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The recruitment of neutrophil to the primary cancer has been shown to be steered by neoplastic cells or tumor-educated
mesenchymal stromal cells and has a prometastatic effect. However, the neutrophil chemotaxis and their interaction with
tumor cells in the distal metastasized tissues remain elusive. In this review, we discussed emerging research on the
interaction between neutrophil recruitment and tumor metastasis, which is essential for studying tumor cell invasion and
related immunotherapy.

1. Main Text

Metastasis is the basic malignant feature of cancer and the
main cause of death in cancer patients. In distant metasta-
sis, tumor cells interact with host organs to form a meta-
static niche. Therefore, tumor metastasis is usually organ
specific and, in many cases, is related to the systemic
immune status. It is becoming increasingly clear that neu-
trophils associated with tumors play an important role in
the occurrence and metastasis of many cancers [1]. How-
ever, according to the local microenvironment of neutro-
phils, they display great functional heterogeneity and
multiple roles. Most neutrophil tumor researches focus
on the early metastasis stage, during which neutrophils
accelerate the spread of single tumor cells from the pri-
mary nidus and promote their infiltration into adjacent
blood vessels. Here, we will put more emphasis on the
metastasis-promoting effect of neutrophils on circulating
tumor cells and how they promote tumor extravasation
in distal blood vessels.

2. Neutrophil Recruitment and
Tumor Metastasis

Tumor metastasis is a multistage process. When tumor
cells metastasize, growth factors and cytokines secreted
by stromal cells increase the ability of tumor cells to move,
invade, and metastasize, causing epithelial-mesenchymal
transition (EMT) of tumor cells. Activated tumor cells
detach from the primary nidus and enter into the circula-
tion, which is named as intravasation; if the tumor cells
are not damaged by blood flow shear stress and immune
cells in the blood vessels, they can adhere to the endothe-
lial cells of the distal blood vessel, then penetrate the vessel
wall and infiltrate into the distal tissues, which is named
as extravasation. The extravasated tumor cells finally sur-
vive and proliferate in a new colonized environment [1–3].

2.1. Neutrophils and Tumor Intravasation. Tumor cell intra-
vasation into the circulation is closely related to the angio-
genesis of tumor vessels, as these vessels are much more
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accessible. Neutrophils also mediate the expression of var-
ious angiogenic factors such as vascular endothelial growth
factor (VEGF) and matrix metalloproteinase- (MMP-) 9.
Experiments have shown that MMP-9 produced by liver
cancer-associated neutrophils could cleave the bound
extracellular matrix (ECM) and benefit VEGF-A release,
thereby promoting tumor angiogenesis [4]. In tumor
transplantation models, the proangiogenic molecule Bv8
released by tumor-associated neutrophils can significantly
promote tumor angiogenesis and tumor growth [5].

2.2. Neutrophils and Circulating Tumor Cells. Intravasation
of tumors cells into the blood circulation provides the fast
access to distal metastases. Although cancer cells may first
invade the adjacent lymphatic vessels and accumulate in the
draining lymph node, the majority of these cells will eventu-
ally enter the blood circulation and proceed further to the
distant sites. Being a source of MMPs and growth factors,
both neutrophils and platelets play a key role in the onset
of tumor intravasation and help the tumor cells cross the
endothelial barrier into the bloodstream [6]. More impor-
tantly, interaction with platelets and neutrophils can protect
the circulating tumor cells from being eliminated by the
bloodborne immune cells.

The tumor cells that enter circulation face multiple
challenges, which include the detachment from the solid
base and swimming in the flow with high shear stress
[7]. Moreover, tumor cells in the circulation are under
attack by the surveilling NK cells in the blood. Only the
cells that extravasate at distant sites can survive. Killing
circulating tumor cells or blocking tumor cell extravasation
is a key line of defense against tumor metastasis, which,
however, is often compromised by the recruited neutro-
phils and platelets.

In the circulation, tumor cells could be adhered by plate-
lets. Platelet-derived transforming growth factor-β (TGF-β)
and platelet-derived growth factor (PDGF) could inhibit nat-
ural killer cell (NK) activity, and thus, platelet-covered tumor
cells often escape the recognition and the lysis of NK cells.
The tumor-activated platelets can also secret ATP, which
binds the P2Y2 receptor expressed by endothelial cells and
makes the vessel more permissive to the tumor extravasation
[8]. Respectively, neutrophils have also been shown to sup-
press the immune response against circulating tumor cells.
The presence of neutrophils constrains the activation of cyto-
toxic T cells and NK cells [9]. In addition, platelets could
enhance the ability of neutrophil rolling on the endothelial
cells and release chemokines, leading to further neutrophil
recruitment. This effect enhances the extravasating rate of
circulating tumor cells [10].

2.3. Neutrophils and Tumor Extravasation. Similar to the
process of leukocyte extravasation, circulating tumor cell
extravasation involves adhesion of tumor cells, transendothe-
lial migration, and the migration across the vascular base-
ment membrane into the metastasis sites.

2.3.1. Adhesion of Tumor Cells to the Endothelia. When
the tumor cells move to the capillaries, they are physically

blocked by the narrow capillaries. In the metastatic tissue,
tumor cells that move on the endothelial layer can interact
with the endothelial cells and upregulate the expression of
E-selectin in resting endothelial cells. In the meantime,
tumor cells express a variety of glycoprotein ligands of
E-selectin, which promote the formation of initial adhe-
sion [11, 12].

After initial adhesion, the firm adhesion of tumor cells is
required for the subsequent transendothelial migration.
Adhesion molecules such as integrins, MUC1, and CD44
are involved in the firm adhesion [13]. Integrins such as β1
integrin, β4 integrin, and αVβ3 integrin are shown to be
upregulated, which facilitates tumor cell adhesion to the
endothelial layer and their penetration through the endothe-
lial and perivascular stroma [14]. In the metastasis of breast
and colon cancer, MUC1 has been shown to interact with
intercellular cell adhesion molecule-1 (ICAM-1), E-selectin,
and galectin-3, promoting the firm adhesion of tumor cells
to the adjacent endothelia [15]. After glycosylation, CD44
can also interact with the upregulated selectins and promote
the endothelium adhesion and transendothelial migration of
pancreatic and breast cancer cells [16].

2.3.2. Transendothelial Migration of Tumor Cells. Transen-
dothelial migration is the process after firm adhesion, includ-
ing paracellular and transcellular migration. Paracellular
transendothelial migration refers to the migration of tumor
cells through endothelial junctions. Studies have found that
VEGF and TGF-β produced by tumor cells and tumor-
associated leukocytes destruct the vascular endothelium-cad-
herin-β-catenin complex, which weakens the endothelial
junctions and promotes the paracellular transendothelial
migration of tumor cells [17, 18]. Angiopoietins secreted by
breast cancer cells can lead to endothelial cell contraction
and loosen the vascular barrier [18]. On the other hand,
transcellular migration, the nonjunctional migration through
endothelial cell, has been found in the cancer metastasis stud-
ies in vitro [19]. However, whether this occurs in vivo
remains to be validated. Neutrophil extracellular traps
(NETs) released by neutrophils play a crucial role in mediat-
ing tumor metastasis and recurrence. NETs are reticular
structures released by neutrophil activation, which contain
DNA, myeloperoxidase (MPO), and the proteins released
by neutrophil degranulation and therefore can capture the
invading microorganisms [20]. It has been shown that the
circulating tumor cells could induce the release of NETs from
their associated neutrophils, which in turn also capture the
circulating tumor cells. The captured tumor cells cannot be
killed, but will adhere to endothelial cells, survive from the
lumen flow shear stress, and eventually extravasate [21, 22].
Neutrophils on its own could also adhere to the blood vessel
or liver sinus and increase the incidence of tumor extravasa-
tion. More importantly, the neutrophils that extravasated
into the premetastatic tissue accumulate and form the niche
suitable for the incoming tumor cells [23].

After transmigration through the endothelial cell barrier,
tumor cells invade the underlying basement membrane
surrounding the blood vessel. β1 integrin, focal adhesion
kinase (FAK), and Rho GTPase are required for the
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invasion of tumor cells into the vascular basement membrane
of mice. Eventually, tumor cells enter a new tissue to survive
and proliferate [24]. During extravasation, tumor cells adapt
their shape to the microenvironment by remodeling the actin
assembly and actomyosin contraction, being round or elon-
gated [25]. The round shape tends to overcome the shear
forces of blood flow, while the cell in the elongated form
can extend into the endothelial junctions, causing the endo-
thelium contraction and promoting the transendothelial
migration [26]. The physical properties and the chemical
cues of the ECM determine the shape of tumor cells as well
as their modes of migration.

3. Heterogeneity of Cancer Metastasis

The mechanisms of tumor cells extravasating into different
tissues are likely to be different. Vessel permeability and the
adhesion profiles of endothelial cell differ in diverse tissues,
which correlate with the function of organs that they are
located in. For example, the sinus structure of the liver or
bone marrow could be permissive to the tumor cells, while
the blood-brain barrier may require extra interactions to
facilitate tumor cell infiltration into the brain. In addition,
it has been shown that in the lung a special UDP/P2y6 axis
promotes metastasis of melanoma by remodeling the preme-
tastatic niche [27].

3.1. Lung. The lung is the most studied site of metastasis, in
which researchers have shown that neutrophils acted as a
major driver of metastatic colonization by breast cancer cells.
Neutrophil transmigration in the lung is very different from
transmigrations in the systemic microcirculation, where leu-
kocyte extravasation occurs primarily through the postcapil-
lary venules. Pulmonary extravasation of neutrophils occurs
mainly in the alveolar capillaries. It is not an adhesion factor,
but a biophysical factor in the pulmonary capillaries that
blocks circulating neutrophils and directs them through
endothelial cells [28]. In the case of tumor metastasis, neutro-
phils accumulate in the premetastatic lung microenviron-
ment long before tumor cells arrive. Neutrophils can
infiltrate into the lung and secrete proinflammatory factors
such as leukotrienes to alter pulmonary vascular permeability
and stimulate cell adhesions. On the other hand, tumor cells
that expressed leukotriene receptors are recruited to the
premetastatic lung. Blocking the synthesis of leukotrienes
has shown strong inhibitions in the lung metastasis [23].

3.2. Liver. When migrating through the hepatic sinus, the
agglomerated tumor cells can block the blood flow and the
transient ischemia triggers an inflammatory reaction. Inflam-
mation of the hepatic sinusoids can promote the adhesion of
tumor cells to vascular endothelial cells, allowing tumor cells
to escape the killing of Kupffer cells and NK cells. During this
process, cell surface adhesion molecules E-selectin, vascular
cell adhesion molecule-1 (VCAM-1), ICAM-1, and carcino-
gen embryonic antigen (CEA) play an important role. The
number of neutrophils in the hepatic sinusoids is signifi-
cantly increased during the early stage of metastasis, accom-
panied by an increased expression of CXCL1. Neutrophils in

the hepatic sinusoids are often colocalized with metastatic
tumor cells, and depletion of neutrophils significantly
reduced tumor metastasis in the liver [29].

3.3. Central Nervous System. The blood vessel in the cen-
tral nervous system is extremely tight and restrictive not
only for migrating cells but also for soluble molecules.
Microvessels of the central nervous system blood vessels
are characterized by complex tight junctions between
endothelial cells and the extra parenchymal basement
membrane ensheathed by astrocyte endfeet, which collec-
tively constitute the blood-brain barrier. However, tumor
cells can cross the blood-brain barrier and survive and prolif-
erate in the brain microenvironment. In contrast, most drugs
can hardly reach the brain to kill tumor cells, which signifi-
cantly increases the difficulty of the treatment of brain
metastasis.

Brain metastasized tumor cells have strong interference
on the structure and function of adjacent endothelial cells,
which weakens the blood-brain barrier. In breast cancer,
brain microvascular endothelial cells (BMEC) overexpress
angiopoietin-2, which can alter the structure of tight junction
protein ZO-1 and claudin-5, attenuating the integrity of
blood-brain barrier [30]. Neuropeptide substance P secreted
by breast cancer cells can activate BMEC to produce TNF-α
and angiopoietin-2 and increase blood-brain barrier perme-
ability [31]. Recent studies have found that both tumor cells
and tumor-associated leukocytes are capable of producing
cathepsin S, which cleaves the junctional adhesion molecule
JAM-B. Drug inhibition of cathepsin S expression can reduce
the occurrence of brain metastases [32]. Therefore, restoring
the integrity of the blood-brain barrier might be a strategy to
elude the brain metastasis.

4. Intravital Imaging of Neutrophils in
the Metastasis

To investigate the metastasis, many approaches have been
developed in the last decades, including both in vitro and
in vivo studies. In vitro studies offer great opportunities
in understanding the molecular mechanism and the signal-
ing molecules involved in the tumor cell transendothelial
migration. However, how these molecules work in the body
remain elusive. Much of the in vivo knowledge on tumor
cell migration into tissues has been traditionally derived
from histological studies that lack assessment of the
dynamics of cell behavior. To analyze the tumor extravasa-
tion in situ, high-resolution and rapid intravital microscopy
(IVM) is favorable. IVM images dynamic cellular processes
in live animals using phase-contrast or, more frequently,
fluorescence microscopy. It has been developed over the
last 10 years for the imaging of tumor cells and represents
a powerful tool for studying cellular responses in time
and space.

Cells tracking is commonly achieved by adoptive transfer
of cells that are stained ex vivo. Cells can be labeled with
membrane permeable dyes, such as TAMRA (5-(and-6)-car-
boxytetramethylrhodamin) and CFSE (5-(and-6)-carboxy-
fluoresceindiacetate, succinimidyl ester), lipophilic tracers
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such as carbocyanine dyes Dil and its derivatives that mark
cell membranes, or with DNA labelling agents such as
Hoechst 33342 to mark nuclei. Fluorescently labeled dextran
can be injected intravenously into the animal, enabling delin-
eation of the inner borders of blood vessels [33]. Intrastromal
injection of labeled dextran can be used to delineate lym-
phatic vessels and reticular fiber networks within lymph
nodes. More recent techniques focus on functional imaging,
which allow investigation not only of cell dynamics in sit,
but also real-time measurement of intracellular signaling
pathways or metabolic pathways. One of the best examples
of functional imaging is the incorporation of GFP-LifeAct,
a 17-amino acid peptide derived from yeast that labels fila-
mentous actin (F-actin) structures, into cells in vitro or
in vivo. This permits real-time visualization of actin dynam-
ics. To be able to track the metastasis, tumor cells can be
labeled with photoconvertable protein, such as Kaede. Kaede
is originally in green fluorescence but shifts to red by violet
light, which allow the researchers to follow the same cells in
both the primary and the metastasis locus [34].

5. Clinical Studies of Tumor Extravasation

Many clinical data indicate that the increase in the ratio of
neutrophil-to-lymphocyte or the G-CSF level in peripheral
blood often implicates a poor tumor prognosis or a poor che-
motherapy effect. For example, the increased ratio of neutro-
phils to CD8+ T cells in surgically resected non-small-cell
lung cancer tissues is associated with a high recurrence rate
and shortened survival [35]. In the non-small-cell lung
cancer, the increased peripheral blood neutrophil count is
considered an independent poor prognostic factor. The ratio
of serumMMP-9 level and the absolute neutrophil count can
be used as a predictive biomarker for the efficacy of bevacizu-
mab and platinum dual-target chemotherapy [36]. The
relationship between the number of infiltrating neutrophils
in tumor tissues and prognosis has been reported in different
tumors. In recent years, there have also been related studies
on mesenchymal tumors and neutrophils: neutrophil-to-
lymphocyte ratio is related to the progression of various soft
tissue tumors such as osteosarcoma [37]. C3aR promotes the
occurrence and development of malignant melanoma by
inhibiting the effects of neutrophils and CD4+ T cells [38].
As the PD-1 antibody enters clinical trials and the efficacy
of tumor immunotherapy has received much attention,
neutrophil-to-lymphocyte ratio has been found to be related
to the prognosis of patients treated with ipilimumab [39],
indicating that the neutrophil count and related indicators
can be used for phenotyping of tumor immunotherapy and
evaluating the efficacy.

Based on the conceptual framework of tumor extravasa-
tion, many drugs have been designed or validated and most
of them have so far focused on targeting the adhesion of
tumor cells to endothelial cells. For example, both Seliciclib
and Lovastatin have been shown to decrease the expression
of E-selectin by endothelial cells and thus inhibit the tumor
extravasation on the initial adhesion step [40–42]. JNK
inhibitors have been shown to restrain extravasation of
tumor cells by inhibiting both tumor cell adhesion and endo-

thelial contraction. In the future, drug research on the signal-
ing pathways and factors involved in the transmigration
across the endothelial monolayer and the underlying base-
ment membrane is needed [40].

6. Concluding Remarks

In this review, we have discussed the possibilities that neutro-
phils could be involved in the extravasation step of tumor
metastasis. Under tumor conditions, neutrophils are polarized
to produce the prometastatic molecules, which protect the cir-
culating tumor cells from immune attacks and facilitate the
tumor cells to extravasate blood vessels and into the distal
organs. More specifically, various mechanisms are employed
for neutrophils to adhere to vessels or sinuses and to penetrate
the blood-brain barrier and pulmonary capillaries. With
regard to the fact that each type of tumor cells has a preferen-
tial metastatic organ, we could assume that the local cues in
those organs are different, which certainly requires further
investigation. To study the dynamic process of tumor extrav-
asation, we have to take the advantage of the advanced intra-
vital imaging techniques and the emerging biotracking tools.
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