D13 -0.202 (0.041) 0.000 -0.019 (0.065) 0.775 0.214 (0.063) 8.05E-04
10 kPNA6 -0.062 (0.041) 0.132 -0.052 (0.065) 0.429 0.217 (0.064) 8.59E-04
11 GOLGA7 0.107 (0.041) 0.010 -0.041 (0.065) 0.526 -0.215 (0.064) 9.27E-04
12 TRAM1 0.074 (0.038) 0.049 -0.040 (0.065) 0.543 -0.233 (0.069) 9.31E-04
13 BICD2 -0.045 (0.040) 0.256 -0.056 (0.065) 0.396 0.221 (0.066) 9.34E-04
14 CD302 0.016 (0.036) 0.655 -0.082 (0.066) 0.215 -0.251 (0.075) 9.47E-04
15 ZNF285 -0.066 (0.040) 0.100 -0.038 (0.065) 0.560 0.217 (0.065) 1.09E-03
16 C14orf180 -0.038 (0.034) 0.261 -0.004 (0.067) 0.950 0.345 (0.105) 1.13E-03
17 TPM1 -0.051 (0.035) 0.150 -0.005 (0.067) 0.941 0.274 (0.084) 1.23E-03
18 ARTN -0.015 (0.034) 0.651 -0.006 (0.066) 0.931 0.324 (0.099) 1.24E-03
19 NBPF14 -0.026 (0.038) 0.489 -0.058 (0.065) 0.373 0.223 (0.068) 1.27E-03
20 SGPP1 0.089 (0.041) 0.029 -0.036 (0.066) 0.581 -0.211 (0.065) 1.39E-03
21 ZNF2 -0.123 (0.048) 0.011 -0.044 (0.066) 0.503 0.207 (0.064) 1.44E-03
22 WDFY2 0.056 (0.038) 0.142 -0.034 (0.066) 0.605 -0.220 (0.069) 1.50E-03
23 ACVR1C -0.026 (0.036) 0.472 -0.037 (0.065) 0.572 0.234 (0.073) 1.56E-03
24 PHkG1 -0.017 (0.036) 0.628 -0.025 (0.066) 0.704 0.241 (0.076) 1.80E-03
25 TSSk3 0.015 (0.033) 0.652 -0.016 (0.066) 0.808 0.324 (0.103) 1.84E-03
26 C5orf15 0.060 (0.036) 0.093 -0.045 (0.066) 0.492 -0.246 (0.078) 1.86E-03
27 TGFBR2 0.094 (0.039) 0.016 -0.044 (0.066) 0.498 -0.213 (0.068) 1.89E-03
28 LSM14B -0.042 (0.038) 0.268 -0.061 (0.066) 0.358 0.217 (0.069) 2.00E-03
29 DMPk -0.060 (0.038) 0.113 -0.025 (0.066) 0.704 0.220 (0.070) 2.01E-03
30 IPO13 -0.084 (0.045) 0.063 -0.047 (0.066) 0.475 0.198 (0.063) 2.04E-03
31 ADPGk 0.019 (0.038) 0.617 -0.002 (0.067) 0.974 -0.221 (0.071) 2.12E-03
32 FLJ35390 -0.075 (0.037) 0.044 -0.038 (0.066) 0.561 0.222 (0.072) 2.16E-03
33 LPHN3 -0.028 (0.035) 0.418 -0.011 (0.067) 0.874 0.261 (0.084) 2.27E-03
34 SLC16A8 -0.019 (0.037) 0.607 -0.020 (0.066) 0.765 0.221 (0.072) 2.33E-03
35 RNF141 0.059 (0.038) 0.124 -0.049 (0.066) 0.457 -0.210 (0.068) 2.40E-03
36 CRYZ -0.082 (0.044) 0.062 -0.050 (0.066) 0.452 0.195 (0.064) 2.53E-03
37 BTF3L4 -0.028 (0.037) 0.447 -0.061 (0.066) 0.357 0.220 (0.072) 2.56E-03
38 AHDC1 -0.016 (0.043) 0.719 -0.046 (0.065) 0.479 0.190 (0.063) 2.75E-03
39 DTNA -0.025 (0.037) 0.493 -0.016 (0.066) 0.807 0.220 (0.073) 2.75E-03
40 CAMk2G -0.055 (0.035) 0.122 0.019 (0.071) 0.794 0.278 (0.092) 2.77E-03
41 RILPL2 0.017 (0.034) 0.620 -0.051 (0.066) 0.437 -0.295 (0.097) 2.77E-03
42 PDLIM3 -0.056 (0.041) 0.171 -0.024 (0.066) 0.714 0.199 (0.066) 2.79E-03
43 DKFZp761E198 0.028 (0.036) 0.441 -0.034 (0.066) 0.601 -0.236 (0.078) 2.83E-03
44 IL1RAP 0.256 (0.091) 0.006 -0.054 (0.066) 0.411 -0.294 (0.097) 2.85E-03
45 CLASP1 -0.019 (0.038) 0.620 -0.022 (0.066) 0.740 0.211 (0.070) 2.86E-03
46 ZNF830 -0.031 (0.043) 0.470 -0.043 (0.065) 0.509 0.191 (0.063) 2.90E-03
47 DRAM1 0.061 (0.032) 0.060 -0.071 (0.067) 0.289 -0.453 (0.150) 2.91E-03
48 CDC5L 0.000 (0.035) 0.993 -0.052 (0.066) 0.429 0.253 (0.084) 2.96E-03
49 ZNF330 -0.066 (0.039) 0.091 -0.047 (0.066) 0.474 0.202 (0.067) 2.97E-03
50 ABCA8 0.129 (0.051) 0.012 -0.043 (0.066) 0.512 -0.196 (0.065) 2.99E-03
51 SNAPC3 0.042 (0.034) 0.220 0.023 (0.067) 0.726 0.263 (0.088) 3.11E-03
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Development of radiosensitive gene signature. Following the 
proposed procedure, we analyzed the current dataset to obtain 
the tuning parameters by 10-fold cross-validation. The 10 loops 
produced 10 combinations of tuning parameters, of which the 
gene signature might be different with each loop. Theoretically, 
the reselection of the significant genes for different loops of the 
cross-validation is essential to the validity of the approach (23). 
However, it does not mean that the classifications and selection 
are unstable or that the classifier will not predict accurately 
for independent data. Genomic signatures are generally not 
unique (20,24). As suggested by Freidlin et al (20), the first 
cross-validation subset could be used to select the tuning 
parameter. We found that the gene signatures including the 65 
significant genes with a threshold nOR=0.025 could provide 
a powerful prediction of response with the smallest P-values. 
Then, g=65 and R=0.025 were chosen as the tuning parameters. 

Fig. 1 shows the corresponding p-value profile by comparing 
the risk of disease progression between radiotherapy and 
non-radiotherapy groups for predicted radiosensitive patients. 
Table II shows the 65 genes included in the radiosensitive gene 
signature and their interaction effects with radiotherapy.

Validation of radiosensitive gene signature. Following the 
standard validation procedure described above, 86 patients 
were predicted as radiosensitive. We performed univariate 
logistic regression analysis to assess the effect of radiotherapy. 
Furthermore, multivariable analysis was also performed by 
adjusting gender, age, race, history of other malignancy, histo-
logic diagnosis, residual tumor and chemotherapy. Fig. 2A 
shows that radiotherapy strongly associates with the improved 
treatment response for radiosensitive patients. While for non-
radiosensitive patients, radiotherapy increased the risk of 
disease progression. When comparing radiosensitive and non-
radiosensitive patients when they all received radiotherapy, 
the risk of disease progression for radiosensitive patients was 
significantly reduced, as shown in Fig. 2B. These results are 

Table II. The 65 genes included in the radiosensitive gene signature and their interaction effects with radiotherapy.

  Main effects  Main effects of  Interaction
 Gene names of genes (SE) P-value radiotherapy (SE) P-values effects (SE) P-value

52 ARF3 -0.045 (0.033) 0.174 -0.065 (0.065) 0.319 -0.300 (0.101) 3.19E-03
53 RPL23AP7 -0.095 (0.049) 0.054 -0.048 (0.066) 0.468 0.192 (0.065) 3.26E-03
54 LOC642852 -0.066 (0.042) 0.117 -0.050 (0.066) 0.447 0.191 (0.064) 3.33E-03
55 S100PBP 0.009 (0.037) 0.819 -0.037 (0.065) 0.570 0.206 (0.069) 3.36E-03
56 LETM2 0.164 (0.065) 0.012 -0.050 (0.067) 0.450 -0.222 (0.075) 3.40E-03
57 LYN 0.065 (0.040) 0.101 -0.044 (0.066) 0.500 -0.197 (0.066) 3.42E-03
58 SGCA -0.045 (0.037) 0.226 -0.018 (0.067) 0.787 0.221 (0.075) 3.51E-03
59 CTNND2 0.015 (0.032) 0.639 0.055 (0.073) 0.451 0.926 (0.314) 3.56E-03
60 SNTA1 0.016 (0.035) 0.643 0.002 (0.067) 0.977 0.256 (0.087) 3.70E-03
61 PAPSS2 0.076 (0.035) 0.031 -0.053 (0.066) 0.419 -0.243 (0.083) 3.73E-03
62 NUMBL -0.094 (0.042) 0.026 -0.046 (0.066) 0.484 0.188 (0.064) 3.81E-03
63 SLC25A4 -0.061 (0.041) 0.137 -0.024 (0.067) 0.714 0.193 (0.066) 3.87E-03
64 STk25 -0.177 (0.041) 0.000 -0.034 (0.065) 0.603 0.183 (0.063) 4.01E-03
65 kLHL30 -0.018(0.036) 0.616 -0.018 (0.066) 0.786 0.225 (0.077) 4.03E-03

Figure 1. The -log10(p-values) profile by univariate logistic tests between 
radiotherapy and non-radiotherapy groups for predicted RS patients. It was 
found that gene signatures including top 65 significant genes with a threshold 
nOR=0.025 can provide a powerful prediction.

Figure 2 (A, B). The OR estimation for radiotherapy (RT) vs. non-radio-
therapy (NRT) and predicted radiosensitive (RS) vs. non-radiosensitive 
(NRS). The adjusted factors are sex, age, race, history of other malignancy, 
histologic diagnosis, residual tumor and chemotherapy.
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reasonable and consistent with general clinical expectation, 
and suggest that the predicted radiosensitive patients are 
accurate, and the positive radiotherapy effect on predicted 
radiosensitive patient is validated effectively.

Survival comparison for predicted radiosensitive patients. We 
further compared the survival of these predicted radiosensitive 
patients under radiotherapy and non-radiotherapy. Observed 
significant differences partially or indirectly suggested that 
our sensitivity prediction was effective. Fig. 3A shows the 
survival curve for these predicted radiosensitive patients 
under radiotherapy and non-radiotherapy. The significant 
difference suggested that the predicted radiosensitive patients 
strongly benefited from radiotherapy. Fig. 3B shows the 
survival comparison for predicted non-radiosensitive patients. 
A significant difference was detected between the two groups, 
suggesting that radiotherapy on non-radiosensitive patients 
would increase the risk of death. We further compared 
the survival among radiosensitive and non-radiosensitive 
patients all under radiotherapy treatment, shown in Fig. 3C. 
As expected, a strong positive effect of radiotherapy was 
observed on radiosensitive patients. In addition, there was no 
significant difference in survival between radiosensitive and 
non-radiosensitive patients who did not receive radiotherapy 
treatment (Fig. 3D). Taken together, the predicted radio-
sensitive and non-radiosensitive patients were appropriate 
predictions, suggesting that gene signature is potentially a 
predictive biomarker for sensitivity prediction for both radio-
sensitive and non-radiosensitive patients.

Comparison of new tumor event for predicted radiosensi-
tive patients. To further validate the predicted radiosensitive 
and non-radiosensitive patients, we compared the rate of 
new tumor event for predicted radiosensitive patients under 
radiotherapy and non-radiotherapy. New tumor event, as an 
important clinical index for prognostic outcome, was defined 
as metastatic, recurrent, and new primary tumor after initial 
treatment according to TCGA. The results by Fisher's exact 
test are summarized in Fig. 4. The predicted radiosensi-
tive patients who received radiotherapy had a significantly 

Figure 3 (A-D). The survival curves under radiotherapy and non-radiotherapy for both predicted radiosensitive (RS) and non-radiosensitive (NRS) patients. 
The colored areas denote the 95% confidence intervals for survival rate.

Figure 4. The comparisons of the rate of new tumor event among different 
groups. The rates for different groups are compared by Fisher's exact test. 
RT, radiotherapy; NRT, non-radiotherapy; RS, radiosensitive; NRS, non-
radiosensitive.
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lower rate of new tumor events. While for non-radiosensitive 
patients, radiotherapy might be a risk factor to increase the 
rate of new tumor event. These results were consistent with 
the results from survival analysis for the radiosensitive and 
non-radiosensitive patients (Fig. 3), and further validated our 
prediction on radiosensitivity.

Associations between radiosensitivity and clinical factors. 
To detect whether predicted sensitivity and clinical factors 
were related, we performed univariate and multivariate 
logistic regression analysis to find the clinical factors 
associated with our radiosensitivity prediction. Table III 
summarizes the results. Sex, age, histologic type, residual 
tumor and chemotherapy were significantly associated with 
predicted sensitivity in univariate analysis. In multivariable 
analysis, only histologic type was significantly associated 

with prediction. We performed univariate logistic analysis 
to evaluate the treatment response of radiotherapy under 
different strata of these clinical factors. Fig. 5A shows 
the OR (95% CI) and P-values under different strata of 
clinical factors for predicted radiosensitive patients. The 
result suggested that the risk of disease progression was 
significantly reduced for the predicted radiosensitive under 
radiotherapy in most subgroups. For the predicted non-
radiosensitive patients, there was potential risk of disease 
progression under radiotherapy for each subgroup, as shown 
in Fig. 5B. These strata analysis suggested that our predic-
tion on radiosensitive patients was stable and reasonable.

ROC analysis. To show the prediction power of the prediction 
pattern on disease progression, we selected the 80 patients who 
received radiotherapy. We performed ROC analysis by using 

Table III. Association among predicted radiosensitivity and clinical factors.

 Univariate analysis Multivariable analysis
 ---------------------------------------------------------------- ------------------------------------------------------------------
Characteristics NRS RS HR (95% CI) P-value HR (95% CI) P-value

Sex
  Female 80 36 1.00
  Male 52 50 1.197 (1.053-1.361) 0.0066 1.064 (0.940-1.204) 0.329
Age (median, 60;
interquartile range, 52-70)
  <60 70 30
  ≥60 62 56 1.191 (1.047-1.354) 0.0084 1.047 (0.923-1.188) 0.478
Racea

  White 114 77
  Non-white 16 6 0.878 (0.708-1.089) 0.2370 0.965 (0.789-1.181) 0.730
History of malignancy
  No 118 71
  Yes 14 15 1.152 (0.952-1.395) 0.1480 1.068 (0.895-1.274) 0.467
Histologic diagnosisa

  LMS 73 11
  DLS 14 34 1.781 (1.530-2.074) 2.6e-12 1.763 (1.479-2.101) 1.64E-09
  DT 2 0 0.877 (0.481-1.602) 0.6702 0.844 (0.457-1.557) 0.587
  MPNST 6 3 1.224 (0.911-1.645) 0.1803 1.167 (0.841-1.621) 0.356
  MFS 10 14 1.572 (1.294-1.910) 8.9e-06 1.537 (1.249-1.891) 6.88E-05
  SS 7 1 0.994 (0.728-1.357) 0.9701 1.025 (0.748-1.406) 0.877
  UPS 20 23 1.498 (1.279-1.754) 1.1e-06 1.477 (1.247-1.751) 1.14E-05
Residual tumor
  R0 89 48
  R1+R2 28 30 1.182 (1.018-1.372) 0.0296 0.958 (0.830-1.107) 0.563
  Rx 15 8 0.997 (0.805-1.237) 0.9815 1.110 (0.895-1.377) 0.344
Chemothearpy
  No 88 73
  Yes 44 13 0.798 (0.690-0.923) 0.0027 0.944 (0.819-1.088) 0.426

aNon-white group including African American and Asian. LMS, leiomyosarcoma; DLS, dedifferentiated liposarcoma; UPS, undifferentiated 
pleomorphic sarcoma; MFS, myxofibrosarcoma; DT, desmoid tumor; SS, synovial sarcoma; MPNT, malignant peripheral nerve sheath tumors.
NRS, non-radiosensitive; RS, radiosensitive; HR, hazard ratio; CI, confidence interval.
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the nOR values calculated for each patients and their recorded 
clinical treatment response. Fig. 6 shows the ROC curve. The 
prediction power was significantly high for nOR index. After 
cutting off nOR values according to the threshold R=0.025, the 
prediction power was still significant for predicting the treat-
ment outcome with AUC 0.80 (0.73-0.87).

Gene signature and cluster analysis. To provide evidence 
from the selected gene signature, we further extracted the 
expression pattern of these 65 genes to perform hierarchical 
clustering analysis by using R package heatmap. The result is 
present in Fig. 7. All patients were classified into two groups 
according the hierarchical cluster analysis. The blue bar 
below the dendrogram denoted the predicted radiosensitive 
patients, while the yellow bar denoted the predicted non-
radiosensitive patients. Most of these predicted radiosensitive 
and non-radiosensitive patients were well-matched with 
the result of hierarchical cluster based on the selected gene 
signature. In our previous prediction, there were 86 patients 
(blue bar) predicted as radiosensitive patients. Most (78 out 
of 86) of them were clustered at the left branch. The right 
branch clustered 114, and among them, 106 patients were 
predicted as non-radiosensitive patients (yellow bar). This 
result validated the radiosensitive patients we predicted and 
also suggested that the radiosensitive gene signature we 
develop was predictive and informative.

Discussion

Adjuvant radiotherapy is used in the treatment of soft tissue 
sarcomas to provide better local control. The treatment-induced 

Figure 5. The strata analysis to estimate OR (radiotherapy vs. non-radiotherapy) for predicted radiosensitive (RS) (A) and non-radiosensitive (NRS) patients 
(B). Histologic type DT, MPNST, MFS and SS are combined together as ‘Other type’, because of small sample sizes. Chemo denotes chemotherapy, and 
non-chemo denotes no chemotherapy.

Figure 6. ROC analysis of nOR index and predicted radiosensitive/non-
radiosensitive (RS/NRS) to show the power of our prediction on treatment 
outcome.
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histologic response reflects treatment effectiveness and is 
highly associated with the patient's prognosis. Prediction of 
possible outcome of a therapy treatment has important clinical 
significance. Clinical factors usually have a poor prediction 
on radiosensitivity. There is increasing evidence that patients 
with similar clinical characteristics have tumors that are very 
different with regard to genes and pathways that are driving 
tumor growth. In the era of precision medicine, ‘omics’ 
technologies can robustly generate large-scale molecular 
data, which provides extraordinary opportunities to detect 
biomarkers and to build more accurate gene signatures and 
prognostic models.

It would be ideal to perform a clinical phase II trial for 
developing biomarkers for patients most likely to respond to 
radiotherapy. However, such biomarkers are difficult to iden-
tify and are often not available by the time phase III trials 
are initialized. The main concerns are: i) signature develop-
ment in high dimensional gene expression data requires large 
sample sizes, and ii) when the proportion of sensitive patients 
is low, a large number of patients need to be enrolled to ensure 

sufficient number of sensitive patients and achieve acceptable 
power. This may not be feasible for sarcoma and other rare 
cancers. The proposed design and model described here may 
be useful in such situations, especially for rare cancer types, 
like sarcoma.

In this study, we extend and propose a statistical approach 
to develop a radiosensitive gene signature and predict radio-
sensitive patients with sarcoma. A nested inner loop 10-fold 
cross-validation was used to develop and validate the gene 
signature. This is a standard internal validation procedure. 
The 10-fold cross-validation permits the maximization of the 
portion of study patients contributing to the development of 
the diagnostic signature and the minimization of prediction 
error (22). We verified our gene signature and sensitivity 
prediction by several aspects: i) we developed a novel cross-
validation procedure. The result showed that the predicted 
radiosensitive patients under radiotherapy had significantly 
better treatment response than both predicted radiosensitive 
patients under non-radiotherapy, and predicted non-radiosen-
sitive patients who receive radiotherapy; ii) after adjusting 

Figure 7. Hierarchical clustering analyses. Hierarchical clustering was used to determine the expression pattern of selected 65 genes. The top blue and yellow 
bands denote the predicted radiosensitive and non-radiosensitive patients, respectively. In total, 78 out of 86 predicted radiosensitive patients are classed at the 
left branch, and 106 out of 132 predicted non-radiosensitive patients are classed at the right branch.
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chemotherapy and other clinical factors, the risk of disease 
progression was still significantly reduced under radiotherapy 
for these predicted radiosensitive patients; iii) we also vali-
dated our prediction by comparing the overall survival. The 
results showed that the predicted radiosensitive patients who 
received radiotherapy had significantly better survival than 
both predicted radiosensitive patients under non-radiotherapy, 
and predicted non-radiosensitive patients who receive radio-
therapy; iv) the predicted radiosensitive patients who received 
radiotherapy had a significantly reduced rate of new tumor 
events. v) ROC analysis suggested a powerful prediction of 
our model with AUC=0.8; vi) Strata analysis showed that the 
predicted radiosensitive patients still had significantly low risk 
of progression under radiotherapy, irrespective of subgroup; 
vii) we finally validated our prediction using a hierarchical 
cluster analysis on the selected gene signature. We found that 
more than 80% predicted radiosensitive patients and non-
radiosensitive patients were well-clustered into two branches 
of the dendrogram. All these direct and indirect results 
confirmed our prediction on radiosensitivity and the gene 
signature.

The developed gene signature is easy to apply for predicting 
new patients. According to the estimation of each gene in gene 
signature (Table II), calculating the OR for each gene using 
the standardized expression value of RNAseq, and comparing 
product of these OR (nOR) with the threshold 0.025 can 
predict patients who are radiosensitive (based on whether their 
nOR value is less than the threshold). This simple model can 
easily be applied in clinical practice, because gene expression 
data are readily available for patients.

The genes included in the signature not only associate 
with the radiosensitivity, but also may contribute to the 
molecular basis of sarcoma. Results from pathway analysis 
show that these involved genes associated with a wide range 
of pathways and functional annotation, like calcium signaling 
pathway, inflammatory mediator regulation of TRP chan-
nels, wnt signaling pathway, microRNAs and proteoglycans 
in cancer, transcriptional and misregulation in cancer, 
colorectal and pancreatic cancer. In the current gene signa-
ture list, CDC5L is correlated with advanced TNM stage 
of osteosarcoma (25) and responds poorly to neo-adjuvant 
chemotherapy (26). Overexpression of CDC5L favors cell 
cycle progression of hepatocellular carcinoma cells (27) and 
also plays an important role in glioma (28). TGFBR2 might 
be a key gene associated with sarcoma (29). It also acts as 
a driver of colorectal cancer (30,31), and is strongly associ-
ated with gastric (32), oral carcinoma (33), ovarian (34) and 
breast cancer (35,36). ABCA8 and WDFY2 contribute to 
the progression and development of ovarian cancer (37,38). 
A meta-analysis suggests that NAT1 polymorphisms signifi-
cantly associate with the risk of pancreatic cancer (39). A 
previous study also suggests that NAT1 might be a possible 
prognostic biomarker for lymph node-positive breast cancer. 
Other genes, like CDC37L1, ARTN, SGPP1, S100PBP, 
LETM2, CTNND2 and kLHL30, were found to be related 
with several different types of cancer (40-46). These genes 
involved in current radiosensitive gene signature strongly 
suggest that they might be responsible for molecular basis of 
sarcoma and radiosensitivity, and also supported our develop-
ment of this signature.

Although this study has much strength, there are some 
drawbacks, such as the small sample size and the lack of 
suitable external evidence from molecular, cellular, and 
importantly clinical level, although we provided several 
related results to support our prediction. In addition, the 
signature identified in this study has no overlap with that of 
our previous one on a survival outcome (21). This may be due 
to the outcomes being different, and the small sample size. 
Although, these are some drawbacks, we still provided some 
useful model framework for rare cancer to develop radiosen-
sitive gene signatures. We also suggested a potential useful 
gene signature for predicting radiosensitivity for patients 
with soft tissue sarcoma.
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