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Abstract
The role for royal jelly (RJ) in promoting caste differentiation of honeybee larvae into queens

rather than workers is well characterized. A recent study demonstrated that this poorly

understood complex nutrition drives strikingly similar phenotypic effects in Drosophila mela-
nogaster, such as increased body size and reduced developmental time, making possible

the use of D.melanogaster as a model system for the genetic analysis of the cellular mecha-

nisms underlying RJ and caste differentiation. We demonstrate here that RJ increases the

body size of some wild-type strains of D.melanogaster but not others, and report significant

delays in developmental time in all flies reared on RJ. These findings suggest that cryptic

genetic variation may be a factor in the D.melanogaster response to RJ, and should be con-

sidered when attempting to elucidate response mechanisms to environmental changes in

non-honeybee species.

Introduction
In the social honeybee Apis mellifera, the royal jelly (RJ) diet is known to be responsible for the
development of female larvae into queen rather than worker bees[1–3]. Fertile queen bees are
markedly larger, develop more rapidly, and have significantly longer lifespans than sterile
worker bees[1–3]. Interestingly, differentiation of honeybee larvae into queens rather than
workers is not the result of underlying differences in genotype, but instead has been shown to
be a direct consequence of epigenetic changes brought about through larval ingestion of RJ
[4,5]. These effects of RJ were previously shown to be conserved in Drosophila melanogaster, as
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rearing D.melanogaster in the presence of RJ decreased developmental time, increased body
size, and increased fertility and lifespan of the female progeny[6]. It was concluded from these
findings that RJ acts across insect species, implying a functionally conserved mechanism of
action.

It is interesting to note, however, that this previous study demonstrated phenotypic and
physiological effects of RJ using only one wild-type D.melanogaster strain, Canton-S (Can-S).
Multiple wild-type strains of D.melanogaster exist, and significant differences in responses to
allelic mutations and environmental stimuli have been observed both between and even within
certain wild-type strains[7–9]. As a result, wild-type organisms utilized in a study must be
strictly controlled to avoid confounding experimental variables, however, doing so often pro-
vides a limited view of what occurs in nature, as the alleles in a genome usually vary among
individuals[10–13]. Furthermore, cryptic genetic variation (CGV), which does not contribute
to the normal range of phenotypes observed in a population, can significantly modify an exist-
ing phenotype in response to environmental changes[13]. Such a complex phenomenon could
be particularly important to consider when introducing an abnormal food source, such as RJ,
into a D.melanogaster population.

The importance of CGV and wild-type strain differences became apparent when we
attempted to replicate previously reported RJ-fed D.melanogaster findings[6]. Despite
multiple attempts, we were only able to replicate increases in the size of RJ-fed flies when
using the Can-S D.melanogaster strain. Furthermore, in contrast to a previous report[6], we
observed increased developmental times for every D.melanogaster strain reared on RJ con-
taining food. Our findings suggest that the differential responses to RJ may be the result of
CGV, and reaffirm the importance of considering genetic background dependence as a criti-
cal determinant capable of modifying phenotypes and/or behaviors that arise after environ-
mental challenges.

Materials and Methods
Canton-S and Oregon-R Drosophila melanogaster were procured from Bloomington (stocks #1
and #5, respectively), and were maintained as isogenized laboratory strains. All flies were kept
in an incubator with a 12:12 LD cycle at a temperature of 23–25.5°C, with an unregulated
humidity ranging from 50–60%. Both strains were maintained on 2.5g of instant fly food (pro-
prietary Carolina Formula 4–24 Medium, Blue; Burlington, NC) combined with 10 mL of
water. Pure honeybee royal jelly (RJ) was a gift from Dr. Ryszard Maleszka, which he procured
from his own laboratory’s colonies. It was stored at 4°C and protected from light when not in
active use.

Fly food for the rearing experiments was prepared by adding RJ to instant fly food through
manual mixing of the appropriate amount of RJ (0%, 10%, 15%, 20%, or 25% as indicated, w/v)
into 10 ml of water prior to addition of the water to 2.5g instant food.

To assess differences in body size in both strains of D.melanogaster in response to RJ, mat-
ing was conducted by initially placing five male and five female flies into a vial, and upon con-
firmation of larvae visibly present within the vial, removing parents. Vials were visually
checked daily, and action was taken for each vial as needed. Eclosed flies were removed from
the vial after each eclosion period, and whole body length of male and non-virgin female flies
was subsequently measured using standard millimeter micro-calipers under a dissecting micro-
scope. To ensure greater accuracy of measurements, females were not measured until they had
completely shed their pupal waste products, but before they any signs of a distended abdomen.
Measurements were made across multiple vials for each condition (of RJ%), until a sufficient
number of flies had been measured for each condition.
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Pilot experiments were conducted at Stanford University and replicated at Bridgewater
State University, however, finding of no difference between initial preliminary results
prompted collaborative data collection between the two universities thereafter. Data from both
locations was gathered in an identical fashion and was combined for all analyses after no differ-
ence was observed between data collected at either location (as described below).

Length of time until the first eclosion was determined for at least two vials for both strains
across all conditions (of RJ%) by visual inspection of the vials after removal of the parental gen-
eration (mating and parental generation removal as described above). Vials were visually
inspected every dusk (1 hr before lights off) until flies began to eclose, and then continued to be
inspected visually in this way for three consecutive days thereafter.

Statistical analyses were performed using one-way ANOVA, with Tukey HSD for subse-
quent pairwise comparisons (or Dunnett’s T3 for comparisons with unequal variances found
by a Levene’s Test), for both time to first eclosion and body length in male and female RJ fed
flies compared to control fed flies. Data obtained from both Stanford University and Bridgewa-
ter State University were combined for these analyses, as a Two-Way ANOVA revealed no sig-
nificant difference between the results obtained in any experiments at the two different
institutions (F1,279 = 0.13, p = 0.72).

Results
We were interested in reproducing previous findings that rearing Drosophila melanogaster on
RJ resulted in larger female flies with a shortened developmental time[6]. We initially tested
the effects of RJ on D.melanogaster development utilizing Oregon-R D.melanogaster (Ore-R).
However, when female flies were reared on food containing 10% (n = 72), 15% (n = 24), and
20% (n = 24) RJ, there was no significant difference in body length of the progeny compared to
controls (n = 87) reared on 0% RJ (F2,180 = 2.80, p = 0.063, Levene’s p<0.001, all subsequent
pairwise comparisons p>0.10; Fig 1A and 1B, S1A Fig and S1 Data). Additionally, we observed
that in Ore-Rmales, flies were smaller when raised on 20% RJ (n = 41) compared to 0% RJ
(n = 44; t1,83 = 3.56, p = 0.001; Fig 1B and 1C, S1B Fig, S1 Data). Furthermore, in a subset of 0%
(n = 4), 10% (n = 2), 15% (n = 2), and 20% (n = 4) vials selected for additional time to eclosion
analysis, increasing percentages of RJ in the food resulted in significant delays in larval develop-
mental timing in terms of time to first eclosion (F3,8 = 6.49, p = 0.015; Fig 1D and S2 Data) for
both 15% p = 0.024) and 20% (p = 0.040) groups.

As a prior study reporting larger D.melanogaster size was conducted with Canton-S D.mel-
anogaster (Can-S)[6], we hypothesized that the dramatic phenotypic effects of RJ could be a
manifestation of CGV. To test this, we repeated our RJ experiments using Can-S flies. Interest-
ingly, we found that female Can-S flies reared on 15% (n = 52) and 20% (n = 34) RJ exhibited a
significantly longer body length compared to controls (n = 65), and that body length increased
in a dose-dependent manner (F3,210 = 26.63, p<0.001, Levene’s p = 0.12, p<0.001 for 15% and
20% comparisons to 0%; Fig 2A and 2B, S1C Fig, and S1 Data). No change in body length was
observed for female flies reared on 10% RJ (n = 63) compared to controls. Subsequent pairwise
comparisons showed that of the female Can-S flies, those reared on 10% RJ were significantly
smaller than those reared on 15% (p = 0.001) or 20% RJ (p<0.001), but that flies reared on 15%
RJ were not significantly smaller than those reared on 20% RJ (p = 0.33; Fig 2A and 2B).

For male Can-S flies, slight size differences were observed when they were raised on 10%
(n = 45), 15% (n = 20), or 20% (n = 6) RJ compared to controls (n = 29; F3,96 = 30.27, p<0.001,
Levene’s p<0.001; all pairwise p<0.001, Fig 2B and 2C); however, no size differences were
observed in flies raised on 10% RJ or above (all p>0.75). However, we observed much fewer
live male flies in higher percentages of RJ compared to flies raised on 10% RJ (n = 45), possibly
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indicating that male Can-S flies are more sensitive to RJ than female flies. As with the Ore-R
flies, we selected a subset of 0%, 10%, 15%, and 20% RJ (all n = 4) Can-S vials for more in-
depth time-to-eclosion analysis. We observed that increasing the percentages of RJ in the food
to 15% or 20% correlated with marked delays in larval development (F3,12 = 21.63, p<0.001) in
a dose dependent manner (p = 0.033 and p<0.001 for 15% and 20% respectively; Fig 2D and S2
Data). Additionally, of the Can-S flies, those raised on 20% RJ took significantly longer to

Fig 1. RJ reduces body size of male but not femaleOre-R D.melanogaster, and increases developmental time for both sexes in a dose-
dependent manner. (A, B) FemaleOre-R flies reared on food containing 10% (n = 72), 15% (n = 24), and 20% (n = 24) RJ demonstrated no
differences in size compared to controls (n = 87; F2,180 = 2.80, p = 0.063, Levene’s p<0.001, all subsequent pairwise comparisons p>0.10), while
(B, C) males reared on 20%RJ (n = 41) were slightly smaller than controls (n = 44; t1,83 = 3.56, p = 0.001). (D) However, increasing amounts of RJ
significantly delayed larval development times for both male and female flies raised on 15% and 20%RJ in multiple vials (n� 2 vials for each
condition; F3,8 = 6.49, p = 0.015). Ruler lines indicate 0.1mm intervals. *denotes significant difference relative to control at a value of at least
p < 0.05.

doi:10.1371/journal.pone.0159456.g001
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Fig 2. RJ increases body size of Can-S D.melanogaster and extends developmental time in a dose-dependent manner.
(A, B) Female Can-S flies reared on 15% (n = 52) or 20% (n = 34) RJ but not those reared on 10% (n = 63) were significantly
longer than controls (n = 65; F3,210 = 26.63, p<0.001, Levene’s p = 0.12, p<0.001). Further, while body length increased in a dose-
dependent manner, and flies reared on 10%RJ were significantly smaller than those reared on 15% (p = 0.001) or 20% RJ
(p<0.001) RJ, flies reared on 15%RJ were not significantly smaller than those reared on 20%RJ (p = 0.33). (B, C) Similarly, male
Can-S flies reared on 10% (n = 45), 15% (n = 20), or 20% (n = 6) RJ were also significantly larger than controls (n = 29; F3,96 =
30.27, p<0.001, Levene’s p<0.001; all pairwise p<0.001). However, while male Can-S flies raised on 10%RJ were significantly
larger than flies raised with 0% RJ, those reared on 15% and 20%RJ did not significantly differ from flies raised on 10%RJ (all
p>0.75). (D) Increasing amounts of RJ significantly delayed larval development times in multiple vials of flies raised on 15% and
20%RJ (n = 4 for all; p = 0.009). *: significance at p < 0.01. Ruler lines indicate 0.1mm intervals. *denotes significant difference
relative to control at a value of at least p < 0.05.

doi:10.1371/journal.pone.0159456.g002
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eclose compared to those on 15% RJ (p = 0.009), and flies reared on 15% RJ took marginally
longer than 10% RJ flies (p = 0.076). Flies raised with concentrations of RJ above 20% exhibited
no eclosions.

Discussion
Our findings demonstrate that many of RJ’s effects on honeybees appear to be preserved in
Drosophila melanogaster, but only in some strains. This is consistent with a large body of evi-
dence indicating that CGV can have significant experimental impact[7–9,14–18], and high-
lights how profoundly genetic background can influence phenotypic outcomes. As there is
evidence that RJ differentially effects longevity, body size, and fecundity, of multiple other spe-
cies, such as silkmoths[19], crickets[19], C. elegans[20], and mice[21], it will be important to
consider how CGVmay be influencing such observations. This will be particularly true for
studies aiming to elucidate the mechanism by which RJ response has been retained across spe-
cies. For example, as the EGFR signaling pathway has been specifically implicated in RJ
response[6], observations that the phenotypic effects of EGFR knockout mice were genetic
background dependent[18] will be important to take into consideration when investigating RJ
response in mammals. Taken together, this emphasizes the importance of considering CGV in
studies seeking to elucidate RJ’s effects in non-honeybee species.

In contrast to our findings of body size differences in D.melanogaster, we failed to validate a
previous report that RJ reduces D.melanogaster developmental time[6]. Rather, we consistently
observed significant dose-dependent developmental delays in both D.melanogaster lines reared
in the presence of RJ, a finding which was substantiated in work from Shorter et.al[22] pub-
lished while this manuscript was under preparation. Further, we also failed to replicate a previ-
ous report of female-specific RJ effects in Can-S D. melanogaster[6], instead repeatedly finding
that it increased body size of both sexes in this strain. Shorter et al.[22] confirmed this finding
as well, not only in wt1118 Can-S B D.melanogaster, but also in three additional wild-type lines
they collected[22]. In further keeping with our results, Shorter et al. similarly reported strain-
specific differences in RJ response, finding that RJ decreased fly size in one of the four lines
they observed. Though a number of experimental controls would be required to make the two
studies fully comparable, our and Shorter et al.’s work demonstrate strain-specific responses to
RJ, and highlight the importance of accounting for CGV in elucidating RJ’s mechanism of
function in species other than the honeybee.

Taken together, it is clear that the impacts of CGV on RJ studies should not be taken lightly.
Although we investigated differential effects of RJ in only two wild-type strains of D.melanoga-
ster in this work, it is likely that extending this study to a greater number of wild-type strains
would uncover a number of additional phenotypic differences that could lend greater insight
into RJ’s mechanism of action. In summary, our findings indicate that obtaining a comprehen-
sive understanding of RJ’s effects will require a multidimensional approach that takes into
account the diverse effects that standing genetic variations can produce.

Supporting Information
S1 Data. Effects of RJ on D.melanogaster body length.
(XLSX)

S2 Data. Effects of RJ on time to first eclosion.
(XLSX)

S1 Fig. RJ effects body size of only Can-S flies. Additional photographs of Ore-R and Can-S
flies confirms that (A) female Ore-R flies reared on food containing 20% RJ demonstrated no
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differences in size compared to controls while (B) male Ore-R flies reared on 20% RJ were
slightly smaller than controls. In contrast, both (C) female and (D) male Can-S flies raised on
20% RJ were significantly larger than controls. However, a significant change in body length
was not observed in (C) female flies raised on 10% RJ.
(TIF)
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