
ORIGINAL RESEARCH
published: 11 July 2019

doi: 10.3389/fchem.2019.00496

Frontiers in Chemistry | www.frontiersin.org 1 July 2019 | Volume 7 | Article 496

Edited by:

Teodorico Castro Ramalho,

Universidade Federal de Lavras, Brazil

Reviewed by:

Andrei I. Khlebnikov,

Tomsk Polytechnic University, Russia

Marco Tutone,

University of Palermo, Italy

*Correspondence:

Julio Caballero

jcaballero@utalca.cl

Specialty section:

This article was submitted to

Medicinal and Pharmaceutical

Chemistry,

a section of the journal

Frontiers in Chemistry

Received: 12 April 2019

Accepted: 27 June 2019

Published: 11 July 2019

Citation:

Velázquez-Libera JL, Rossino G,

Navarro-Retamal C, Collina S and

Caballero J (2019) Docking,

Interaction Fingerprint, and

Three-Dimensional Quantitative

Structure–Activity Relationship

(3D-QSAR) of Sigma1 Receptor

Ligands, Analogs of the

Neuroprotective Agent RC-33.

Front. Chem. 7:496.

doi: 10.3389/fchem.2019.00496

Docking, Interaction Fingerprint, and
Three-Dimensional Quantitative
Structure–Activity Relationship
(3D-QSAR) of Sigma1 Receptor
Ligands, Analogs of the
Neuroprotective Agent RC-33
José Luis Velázquez-Libera 1, Giacomo Rossino 2, Carlos Navarro-Retamal 1,

Simona Collina 2 and Julio Caballero 1*

1Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile,
2 Pharmaceutical and Medicinal Chemistry Section, Drug Sciences Department, Università di Pavia, Pavia, Italy

The human Sigma1 receptor (S1R), which has been identified as a target with an

important role in neuropsychological disorders, was first crystallized 3 years ago. Since

S1R structure has no relation with another previous crystallized structures, the presence

of the new crystal is an important hallmark for the design of agonists and antagonists

against this important target. Some years ago, our group identified RC-33, a potent

and selective S1R agonist, endowed with neuroprotective properties. In this work,

drawing on new structural information, we studied the interactions of RC-33 and its

analogs with the S1R binding site by using computational methods such as docking,

interaction fingerprints, and receptor-guided alignment three dimensional quantitative

structure–activity relationship (3D-QSAR). We found that RC-33 and its analogs adopted

similar orientations within S1R binding site, with high similitude with orientations of the

crystallized ligands; such information was used for identifying the residues involved in

chemical interactions with ligands. Furthermore, the structure-activity relationship of the

studied ligands was adequately described considering classical QSAR tests. All relevant

aspects of the interactions between the studied compounds and S1Rwere covered here,

through descriptions of orientations, binding interactions, and features that influence

differential affinities. In this sense, the present results could be useful in the future design

of novel S1R modulators.

Keywords: sigma1 receptor ligands, RC-33, arylalkylamine derivates, docking, quantitative structure–activity
relationships, interaction fingerprints

INTRODUCTION

The Sigma receptors (SR) have attracted the interest of the scientific community thoroughly in
the last decades owing to their potential role in cell survival and function modulation (Walker
et al., 1990; Chu and Ruoho, 2016). They were originally misclassified as a subtype of opioid
receptors (Martin et al., 1976), but they were later classified as unique class of intracellular proteins,
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distinct from other receptors such as GPCRs (G protein-coupled
receptors). Sigma receptors (SRs), comprise two subtypes σ1 and
σ2 receptors (S1R and S2R, respectively) associated with aging-
and mitochondria-associated disorders (Tesei et al., 2018). Both
subtypes are highly expressed in the central nervous system, but
they are derived from completely different genes. S1R was cloned
in 1996 (Hanner et al., 1996) and was crystallized for the first
time 3 years ago, in 2016 (Schmidt et al., 2016), whereas S2R was
cloned only very recently, in 2017, by Alon et al. (2017).

S1R is an intracellular modulator between the endoplasmic
reticulum and the mitochondria, the cell nuclei, the membrane,
and it also modulates intracellular signaling. It plays a key role
in neuropsychological disorders such as depression, enhances
the glutamatergic neurotransmission (DeCoster et al., 1995;
Meyer et al., 2002), and modulates second messenger systems,
such as the phospholipase C/protein kinase C/inositol 1,4,5-
trisphosphate system (Morin-Surun et al., 1999). Multiple
biological roles of S1R have been identified, which made this
protein a relevant target for the future treatment of epilepsy,
schizophrenia, sclerosis, Alzheimer, and Parkinson’s diseases,
cancer, etc. (Mishina et al., 2005; Hashimoto, 2009; Furuse and
Hashimoto, 2010; Mavlyutov et al., 2015; Vavers et al., 2017; Tesei
et al., 2018). Moreover, S1R agonists enhanced neuroplasticity,
and may be effective in amyotrophic lateral sclerosis (Peviani
et al., 2014) and multiple sclerosis (Collina et al., 2017b).

Not less important, preclinical studies carried out on different
models of memory impairment have revealed that S1R ligands
could be promising drugs to treat cognitive dysfunctions
(Hayashi and Su, 2004; Monnet and Maurice, 2006; Yagasaki
et al., 2006; Collina et al., 2017a). Therefore, the identification
of potent and selective S1R modulators is of great interest
to develop novel therapeutic strategies focused mainly in the
treatment of central nervous system disorders. The list of
S1R ligands in the last years includes thioxanthene-derived
compounds (Glennon et al., 2004), fenpropimorph-derived
analogs (Hajipour et al., 2010), 2(3H)-benzothiazolones (Yous
et al., 2005), cyclopropylmethylamines (Prezzavento et al., 2007),
benzo[d]oxazol-2(3H)-one derivatives (Zampieri et al., 2009),
etc. All these compounds were developed when the three-
dimensional (3D) structure of S1R was unknown. Despite this,
the pharmacophoric features of S1R were identified and these
compounds comply with the general accepted pharmacophoric
pattern. It was demonstrated that at least one N positively
charged atom is important for binding at sigma receptors
and this atom must be flanked by two hydrophobic regions
of different sizes (Ablordeppey et al., 2000; Glennon, 2005;
Caballero et al., 2012).

In the last years, we designed and synthesized compounds that
comply with the proposed pharmacophore model and evaluated
them as S1R ligands (Collina et al., 2007; Urbano et al., 2007;
Rossi et al., 2010, 2011), leading to the finding of compound
RC-33 as a potent and selective S1R agonist (Rossi et al., 2013a;
Marra et al., 2016). The structure-activity relationship (SAR) of
the majority of these compounds was previously described by
us by using 2D-QSAR methodologies (Quesada-Romero et al.,
2015). With the recent report of the S1R 3D structure (Schmidt
et al., 2016), structure-based molecular modeling methods could

be used to investigate S1R ligands with a new glance. With this
in mind, we propose in this work the analysis of the SAR of
RC-33 and its analogs (in total there were 80 compounds) by
combining docking and a 3D-QSAR methodology. This is the
first study focused on describing the SAR of S1R ligands by using
structure-based molecular modeling methods, after the report of
the crystallographic structure of this important biological target.

MATERIALS AND METHODS

Dataset Preparation
The studied compounds were extracted from references (Collina
et al., 2007; Urbano et al., 2007; Rossi et al., 2010, 2011,
2015, 2017; Rui et al., 2016). This dataset yielded a total of 80
compounds with reported activities as Ki ranging from 0.00069
to 1µM. Ki values were converted into logarithmic pKi values
prior 3D-QSAR models’ elaboration. The compound chemical
structures and their pKi values are depicted in Table 1. The
molecular structures were sketched using Maestro’s molecular
editor (Maestro 10.2.011, Schrödinger LLC). Thereafter, the 3D
structures were obtained with the help of the LigPrep module
(LigPrep, Maestro 10.2.011, Schrödinger LLC); ionization states
were generated at pH 7.0 ± 2.0 using Epik (Shelley et al., 2007).
For compounds containing two possible enantiomers which
are reported in racemic form, the R enantiomer was chosen
for QSAR experiments because it was determined that both
RC-33 enantiomers showed similar affinities for the S1R and
they are almost equally effective as S1R agonists (Rossi et al.,
2013b). However, both enantiomers were chosen for docking
experiments to explore the interactions in the S1R binding site.

Molecular Docking
The ligand-receptor molecular docking experiments of RC-
33 analogs into the active site of S1R were performed
by using the software Glide from the Schrödinger suite
(Friesner et al., 2004). Glide is one of the most effective
docking programs at this moment with many successful
applications relating to rational design of novel drugs
and investigation of protein-ligand interactions. Such
applications encompass in silico search of novel drugs
(Osguthorpe et al., 2012; Amaning et al., 2013), analysis
of the SAR of congeneric series of compounds (Almerico
et al., 2012; Quesada-Romero and Caballero, 2014; Quesada-
Romero et al., 2014; Mena-Ulecia et al., 2015), evaluation of
enzymatic reaction pathways (Wu et al., 2011; Batra et al.,
2013), etc.

Protein coordinates were extracted from the crystal structure
of S1R bound to the selective antagonist PD144418 (code 5HK1
in Protein Data Bank) (Schmidt et al., 2016). A grid box of
20 × 20 × 20Å was centered on the center of mass of the
ligand in this crystal structure covering the binding site of
S1R. Glide standard (SP) and extra-precision (XP) modes were
employed with the same protocol and parameters that were used
by us in previous works (Quesada-Romero and Caballero, 2014;
Quesada-Romero et al., 2014; Mena-Ulecia et al., 2015). Glide
SP was used to evaluate the capability of the Glide method to
obtain poses that fit the known pharmacophore of S1R ligands,
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TABLE 1 | Structures of RC-33 analogs as S1R ligands.

ID Structure Experimental
pKib

Predicted
pKib

References

1 (RC-33) 9.16 9.37 Rossi et al., 2011

2 7.60 7.54 Collina et al., 2007

3 7.41 7.49 Rossi et al., 2010

4 6.99 6.96 Collina et al., 2007

5 7.70 7.62 Collina et al., 2007

6 7.67 7.44 Collina et al., 2007

7 8.85 8.73 Rossi et al., 2011

8a 6.00 6.79 Rossi et al., 2011

9 6.09 6.23 Rossi et al., 2011

10 6.00 6.14 Rossi et al., 2011

(Continued)
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TABLE 1 | Continued

ID Structure Experimental
pKib

Predicted
pKib

References

11 7.33 7.11 Collina et al., 2007

12a 8.71 7.99 Collina et al., 2007

13 7.72 7.65 Collina et al., 2007

14 8.64 8.41 Collina et al., 2007

15 8.99 9.05 Collina et al., 2007

16 8.22 8.10 Rossi et al., 2010

17 8.62 8.26 Rossi et al., 2010

18 8.10 8.09 Collina et al., 2007

19 8.20 8.29 Collina et al., 2007

(Continued)
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TABLE 1 | Continued

ID Structure Experimental
pKib

Predicted
pKib

References

20 7.86 8.22 Rossi et al., 2010

21 7.04 7.06 Collina et al., 2007

22 8.28 8.11 Collina et al., 2007

23a 8.27 8.96 Collina et al., 2007

24 8.24 8.30 Collina et al., 2007

25 8.64 8.52 Rossi et al., 2010

26 7.98 8.01 Rossi et al., 2010

27 9.01 8.79 Rossi et al., 2011

28 9.07 9.22 Rossi et al., 2011

(Continued)
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TABLE 1 | Continued

ID Structure Experimental
pKib

Predicted
pKib

References

29a 6.34 6.23 Rossi et al., 2011

30 7.85 7.67 Rossi et al., 2011

31 7.04 7.10 Rossi et al., 2011

32 8.36 8.62 Rossi et al., 2010

33 8.89 8.99 Rossi et al., 2010

34a 7.64 7.65 Rossi et al., 2011

35 8.15 8.20 Rossi et al., 2011

36a 8.97 8.56 Rossi et al., 2011

37a 8.38 8.28 Rossi et al., 2011

38a 8.11 7.40 Rossi et al., 2011

(Continued)
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TABLE 1 | Continued

ID Structure Experimental
pKib

Predicted
pKib

References

39 8.02 8.04 Rossi et al., 2011

40 7.94 7.83 Rossi et al., 2011

41 6.00 6.38 Rossi et al., 2011

42 6.00 5.98 Rossi et al., 2011

43a 6.00 7.29 Urbano et al., 2007

44 6.00 6.03 Urbano et al., 2007

45 6.00 6.16 Urbano et al., 2007

46 6.00 5.78 Urbano et al., 2007

47a 6.00 6.36 Urbano et al., 2007

(Continued)
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TABLE 1 | Continued

ID Structure Experimental
pKib

Predicted
pKib

References

48 6.00 5.89 Urbano et al., 2007

49 6.00 5.75 Urbano et al., 2007

50 7.41 7.52 Rossi et al., 2015

51 8.33 8.37 Rossi et al., 2015

52 6.69 6.81 Rossi et al., 2015

53 7.20 7.40 Rossi et al., 2015

54a 7.29 7.44 Rossi et al., 2015

55 7.60 7.90 Rossi et al., 2015

56 8.82 8.57 Rossi et al., 2017

(Continued)
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TABLE 1 | Continued

ID Structure Experimental
pKib

Predicted
pKib

References

57 8.22 8.29 Rossi et al., 2017

58 8.16 8.14 Rossi et al., 2017

59 8.27 8.20 Rossi et al., 2017

60 6.94 6.91 Rossi et al., 2017

61 7.70 7.68 Rossi et al., 2017

62 8.46 8.37 Rossi et al., 2017

63 7.12 7.20 Rossi et al., 2017

64 6.62 6.75 Rossi et al., 2017

65a 7.44 6.42 Rossi et al., 2017

66 8.54 8.56 Rossi et al., 2017

(Continued)
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TABLE 1 | Continued

ID Structure Experimental
pKib

Predicted
pKib

References

67a 6.86 7.25 Rossi et al., 2017

68 6.37 6.35 Rossi et al., 2017

69 7.34 7.37 Rossi et al., 2017

70a 8.54 8.62 Rossi et al., 2017

71 8.52 8.45 Rossi et al., 2017

72a 7.07 6.56 Rossi et al., 2017

73 8.00 8.01 Rui et al., 2016

74 7.96 7.92 Rui et al., 2016

75 7.57 7.73 Rui et al., 2016

76 7.40 7.45 Rui et al., 2016

(Continued)
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TABLE 1 | Continued

ID Structure Experimental
pKib

Predicted
pKib

References

77 7.15 7.09 Rui et al., 2016

78 7.21 7.18 Rui et al., 2016

79 7.46 7.42 Rui et al., 2016

80a 7.89 7.19 Rui et al., 2016

aTest set compounds.
bExperimental and predicted pKi values using Model SE.

and the more precise Glide XP was used for finding the final
docking poses.

After several poses were found for each compound, the ones
that showed the best scoring energies were considered. The
information of PD144418, 4-IBP, haloperidol, NE-100, and (+)-
pentazocine in the crystallographic structures recently reported
(Schmidt et al., 2016, 2018) was considered for the selection of
the best solutions; these compounds show how the previously
reported pharmacophoric pattern (Glennon, 2005) is oriented
inside the S1R binding site. The essential chemical interactions
described for analog ligands (ECIDALs) (Muñoz-Gutierrez et al.,
2016; Ramírez and Caballero, 2018) defined for S1R ligands were
identified using this information. The most obvious essential
chemical interaction is that charged amino group of the ligands
must be close to the side chain carboxylate group of the residue
Glu172, forming an electrostatic interaction. Therefore, the
best docking solution for each compound was the pose that
had the best scoring energy and complies with this essential
chemical interaction.

The “Interaction Fingerprints Panel” of Maestro (Maestro
10.2.011, Schrödinger LLC) was used for deriving the Interaction
fingerprints (IFPs) as described in Singh et al. reports (Deng
et al., 2004; Singh et al., 2006). The method accounts for the
presence of different types of chemical interactions between
ligands and the binding site residues of the target receptor
by using bits. For this purpose, distance cutoffs are defined
for the binding site, and the interacting set encompasses
the residues that contain atoms within the specified cutoff
distance from ligand atoms. An interaction matrix is constructed
including the bits with relevant information of the defined
chemical interactions.

QSAR Modeling
After docking experiments, 3D-QSAR models were performed
to explain the SAR of the RC-33 analogs. Their bioactive
conformations predicted by using docking were used as the
alignment rule for deriving the models. The structural features
that affect their activities against the S1R were identified by
describing steric and electrostatic fields.

The 80 compounds dataset was randomly partitioned into
training (64 compounds) and external (16 compounds) sets. A
homogenous distribution of the activities was granted in both
training and test sets. 3D-QSAR models were generated using
Open3DQSAR (Tosco and Balle, 2011), an open access tool
with all the capacities to construct 3D-QSAR models. Steric
and electrostatic fields were computed according to classical
molecular mechanics equations using theMerckMolecular Force
Field (Halgren, 1996).

The field variables were calculated by describing the
interaction energies between probe atoms (sp3 carbon atoms
with a charge +1) and structures in a 1.0 Å step size grid box
surrounding the whole set. Variables were processed as follows:
(i) high energies adopted the top value of 30 kcal/mol, (ii) energy
values very close to zero (below 0.05 kcal/mol) were set to zero
in order to reduce noise, (iii) variables which only assumed a
few different values (n-level variables) were removed. Thereafter,
variables were scaled using the Block Unscaled Weighting
procedure (Kastenholz et al., 2000; Boháč et al., 2002) and the
predictive power of the models was improved by using the Smart
Region Definition algorithm (Pastor et al., 1997).

Partial Least Square (PLS) regression was used to construct
3D-QSAR models, including from one to five Principal
Components (PCs) and different combinations of fields. Models
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were derived by using one field and by combining them; the best
model was selected by considering the higher value of the internal
leave-one-out (LOO) cross-validation Q2.

RESULTS AND DISCUSSION

Docking Predictions
We have a structural information of the binding poses of
S1R ligands such as PD144418, 4-IBP, haloperidol, and NE-
100 that similar in shape to RC-33. This information was used
for evaluating the quality of the obtained docking results for
RC-33 and its analogs. It is known that S1R ligands contain
a charged nitrogen central atom flanked by two hydrophobic
regions of different size (Glennon, 2005). The above mentioned
S1R ligands form electrostatic interactions between the ligand
charged nitrogen atoms and the side chain carboxylate of Glu172.
In addition, their larger hydrophobic groups locate near the
residues Val84, Met93, Leu95, Leu105, Tyr206, Ile178, Leu182,
and Tyr103 (primary hydrophobic site), and their smaller
hydrophobic groups locate near the residues Phe107, Trp164,
His154, and Ile124 (secondary hydrophobic site). It is expected
that the studied compounds establish such interactions.

Docking orientations of RC-33 and its analogs are represented
in Figure 1. The best docking pose obtained for RC-33 was
compared with the orientations of PD144418, 4-IBP, haloperidol,
NE-100, and (+)-pentazocine in the reference crystallographic
structures 5HK1, 5HK2, 6DJZ, 6DK0, and 6DK1, respectively.
(+)-Pentazocine is an agonist as RC-33, but it is shorter than
RC-33 and the other crystallized ligands; therefore, it is the
least suitable ligand for the structural comparison between the
crystallized ligands and the docked RC-33 analogs. Figure 1A
shows that the docked structure of RC-33 was similarly oriented
as the other crystallized ligands. On the other hand, Figure 1B
shows that suitable binding modes of the ligands were found
for all the RC-33 analogs. All of them form the conserved salt
bridge between the charged N atom of the ligands and the residue
Glu172 of the S1R. They also oriented their large hydrophobic
groups to the primary hydrophobic site, and oriented their
small hydrophobic groups to the secondary hydrophobic site.
Representations in Figure 1 show that our docking poses are
similar to the S1R-ligand X-ray structures reported to date.

We calculated RMSD values for the studied compounds
with respect to the docking result of RC-33 inside the S1R
by using an in-house script (Velázquez-Libera et al., 2018).
These calculations show the similarity in orientations between
RC-33 and its analogs in an easy way. Since the RC-33
derivatives are different from the reference compound, RMSD
values were calculated by considering only the common graphs
between molecules. %RefMatch and %MolMatch values were
defined, where %RefMatch refers to the percent of common
graphs between the docked compound and RC-33 regarding
the total number of atoms of RC-33; meanwhile, %MolMatch
refers to the percent of common graphs between the docked
compound, and RC-33 regarding the total number of atoms
of the docked compound. These values allow identifying the
maximal similitude between the docked compound and RC-33;
therefore, an RMSD value with high%RefMatch and%MolMatch

FIGURE 1 | Docking results for RC-33 and its analogs. (A) Docking pose

obtained for RC-33 (stick representation in green) and comparison with X-ray

crystallographic structures of the antagonist PD144418 (thin stick

representation in purple, PDB code 5HK1), the ambiguous ligand 4-IBP (thin

stick representation in light blue, PDB code 5HK2), the antagonist haloperidol

(thin stick representation in lilac, PDB code 6DJZ), the antagonist NE-100 (thin

stick representation in teal, PDB code 6DK0), and the agonist (+)-pentazocine

(thin stick representation in cyan, PDB code 6DK1). N positively charged atom

for each compound is represented by a blue sphere. (B) (top) Docking of

RC-33 (in sticks representation) and comparison with its analogs (in lines

representation); for each compound large hydrophobic group is in green at the

left, small hydrophobic group is in purple at the right, and N positively charged

atom is a sphere in blue. (bottom) Pharmacophoric model for S1R ligands: N

positively charged atom (blue) flanked by large hydrophobic (green) and small

hydrophobic (purple) regions.

values reflects that the compound under analysis bears a strong
resemblance with RC-33.

The majority of the compounds under study have the 1-
(3-phenylbutyl)piperidine or parts of this group in common
with RC-33. Their RMSD values are reported in Table 2. In
general, RMSD values reflect that the majority of compounds had
the 1-(3-phenylbutyl)piperidine (or part of this group) similarly
oriented with respect to RC-33 (RMSD < 2 Å). However,
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TABLE 2 | RMSD values of the obtained docking pose common fragments for the studied compounds with respect to the docking result of RC-33 inside the S1R.

ID RMSD (Å)a %RefMatchb %MolMatchc RMSD (Å)a,d %RefMatchb,d %MolMatchc,d

1 (RC-33) 0.86 100 100

2 1.70 50 61 2.30 50 61

3 1.40 50 55 1.82 50 55

4 2.61 36 47

5 2.20 36 47

6 1.42 36 42

7 0.46 64 74

8 2.94 36 62

9 1.67 36 53

10 2.50 36 53

11 2.80 50 65 2.89 50 65

12 2.05 50 65 2.16 50 65

13 2.21 50 61 1.50 50 61

14 1.43 50 58 1.46 50 58

15 0.43 77 89 0.86 77 89

16 1.45 50 42 1.07 50 42

17 0.97 77 65 0.69 77 65

18 1.58 36 35

19 0.42 64 56

20 1.29 36 32

21 2.85 36 42

22 0.38 36 38

23 2.09 50 48 1.94 50 48

24 0.94 77 68 0.83 77 68

25 1.22 50 44 0.82 50 44

26 1.23 73 70 1.98 73 70

27 1.38 36 40

28 0.59 64 64

29 2.24 36 50

30 0.85 36 44

31 1.15 36 44

32 1.11 36 36

33 2.15 73 73 1.78 73 73

34 2.14 36 30

35 0.45 64 48

36 3.70 36 35

37 4.17 36 32

38 2.41 36 32

39 1.16 36 40

40 0.63 64 64

41 0.77 36 44

42 0.72 36 44

43 2.10 32 26

44 1.10 32 28

45 1.66 32 24

46 0.67 59 57

47 1.05 32 37

48 2.28 32 35

49 2.23 32 39

50 0.96 100 96

51 0.64 100 96

(Continued)
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TABLE 2 | Continued

ID RMSD (Å)a %RefMatchb %MolMatchc RMSD (Å)a,d %RefMatchb,d %MolMatchc,d

52 1.50 50 61

53 1.87 50 61

54 1.48 50 55

55 1.07 50 55

56 2.19 73 80 1.96 73 80

57 2.63 73 59

58 2.22 73 59

59 1.95e 91 100 1.98e 91 100

60 1.80 50 73 2.54 50 73

61 2.63 73 89 1.52 73 89

62 3.02 73 64 6.97 73 64

63 2.38e 82 100 2.51e 82 100

64 2.11 50 73 2.58 50 73

65 2.45 73 89 1.01 73 89

66 2.68 73 64 4.26 73 64

67 2.19e 82 100 1.98e 82 100

68 0.63 50 85 2.96 50 85

69 2.65 73 100 2.73 73 100

70 3.87 73 70

71 6.66 73 70

72 2.58e 73 100 1.49e 73 100

73 2.29 73 57

74 2.20 73 57

75 4.65 73 67

76 4.39 73 67

77 2.72 73 55

78 2.34 73 55

79 1.74 73 57

80 2.08 73 57

aRMSD values considering only the common chemical fragments between the docked compound and the reference compound RC-33.
b%RefMatch refers to the percent of common graphs between the docked and reference compound RC-33 concerning the total number of atoms of the reference compound RC-33.
c%MolMatch refers to the percent of common graphs between the docked and reference compound RC-33 regarding the total number of atoms of the docked compound.
dRMSD, %RefMatch, and %MolMatch values for the S enantiomer of the compounds reported as racemic pairs.
e In this case, difference in ring heavy atoms were not considered between the docked compound and the reference compound RC-33.

Table 2 reports compounds with RMSD > 2.5 Å (for instance,
compounds 11 (R and S), 57, 60 (S), and 77). The 1-(3-
phenylbutyl)piperidine group of these compounds is displaced
toward the helices α4 and α5; however, their amine groups
keep the salt bridge interaction with the residue Glu172. In
addition, we found in Table 2 compounds with RMSD > 4 Å
(for instance, compounds 37, 62 (S), 66 (S), 75, and 76). The 1-
(3-phenylbutyl)piperidine group of these compounds is oriented
to the reverse with respect to this group in RC-33; their amine
groups also keep the salt bridge interaction with the residue
Glu172. These compounds have larger hydrophobic substituents
at position 4 of the piperidine, increasing the size of this group.
The changed groups fit better inside the bigger hydrophobic
cavity close to the helices α4 and α5 when their orientations
are opposed to the orientation of the 1-(3-phenylbutyl)piperidine
group in RC-33. In this way, these compounds are also adapted
to the previous described pharmacophore pattern for S1R ligands

(Ablordeppey et al., 2000; Glennon, 2005; Caballero et al., 2012)
(the N positively charged atom flanked by two hydrophobic
groups of different sizes), where the charged atom is salt-bridged
to Glu172, the bigger hydrophobic group is placed near the
helices α4 and α5 at the membrane proximal, and the smaller
hydrophobic group is placed near the narrow end of the cupin
barrel that is further from the membrane.

The chemical interactions between the RC-33 analogs and
the residues at the S1R binding site can be described in
detail by using IFPs. This method has been commonly used
for identifying the relevant residues involved in protein-ligand
affinities (Caballero et al., 2018; Navarro-Retamal and Caballero,
2018; Velázquez-Libera et al., 2018). IFPs capture and label the
chemical contacts between a target protein and a set of its ligands
as a whole. The chemotypes are identified with the following
labels: P (polar groups), H (hydrophobic groups), A (hydrogen
bonds where the residue is the acceptor), D (hydrogen bonds
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where the residue is the donor), Ar (aromatic groups), and
Ch (electrostatic interactions with charged groups). IFPs also
differentiate between contacts with backbone and contacts with
side-chain functional groups. We calculated IFPs by considering
the S1R-ligand complexes formed by our docked structures.

The calculated IFPs are reported in Figure 2. The IFP
analysis applied to the complexes between S1R and the RC-33
analogs obtained by docking revealed that 29 S1R residues had
contacts with ligands. These residues and their positions in the
S1R secondary structure are depicted in Figure 2A. The S1R
binding site is mainly hydrophobic; in fact, the vast majority
of the observed interactions are hydrophobic or aromatic when

analyzing the occurrence of chemical contacts in the studied
structures (Figure 2C).

The residues with polar interactions were identified in the
plots of percent of occurrence obtained from IFP calculations
(Figure 2). The residue E172 at the sheet β10 has polar
contributions in 100% of the total structures, forming a salt-
bridge and it also acts as HB acceptor in 80% of the studied
structures. The residue D126 at the sheet β5 was identified with
polar contributions in more than 50% of the studied structures.
The residue T181 at the helix α4 has polar contributions in
more than 80% of the studied structures. Finally, the residues
S117 (backbone and side chain), H154 (side chain), and T202

FIGURE 2 | Occurrence of interaction types at the S1R–ligand binding interface. (A) Residues with observed interactions, their position in the S1R sequence. (B)
Percentages of occurrence of contacts C, interactions with the backbone of the residue B, and interactions with the side chain of the residue S. (C) Percentages of

occurrence of chemical interactions: contacts C, polar P, hydrophobic H, HBs where the residue is acceptor A, HBs where the residue is donor D, aromatic Ar, and

electrostatic with charged groups Ch. The S1R–ligand structures obtained by docking were used for calculations of the percentages of occurrence represented here.
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TABLE 3 | Statistical information of the 3D-QSAR models.

Fields NC R2 S Q2 SLOO R2
test Stest %S %E

S 8 0.98 0.13 0.64 0.54 0.34 0.81 1

E 4 0.81 0.39 0.54 0.62 0.59 0.63 – 1

SE 7 0.97 0.15 0.70 0.50 0.61 0.62 0.88 0.12

NC is the number of components; S is the standard deviation of the fitted activity of the

training set; R2, Q2, and R2test are the coefficients of correlation of the training set, LOO

cross validation, and test set, respectively; SLOO is the standard deviation of the LOO

cross validation, and Stest is the standard deviation of the test predictions. %S and %E

are the relative contributions of the steric (S) and the electrostatic (E) fields, respectively.

FIGURE 3 | Scatter plot of the experimental activities vs. predicted activities

for the model SE: (•) training set predictions, (◦) LOO cross-validation

predictions, and (×) test set predictions.

(backbone and side chain) have polar contributions in around
30% of the studied structures.

Several residues with aromatic interactions were also
identified in the plots of percent of occurrence obtained from IFP
calculations (Figure 2). The residues with aromatic interactions
were important for the shape of the S1R binding site because
they restrict the space of the pockets. Four aromatic residues
located at the center of the binding site (W89, Y103, F107, and
Y120) were identified by the IFP calculations with percent of
occurrence values above 80%. These residues cause a bottleneck
just in front of the residue E172; therefore they could help to
orient the positively charged N of the ligands to form the salt
bridge. At the same time, they could stabilize the presence of the
positive charge by means of π-cation interactions. The aromatic
residues F133 at the sheet β6 and W164 the sheet β9, located
close to the narrower end of the cupin β-barrel, have percent
of occurrence values of 50 and 70%, respectively. On the other

hand, the residue Y206, located at the helix α5, has a percent of
occurrence value of 70%.

The remaining residues with hydrophobic interactions were
also identified in the plots of percent of occurrence obtained
from IFP calculations (Figure 2). The residues identified with
percent of occurrence above 75% M93 (at β2), L105 (at β3), and
L182/A185 (at α4) are located at the bigger hydrophobic pocket.
The residues V84 (at β1), L95 (at β2), and I178 (at the loop
between β10 and α4) are also located at the bigger hydrophobic
pocket and were identified by IFP calculations with lower percent
of occurrences, and the residue I124 at β5, located at the smaller
hydrophobic pocket, had a percent of occurrence below 40%.

In general, the reported IFPs identify the most important
S1R residues which establish chemical interactions with RC-33
analogs. Furthermore, it could be useful for the understanding of
the interactions between S1R and its ligands.

3D-QSAR Results
We constructed the 3D-QSAR models based on docking
alignment; therefore, the docked structures were included in
a box for creating the relevant fields, since they are models
of the ligand conformations inside the S1R binding site. The
docking-based or receptor-guided alignment 3D-QSAR is a well-
documented method in literature (Guasch et al., 2012; Navarro-
Retamal and Caballero, 2016; Muñoz-Gutiérrez et al., 2017).
Three 3D-QSAR models were trained using the steric field
(Model S), the electrostatic field (Model E), and the combination
of both fields (Model SE). The most reliable models were selected
by measuring the LOO cross-validation performance (Q2

> 0.5)
and the test set predictions (R2test > 0.5).

Table 3 lists the description and statistical information of
the best 3D-QSAR models. This report proved that model S
has better (LOO) cross-validation Q2 than model E. However,
when both steric and electrostatic fields are tied together
in the more complex model SE, the Q2 value increases;
therefore, this model, which had a Q2 = 0.70 including seven
components, containing a major contribution of the steric
field (88%), was identified as the model best describing the
structure-activity relationship of the studied RC-33 analogs.
These results reflect that the steric features are mandatory for
modulating the agonistic activities of the studied compounds.
This is reasonable considering that the S1R binding site is
mostly hydrophobic.

The model SE explains 97% of the variance and has a low
standard deviation (S = 0.15). The predictions of pKi values
for the 64 RC-33 analogs in the training set using the model
SE are reported in Table 1 and the correlations between the
predicted and experimental pKi values (from training and LOO
cross validation) are shown in Figure 3. It is possible to observe
that the selected model fitted adequately the whole dataset; it is
noteworthy that the more potent compounds had an outstanding
performance. When the model SE was used to predict the
pKi values of the test set compounds, well results were also
found, reflected by the value of R2test = 0.61. The predicted pKi
values for the test set are listed in Table 1, and the correlation
between the calculated and experimental pKi values are plotted
in Figure 3.
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FIGURE 4 | 3D-QSAR contour maps for the RC-33 analogs (model SE). The steric field is represented by green and yellow isopleths: the green ones indicate regions

where bulky groups enhance the activity, and the yellow ones indicate regions where bulky groups disfavor the activity. The electrostatic field is represented by blue

and red isopleths: the blue ones indicate regions where an increase of positive charge enhances the activity and the red ones indicate regions where an increase of

negative charge enhances the activity. RC-33 is shown inside the fields.

Figure 4 shows contour plots of the steric and electrostatic
fields projected onto the docked structure of RC-33 for
association between the fields, the compounds of the whole
set, and the residues at the S1R binding site. In this figure,
green and yellow contours represent regions with positive and
negative steric components, respectively. It is noted that positive
steric components have a major role. A great green contour in
front of the 3-phenylbutylamine, and near the residues V84,
W89, F107, and A185, indicates that bulk groups are desired in
this region. It is noteworthy that the most active compounds
such as RC-33, 7, 15, 27, 28, and 33 has the methyl group of
the 3-phenylbutylamine in this region, but the majority of the
less active compounds such as 8, 29, 41, 64, and 67 have this
group deeper into the bigger hydrophobic pocket. Another three
green contours are located near the piperidine of RC-33 and
the residues Y120, S117, and W164 indicating that this group
or another bulky group in this region is needed. In general,
compounds with a dimethylamine in this region (compounds
2–15) are less active than similar compounds that contain
piperidine. Another green contour near the residues Y103 and
E172 reflects that several active compounds contain the methyl
group of the 3-phenylbutylamine in this region. Another green
contours are located at the bigger hydrophobic pocket near the
residues Y103, Y206, and T202, indicating the preference of a
bulky group in this region. For instance, the biphenyl group in
compound 7 is preferred instead the phenyl group in compound
8 because the former group fills the entire space of the bigger
hydrophobic pocket. Several yellow contours were identified near
the residues W164, L105, F107, and T202. All of them are close
to the green contours both in the bigger and smaller pockets,
and reflect the complexity of the steric field inside the S1R
binding site.

In Figure 4, blue and red contours represent regions with
positive and negative electrostatic components, respectively;
all of them are small and are located inside the bigger
hydrophobic pocket. The blue contours are near the residues
T181, A185, L182, and the backbone of Y206, and the red
contours are near the residues A92, L95, L105, L182, and
T202. The blue contours are located in regions where ligands
placed hydroxyl groups and their pKi values are between 7
and 7.8 (moderate activities). For instance, compounds 13

and 77 have hydroxyl close to the backbone of Y206, 75,

and 76 have hydroxyl close to A185, and 53, 55, and 78

have hydroxyl close to T181. The red contours are located in
regions where ligands placed OMe groups and the activity is
increased. For instance, compounds 22 and 30 that contain
OMe have better activities than compounds 21 and 29 without
this group.

The docking-based 3D-QSAR methodology allows
establishing a comparison between the chemical features
that describe the structure-activity relationship of bioactive
ligands and the protein binding site (Alzate-Morales and
Caballero, 2010; Caballero et al., 2011; Quesada-Romero et al.,
2014; Mena-Ulecia et al., 2015; Muñoz-Gutiérrez et al., 2017).
The contour plots in receptor-based 3D-QSAR are not receptor
maps, but they solve another key point of the description of the
differential activities: different potency in activities is connected
with different chemical environments and interactions. The
docking and 3D-QSAR methods applied to the study of RC-33
analogs give more information about the structure of S1R-ligand
complexes, and identify important chemical features to take into
account in the future design of potent S1R ligands. We feel that
another similar studies on other series of compounds will be
reported during next years.
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CONCLUSION

This is the first structure-based molecular modeling investigation
a few years after the elucidation of the S1R crystallographic
structure; therefore, details of the binding poses and the
chemical interactions in the binding site are described. Binding
orientations and structure-activity relationship of RC-33 analogs
as S1R agonists were studied by using molecular docking and
3D-QSAR methods.

Docking poses obtained for the studied compounds inside the
S1R binding site explain the interactions between the well-known
theoretical pharmacophore model reported for these compounds
(elucidated before the knowledge of the S1R 3D structure) and
the residues located at the binding site. They also reproduced
structural features reported for complexes between S1R and
PD144418, 4-IBP, and other active ligands. The docking analysis,
including the IFP calculations, confirmed the preponderant role
of E172 forming a salt bridge with the positively charged N of
the ligands. Furthermore, docking experiments also identified the
importance role of the aromatic residues delimiting the shape
of the S1R binding site: specifically, W89, Y103, F107, and Y120
which are at the center of the binding site, F133 andW164 which
are close to the narrower end of the cupin β-barrel, and Y206
which is close to the helix α5.

A receptor-guided alignment 3D-QSAR model with adequate
statistical significance and acceptable prediction power was
obtained. Steric and electrostatic features had contributions to
the differential potency of the agonists, with a major role of the
steric ones. The 3D-QSAR model demonstrated that an implicit

correlation is found in the data under analysis between the
chemical features of the compounds in their active conformations
and their interactions in the pockets of the S1R binding site.

Overall, the information reported here, derived from the
recently reported S1R structure, will be useful for the future
research in the design of novel S1R ligands.
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