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Abstract

Background: Optical mapping is an emerging technology that complements sequencing-based methods in genome
analysis. It is widely used in improving genome assemblies and detecting structural variations by providing information
over much longer (up to 1 Mb) reads. Current standards in optical mapping analysis involve assembling optical maps into
contigs and aligning them to a reference, which is limited to pairwise comparison and becomes bias-prone when analyzing
multiple samples. Findings: We present a new method, OMMA, that extends optical mapping to the study of complex
genomic features by simultaneously interrogating optical maps across many samples in a reference-independent manner.
OMMA captures and characterizes complex genomic features, e.g., multiple haplotypes, copy number variations, and
subtelomeric structures when applied to 154 human samples across the 26 populations sequenced in the 1000 Genomes
Project. For small genomes such as pathogenic bacteria, OMMA accurately reconstructs the phylogenomic relationships and
identifies functional elements across 21 Acinetobacter baumannii strains. Conclusions: With the increasing data throughput
of optical mapping system, the use of this technology in comparative genome analysis across many samples will become
feasible. OMMA is a timely solution that can address such computational need. The OMMA software is available at
https://github.com/TF-Chan-Lab/OMTools.
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Findings
Background

Optical mapping captures the labeling patterns of long DNA
molecules and has become a complementary approach to
sequencing-based methods [1]. DNA labels are usually created
by a short but specific nicking restriction enzyme (nickase), but
alternative labeling strategies, such as methylations [2, 3] and
sequence-specific labeling based on CRISPR technology [4] have
also been described. With optical map ranges from 100 kb to as
high as 1 Mb, optical mapping is well suited to assist with se-
quence scaffolding in genome assembly and in the detection of
large structural variations.

Multiple alignment (MA) is a process in which multiple
queries are aligned without relying upon a reference. This type
of comparison is especially useful when a standard reference is
not available or is of poor quality. Also, in certain variable re-
gions, the alignment of multiple queries to a reference could
only show a 1-to-1 difference between the individual query and
the reference. In contrast, MA of these queries helps to differ-
entiate groups of patterns among the queries. Unlike pairwise
alignment, for which many algorithms have been designed [5–
10], MA remains an underdeveloped method for optical map-
ping. The other available tool is included in the proprietary soft-
ware Bionumerics v7 [11], but this method is not sensitive to
genomic rearrangement and requires complete genomes as in-
puts.

We developed a novel MA algorithm for population-scale
analysis of optical mapping data: optical mapping by mul-
tiple alignment (OMMA). The OMMA program was designed
for comparing assembled optical maps, which are usually
longer than raw optical maps, and with the intrinsic errors
that have already been addressed during the de novo as-
sembly steps. We describe herein the algorithm and demon-
strate its effectiveness with both simulated and experimen-
tal data. We also demonstrate how OMMA can be used to re-
solve complex genomic features and reconstruct phylogenomic
relationships.

OMMA pipeline

The complete OMMA pipeline has 2 steps—the preparation step
and the MA step (Fig. 1). During the preparation step, optical
maps (Fig. 1A) are aligned in a pairwise manner (Fig. 1B). Two
segments from 2 different optical maps are said to match if their
left and right labels are both aligned. In the MA step, informa-
tion about the matching segments is used to produce chains of
MA-blocks as the MA results; an MA-block is defined as a col-
lection of segments, each from a different optical map, that all
match each other. This step can be further divided into 3 main
substeps (modules) (Fig. 1C–E). In the first substep, MA-blocks
are formed on the basis of the results of the preparation step
(Fig. 1C). In the second substep, the MA-blocks are sorted to max-
imize matching and to minimize rearrangement events (Fig. 1D).
Finally, in the third substep, proximate MA-blocks that are simi-
lar to each other are merged (Fig. 1E). The details of the pipeline
are described in the Methods.

Performance analysis

In this section we describe the accuracy of MA and phyloge-
netic tree reconstruction. We evaluated performance by compar-
ing the results to multiple sequence alignments with complete
DNA sequences supplied as input. Genomic sequences of Acine-
tobacter baumannii strains were selected for in silico digestion to
produce simulated genomes that mimic the assemblies of op-
tical maps. For analysis of accuracy, the MA of these simulated
genomes based on optical mapping patterns was compared with
their respective multiple sequence alignment as the gold stan-
dard. We used 2 measures—precision and recall (see Methods
for definitions)—to evaluate the performance. Our MA method
for error-free genomes shows highly accurate results, with pre-
cision of 93.1% and recall of 93.7%. The precision and recall re-
main high upon introduction of missing sites and extra sites in
various error rates. For disruptive errors including segmental in-
sertion and segmental deletion, the precision and recall remains
high until the error rate reaches a level so high that would not
be seen in real data (Fig. S1).

Next, we evaluated the phylogenetic tree reconstruction
method based on the MA results of OMMA. We assessed the ac-
curacy of the reconstruction method using 100 sets of 32 sim-
ulated genomes generated by the introduction of accumulated
mutations according to a virtual phylogeny of these genomes
(see Methods for details). Based on the locations of the nicking
sites, a simulated optical map was generated for each of these 32
genomes, and OMMA was used to form an MA. The phylogenetic
tree of the 32 simulated genomes was then reconstructed using
the unweighted pair-group method with an arithmetic mean ap-
proach based on the similarities among the genomes suggested
by OMMA results (Fig. S2; see Methods for details). The overall
accuracy of phylogenetic tree reconstruction was 96.5% or 99.4%
with or without errors introduced, respectively, which indicates
that the reconstruction method was accurate.

Computational resources analysis

We separated the pipeline into pairwise alignment and MA for
computational resources analysis in A. baumannii, Escherichia coli,
and Saccharomyces cerevisiae. Pairwise alignment takes longer
and more memory to run, while the MA requires fewer computa-
tional resources (Fig. S3-5). As the number of genomes increases,
the number of pairwise alignments increases exponentially, and
hence the number of segment links also increases exponentially.
Therefore, CPU time and memory usage grows exponentially in
both pairwise alignment and the MA process.

OMMA captured and characterized complex genomic
variations

OMMA provided a holistic view of the occurrence of complex ge-
netic variations in various samples. To demonstrate the superi-
ority of MA over pairwise alignment in the characterization of
complex variations, we studied 3 types of regions in the human
genome: regions with multiple haplotypes at the population
level, regions with copy number variations (CNVs), and novel
genomic regions that are not found in the reference human
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Figure 1: Overview of the OMMA pipeline. Details of these algorithms are described in Methods. (A) Example queries for multiple alignment. (B) Pairwise alignments of

the queries to create sources for segment links. An insertion/deletion event occurs between queries A and B (see segments A4, B4, and B5). An inversion event occurs
between queries A and C (see segments A4–A8 and C4–C8). (C) MA-block construction. An undirected graph is constructed with segments as vertices and segment
links as edges. An MA-block candidate (connected component in the undirected graph) that fulfills the MA-block criteria (e.g., [A1, B1, C1]) is converted directly into

an MA-block [A1, B1, C1]. In contrast, segments in an MA-block candidate that does not fulfill the criteria (e.g., [A5, A6, B6, B7, C6, C7]) are broken into individual
MA-blocks [A5], [A6], [B6], [B7], [C6], and [C7]. (D) MA-block sorting. Matching events between 2 MA-blocks (dotted arrow) are determined by any proximate segment
(e.g., A1 to A2 or C3 to C4). Red dotted arrows highlight matching events within the inverted region of query C. Their suggested direction is opposite that from queries
A and B. The MA-blocks are sorted to minimize rearrangement events. Here 2 rearrangement events occur when joining segments C3–C8 (MA-blocks 3 and 4) and

C4–C9 (MA-blocks 14 and 15). The sorted MA-blocks are packed for purposes of visualization, with black dotted lines indicating empty space, and red dotted circles
indicating rearrangement events. (E) MA-block merging. Without contradicting the order of MA-blocks determined in the last module, MA-blocks that share similar
segment sizes are merged. MA-blocks [A6], [B7], and [C6] share a similar size and are proximate to the MA-block [A7, B8, C5] (purple) and are merged into 1 MA-block.
Similarly, MA-blocks [A5], [B6], and [C7] share a similar size and are proximate to the MA-block [A6, B7, C6] (yellow) and are merged into another MA-block.

genome. We assembled optical map contigs of 154 human in-
dividuals from 26 human populations or 5 super-populations to
identify these 3 types of complex regions [12]. We used OMMA to
perform MA of these contigs with part of the reference genome
hg38 used as one of the queries to obtain annotations related to
the variations The use of hg38 is only for annotation purposes,
and its presence does not affect the MA results, as shown in Fig.
S6. We now discuss the study of the 3 types of regions as follows.

Regions with multiple haplotypes at the population level
Pairwise alignment only provides evidence for the presence or
absence of variations from a reference, without considering the
different labeling patterns contained in the queries. MA, how-
ever, provides a summary of all haplotypes present in the re-
gion. We illustrated the improved clarity of MA using OMMA at
chromosome 1p44, which contains the olfactory receptor genes
(Fig. 2A), compared with the traditional reference-based align-
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Figure 2: Multiple indels at the olfactory receptor (OR) region (1q44). (A) Three subregions that overlapped olfactory receptor genes with multiple variations were

characterized. The multiple alignment shows the patterns of hg38 and major haplotypes of other contigs for each subregion. Only American contigs are shown for
illustration purposes. Each row represents a contig. The MA of the contigs from all populations is shown in Fig. S7. (B) Alignment of optical maps from the American
contigs on chromosome 1 was visualized using IrysView. The corresponding subregions shown in A are highlighted. It is noticeably difficult to resolve and characterize
the labeling patterns in the presence of multiple haplotypes. (C–E) Contig representation at Subregion 1–3. In Subregion 1 (C), the African contigs only contained the

Type 1 haplotype. In Subregion 2 (D), the contig ratio was similar among the various populations. In Subregion 3 (E), only the African and American contigs had the
Type 3 haplotype. The African contigs also had more Type 2 haplotypes than the other populations. Abbreviations for the super-population code are as follows: AFR,
African; AMR, Ad-mixed American; EAS, East Asian; EUR, European; SAS, South Asian.
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ment view in IrysView (Fig. 2B). These genes are known to con-
tain many small deletions and duplications [13]. The haplotype
differences in this region are described separately in 3 subre-
gions.

The first subregion overlapped the gene olfactory receptor
family 2 subfamily T member 1 (OR2T1). There are various hap-
lotypes, including 3 major haplotypes that we denote as Types 1,
2, and 3, of which the Type 1 haplotype was the most abundant
(70.8%). Interestingly, the African contigs contained no Type 2 or
Type 3 haplotypes (Fig. 2C). The second subregion contained the
gene olfactory receptor family 2 subfamily G member 6 (OR2G6).
Although hg38 was composed of a segment pattern to which
we refer as medium-medium-medium (Fig. 2A; Subregion 2) for
the middle 3 MA-blocks at this region, the contigs from vari-
ous human populations actually reflected 3 segment patterns:
long-medium, medium-long, and medium-short-medium. The
Type 1 haplotype (59.0%) was more dominant than the Type 2
(25.0%) and Type 3 (16.0%) haplotypes (Fig. 2D). The third sub-
region spanned 4 genes (OR2T34, OR2T10, OR2T11, and OR2T35).
The Type 1 and Type 3 haplotypes differed by only a single label.
Despite this minor difference, only the contigs from the African
and American populations had the Type 3 haplotype. The Type
2 haplotype was a deletion from the other types. The African
contigs had a greater abundance (40.7%) of the Type 2 haplotype
than all other populations (15.7%) (Fig. 2E). We also observed re-
lationships in the haplotype distribution across 2 subregions. For
example, Type 2 haplotypes in Subregion 3 are more likely to be
followed by the Type 1 haplotype (30.5%) than by the Type 2 (3.1%)
and Type 3 (9.5%) haplotypes in Subregion 2.

Copy number variations
OMMA not only allowed direct visualization of the presence of
CNVs; it also enabled the deduction of the exact copy number of
the query. In the second complex case, we illustrated the char-
acterization of CNV based on MA of contigs spanning the gene
ANKRD30A, which contained tandem repeats including a very
large repeat unit of size 11.1 kb [14]. The MA of contigs contain-
ing the CNV easily revealed the variable length of the contigs
within this region, in comparison to adjacent conserved regions
that had mostly the same length in the various contigs (Fig. 3A).

By choosing 2 flanking MA-blocks that corresponded to the
boundary of the CNV region, the number of segments between
them was used to deduce the number of copies in each con-
tig. As an example, a contig from the sample NA19795 from the
American population contains 16 alternating long and short seg-
ments. Because each repeat unit contains 2 segments (1 long and
1 short), we deduced that this contig has 8 copies. In comparison,
the reference genome hg38 contains 8 segments, or 4 copies. The
number of tandem repeat copies in other contigs ranged from 2
to 10. Based on the copy numbers in different contigs of each
population, we investigated the correlation between copy num-
ber and ethnicity and found that European contigs had fewer
copies than other populations (with marginal statistical signifi-
cance; Tukey test, P = 0.06) (Fig. 3B).

Reconstruction of patterns in genomic regions not found in the ref-
erence
In the third case, we used MA to characterize the haplotype dif-
ferences in the subtelomeric region of chromosome 20p, the se-
quence of which does not exist in the reference human genome.
This region has been explored using optical maps and has been
shown to display a pattern that is not found in the reference
genome [15]. In our analysis, the extension of MA of the contigs
beyond the sequence-containing portion of the reference chro-

mosome 20p allowed us to discover a large indel (Type 1: with-
out inserted pattern; Type 2: with inserted pattern) as a major
haplotype difference among the contigs (Fig. 4A). The reliability
of this extension is confirmed by alignment of molecules (Fig.
S9). Notably, the African contigs contained only the Type 1 hap-
lotype, whereas the contigs from other populations contained
both haplotypes (Fig. 4B).

OMMA revealed conservation of genomic structures
and predicted colicin and bacteriophage integration

We applied OMMA to optical maps generated from 21 drug-
resistant A. baumannii genomes of various strains (Fig. 5). Briefly,
the optical mapping data were generated and assembled into a
single consensus optical mapping assembly for each of the 21
samples. OMMA combined the 8,315 segments from all strains
into 823 MA-blocks.

The different regions in the MA could be roughly divided into
3 categories: (1) conserved among most strains, (2) conserved
among close strains only, and (3) highly variable and not con-
served across strains (Fig. 5). Although the segments shared by
most strains likely represented the evolutionarily conserved re-
gions, the segments shared only among the close strains could
be the key to separation among the clusters of strains. The
highly variable segments, in contrast, could be hot spots for the
integration of genomic islands.

The categories could be partially supported by different con-
servation levels of the MA-blocks. Most MA-blocks were con-
served, and 23.8% of MA-blocks contained segments from all
genomes, which accounted for 49.5% of all segments (Fig. S12).
These mainly constitute the region in category 1. Notably, some
MA-blocks were evolutionarily conserved only within a certain
set of genomes, as shown by the major peaks of MA-blocks with
8 (12.1%) and 13 (12.8%) segments, that constitute the region in
category 2. This local conservation is likely the result of our ex-
perimental strains that were distributed into 2 main groups with
8 and 13 strains, respectively. (See the phylogenetic tree analysis
section below.) The remaining MA-blocks that are not conserved
constitute the region in category 3.

Segments that were not completely conserved that involved
size changes were of greater interest than those with only la-
bel additions or deletions because the former corresponded to
the indel of a large piece of DNA, which would be more likely
associated with the gain or loss of an entire set of functional
elements, whereas the latter would be associated with the in-
troduction or disruption of a single functional element due to
single-nucleotide variations or small indels. We deduced the
identity of these functional elements by combining sequencing
and optical mapping data (Fig. 5). For example, a potential inser-
tion was likely the integration of a 9,286-bp sequence, includ-
ing the Colicin V secretion gene cvaA. Another example was the
integration of a 40,243-bp sequence, including several bacterio-
phage genes.

OMMA-based phylogenetic tree reconstruction revealed
an evolutionary relationship among strains

Next, we applied our phylogenetic tree reconstruction method to
reconstruct the phylogenetic tree of the 21 strains of A. bauman-
nii based on their OMMA alignment (Fig. 5). The reconstructed
tree was separated into 2 major clusters of 13 and 8 strains. The
larger cluster was further separated into 2 subclusters of 9 and 4
strains, in line with their respective multilocus sequence typing
(MLST) information. Specifically, the tree from optical mapping
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Figure 3: Copy number variation within the gene ANKRD30A. (A) Top: Example contig that contained the target CNV. Bottom: Multiple alignment of contigs from

the American population offered a direct view of the whole CNV region. The number of copies in each contig was visualized directly, with each copy containing 2
labels. Only American contigs are shown for illustration purposes. The MA of contigs from all populations is shown in Fig. S8. (B) CNVs at ANKRD30A across various
populations. The box plot summarizes the copy number observed across different populations, with each dot represents a copy number in an individual. In general,
Europeans exhibited fewer copy numbers.

separated the samples into 3 clusters of sequence types (STs): (1)
[ST75, ST92, ST137, ST346], (2) [ST254], and (3) [ST96]. In fact, the
4 STs in the first cluster were highly similar and differed only in
the single-nucleotide polymorphisms of a single gene.

One advantage of our method is that it separates strains
on the basis of whole-genome structures, unlike the traditional
MLST method, which relies on only a selected set of genes. As
a result, our method provides substantially greater detail about
the evolutionary relationships among the strains. For example,
the strains classified as ST96 by MLST could be further divided
into multiple groups based on our results.

Discussion

Our OMMA method combines multiple queries into a single
comparison, which assists with a wide range of analyses, includ-
ing those in comparative genomics and population genomics.
Multiple alignment provides a comprehensive view of the com-
parison of queries. With variations captured across different
queries, our method is able to reflect the level of variability or
conservation within a certain region and thus locate potential
hot spots for genomic variations.

OMMA is also a useful tool for population genomics analy-
ses. Variable haplotypes can be classified quickly, and their rela-
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tive abundance in various populations can then be directly visu-
alized and analyzed. With the phylogenetic tree reconstructed,
the elements responsible for the differentiation into clusters can
also be determined.

One major advantage of the use of optical mapping over se-
quencing is its ability to directly visualize and study the genome
structure. The assembled optical mapping contigs are usually
much longer than sequence assemblies, which usually break
into pieces at short repetitive regions. It also becomes more
challenging when we need to characterize complex structural
changes in larger genomes like the human genome by examin-
ing sequence assembly.

The OMMA pipeline offers great flexibility in customizing
procedures. The flexibility of this method allows the task of

MA of a very large genome to be divided into smaller jobs.
The results can then be combined into a single MA during
the final step. Our method also supports aligning queries with
rearrangements including inversions and intrachromosomal
translocations. In addition to the applications demonstrated
here, our MA method could be extended for other studies,
such as pan-genome construction and genomic island predic-
tion. Our method has limitations, including a low tolerance to
very large segmental duplications (e.g., 250 kb) with multiple
copies. However, with the recently launched direct label and
stain (DLS) chemistry that no longer introduces double-strand
DNA breaks at 2 closely located nicks, the improved quality
of assemblies should reduce the effect of this limitation on
MA.
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Figure 5: Overview of multiple alignment of 21 A. baumannii genomes. In the MA, the rectangles of various colors across a row represent segments from a query optical
map. To indicate the alignment relationship of these segments, the segments in the same MA-block share a color and are arranged in the same column. Neighboring

MA-blocks also share a color if they involve segments from the same set of optical maps. Black horizontal lines indicate empty spaces, and black circles indicate
rearrangements in the MAs. A portion of the MA is magnified to demonstrate the division of genome regions into (1) those conserved among most strains, (2) those
conserved only among close strains, and (3) highly variable regions that are not conserved across strains. An example of the captured region indicates the integration of
Colicin V secretion genes. Another example of bacteriophage gene integration is shown in Fig. S11, which further describes the rearrangement event. The phylogenetic

tree on the left was reconstructed on the basis of the OMMA multiple alignment of the optical maps of the 21 A. baumannii strains. The strains were separated into 2
major clusters of 13 and 8 strains, and the larger cluster was further divided into clusters of 9 and 4 strains.

Conclusions

In this paper, we describe the first rearrangement-tolerant and
nonproprietary MA method for optical mapping of data. The
method’s accuracy was assessed using an A. baumannii dataset
with high precision and recall. We demonstrate the application
of the MA results to phylogenetic analyses and complex region
analyses (e.g., multiple haplotypes, CNVs, and novel genomic re-
gion). OMMA could serve as a fundamental tool for the further
development of more specific analytic methods for the study of
comparative and population genomics.

Methods
OMMA overview

The OMMA program was developed to compute segment-
matching information to generate a series of MA-blocks as a
collection of matching segments of entries. The entire pipeline
is separated into a preparation step and an MA step that can
be further divided into 3 main substeps (modules) (Fig. 1). In
the first substep, the matching segments from pairwise align-
ments or other sources are used to construct the blocks. In the
second substep, these blocks are sorted to minimize rearrange-
ment events. Finally, in the third substep, proximal segments are
merged if their sizes are similar.

Preparation step

At the preparation step before the core modules are run in MA,
we must generate some clues about which segments on differ-

ent queries should be put together. Usually, this process consid-
ers not only the size matching of a pair of target segments alone
but also accounts for the size matching of their proximate seg-
ments. We define a piece of evidence that helps to determine
the matching of segments as a ”source.” A source is composed
of a set of ”segment links” that are denoted as a matching pair of
segments from different queries. Our method accepts 2 sources
that provide clues about the segment links based on similar la-
beling patterns: pairwise alignment among queries and the MA
results.

Pairwise alignment result as sources
All queries are aligned in a pairwise manner (Fig. 1B), followed by
derivation of the segment links from the alignments of each pair
of queries. The pairwise alignment results were generated by
OMBlast [5], which could output partial alignments (local align-
ments between a pair of queries) that are critical to MA of regions
with rearrangement.

Multiple alignment result as a source
The MA result (generated by the OMMA pipeline) can also be
used as a source because the results are intuitively a collection
of matching segments. The result is particularly useful in large-
scale MA, such as whole-genome MA in humans, for which 1-
step MA is not computationally feasible. By dividing the large
number of queries into separate subtasks, several MAs on a
smaller scale can be achieved, and the results can serve as the
sources for a global MA.
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MA-block construction

Construction of MA-blocks based on segment links
For MA of Q queries, each MA-block is represented by a binary
vector of length Q, where a “non-empty” entry or “1” indicates
that a query participates in this block, and an “empty” entry or
“0” indicates that it does not. A non-empty entry can be occupied
by only 1 segment from the query. No more than 1 segment from
the same query can be assigned to each MA-block.

An undirected graph is constructed with the segments as ver-
tices and the segment links as edges (Fig. 1C). Each connected
component is treated as an MA-block ”candidate.” A ”valid” MA-
block is defined as a collection of segments with ≤1 segment
from the same query. If an MA-block candidate fulfills this crite-
rion, all segments in the candidate are directly converted into an
MA-block. Otherwise, each individual segment in the candidate
is instead assigned to a separate MA-block.

Segment links from multiple sources
The selection of a proper set of parameters in pairwise align-
ment is difficult. To solve this problem, segment links from var-
ious sources can be supplied in the MA processes. Briefly, seg-
ment links from the most confident sources (such as pairwise
alignment results with more stringent parameters) are first used
to construct MA-blocks. The segment links from less confident
sources (such as pairwise alignment results with more lenient
parameters) are then used to connect the MA-blocks. Two con-
nected MA-blocks are merged if their binary vector does not
overlap (i.e., if they do not have segments from the same queries
after merging).

MA-block sorting

The MA-blocks are sorted to better illustrate the overall pat-
tern of the queries. Here, we briefly demonstrate the idea us-
ing Fig. 1D before discussing the details of implementation. With
different MA-blocks generated from the previous step, it is obvi-
ous to place MA-block [A1, B1, C1] before MA-block [A2, B2, C2]
(i.e., segment A1 is followed by segment A2 on query A, and the
same applied to query B and C) because the segments from all
queries in these 2 blocks are consecutive. However, the problem
becomes more complicated after rearrangement such as inver-
sion or translocation. For example, we must choose what follows
the MA-block [A3, B3, C3]; it could be MA-block [A4, C8] (i.e., be-
cause segment A3 is followed by segment A4 on query A), MA-
block [B4] (i.e., because segment B3 is followed by segment B4
on query B), or MA-block [A8, B9, C4] (i.e., because segment C3 is
followed by segment C4 on query C).

More formally, the MA-blocks are sorted to minimize the
number of rearrangement events and maximize the matching
events. For B MA-blocks constructed from the previous module,
consider a non-empty qth entry in the bth MA-block and a non-
empty qth entry in the (b + x)th MA-block, where x is a posi-
tive integer and any qth entries are empty in the (b + 1)th to
(b + x − 1)th MA-blocks. A ”matching event” occurs if the 2 en-
tries represent consecutive segments in the original qth query
and have the same orientation. In contrast, a ”rearrangement
event” occurs when the 2 entries are in different orientations or
if they are not consecutive segments ordered in the original qth
query. Note that the sum of matching and rearrangement events
in the final chain remains constant for the same set of queries.
This problem is equivalent to a nondeterministic polynomial-
time hard (NP-hard) traveling salesman problem, in which all

vertices (MA-blocks) must be traversed exactly once, except that
no limitation is set on the start and end points. Because deter-
mination of an optimized solution is computationally intensive,
the nearest neighbor–joining algorithm was devised to approxi-
mate a suboptimal solution.

Nearest neighbor–joining algorithm
In the nearest neighbor–joining algorithm, the MA-blocks are
connected into multiple chains. The goal is to repeatedly con-
nect chains until a single chain remains as the solution to the
order of the MA-blocks. In the beginning, 1 chain is created for
each MA-block, resulting in C chains. The connection candidates
from each pair of chains are added into a priority queue. In each
round of connection, a pair of chains that results in the highest
connection priority is pulled from the queue and connected to a
new chain, followed by an update on the connection candidates
for the new chain. The connection process is repeated for C − 1
rounds to connect all C chains into 1 single chain.

Connection priority for 2 chains of MA-blocks
The connection priority for 2 chains of MA-blocks is based en-
tirely on the relationship of the entries in the 2 chains. In total, Q
relationships are built on the basis of Q sets of entries compared
within the same query. Only the last non-empty entry from the
former chain and first non-empty entry from the latter chain are
compared. We define the relationship of the entries from a par-
ticular query as matching and rearrangement if the 2 selected
entries are consecutive and nonconsecutive segments, respec-
tively. In addition to matching, if the 2 entries are taken from the
last MA-block of the former chain and first MA-block of the latter
chain, they are further categorized as direct matching. The rela-
tionship is set as empty if no non-empty entry exists in either
chain. An example is shown in Fig. S13, in which the relation-
ships of the 4 sets of entries from queries A, B, C, and D represent
matching, direct matching, rearrangement, and empty relation-
ships, respectively. The parameters are defined for the count of
relationships between the 2 chains as follows:

� nm: matching (note that a direct matching relationship is also
counted here)

� nd: direct matching
� nr: rearrangement
� nrr: reference rearrangement (if reference is provided by the

user)
� ne: empty

The parameters above always meet the following criteria:

� nm + nr + ne = Q
� nd ≤ nm
� nrr ≤ nr

The connection priority for a pair of chains is listed below:

1. At least 1 matching relationship exists (nm ≥ 1).
2. No rearrangement is found (nr = 0).
3. If no rearrangement is found, nd is maximized, followed by

maximizing nm.
4. If rearrangement is found,

(a) the connection results in no rearrangement in reference
(nrr = 0, if reference is provided by the user).

(b) nr is minimized, followed by maximizing nm, followed by
maximizing nd.
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Directed graph representation for multiple alignment

The MA results can be represented as an acyclic directed graph.
Consider an acyclic directed graph constructed with MA-blocks
as the vertices. A directed edge from MA-block b to b + x is built if
2 non-empty entries exist from the same query q in bth and (b +
x)th MA-blocks, where x is a positive integer and all entries from
query q are empty in the (b + 1)th to (b + x − 1)th MA-blocks.
An edge is built between 2 MA-blocks with a weight equal to
the sum of the matching and rearrangement relationships. Its
direction follows the order of the MA-blocks. Such a represen-
tation simplifies the interpretation of the actual variation and
noise, which can be removed by filtering the edges with mini-
mum weight.

Merging

We wish to merge MA-blocks without introducing new rear-
rangements. The order of the MA-blocks other than the merging
target remains unchanged in the merging actions. With such a
constraint, the merging step can effectively increase the sensi-
tivity of the final MA result. From the directed graph representa-
tion of the sorted MA-blocks, the merging of 2 MA-blocks leads
to new rearrangements if the set of descendant vertices of 1 MA-
block intersects the set of ancestor vertices of another MA-block.

Merging of MA-blocks by proximity
Consider a directed graph representation of the sorted MA-
blocks (Fig. 1E), with MA-blocks as vertices. Two MA-blocks that
share ≥1 incoming neighbor or ≥1 outgoing neighbor are de-
fined as proximate. Two proximate MA-blocks are merged if the
average size of the segments in 1 MA-block matches those in
the other MA-block. The merging of 2 MA-blocks can be dis-
ruptive and lead to rearrangement. To avoid the introduction of
new rearrangements, we must check for overlapping of the an-
cestor and descendant vertices. The ancestor and descendant
vertices of an MA-block are obtained by traversing the directed
graph, and the ancestor and descendant vertices are updated
by dynamic programming. After each merging step, the directed
graph and the ancestor and descendant vertices are updated.

Merging of MA-blocks by segment links
Another merging strategy relies on segment links, as described
above in the MA-block construction step. This time, the con-
nections are taken as evidence for the potential merging of 2
MA-blocks that include 2 segments that form a connection. Like
merging proximate MA-blocks, the checking and update steps
described in the previous section are used to prevent the intro-
duction of rearrangements during the merging of 2 connected
MA-blocks.

Assessment of accuracy of OMMA

Because there is no standard answer for MA based merely on op-
tical mapping patterns, the accuracy of the present method was
inferred from the consistency attained among MAs from opti-
cal mapping and MAs from sequencing. MA software based on
genomic sequences was used to assess the accuracy of MA in
optical mapping. In this study, the multiple sequence alignment
was performed using Mugsy v1r2.3 [16], which used results from
MUMmer 3.20 [17] under the default parameters.

The accuracy was measured by 2 parameters, precision and
recall. In MA of optical mapping, a segment i forms segment-pair
pi,j with another segment j for i �= j if the 2 segments belong to

the same MA-block. In MA from sequencing, consider a segment
m of length lm, a segment n of length ln, and the length of mul-
tiply aligned sequence lseq. The similarity sm,n of segment m to
segment n is defined as lseq/lm. The segment m forms segment-
pair pm,n with segment n if:

sm,n ≥ 0.8 and 0.8 ≤ lm
ln

≤ 1.25.

An intersected segment-pair set was created by the inter-
section of a segment-pair set derived from the MA of optical
mapping and one derived from MA of sequence. Precision was
calculated as the number of intersected segment-pairs divided
by the number of segment-pairs derived from the MA of opti-
cal mapping. Recall was calculated as the number of intersected
segment-pairs divided by the number of segment-pairs derived
from the MA of sequence.

To test the performance of MAs on error-containing queries,
4 types of errors (extra sites, missing sites, segmental insertions,
and segmental deletions) were introduced at different levels. Ex-
tra sites error was simulated by adding nicking sites at a random
location. Missing sites error was simulated by randomly remov-
ing the existing nicking sites. Segmental insertions and dele-
tions errors were simulated by adding or deleting a fragment at
a random location. The size of the deleted or inserted fragment
ranged from 1 bp to 10 kb, with the size following the χ2 dis-
tribution (degrees of freedom = 1). Rates of all 4 types of errors
ranged from 0 to a very high value such that it is not seen in
typical optical mapping data. To assess the effects of each error
type, only 1 type of error was introduced at a time.

Phylogenetic tree reconstruction

Our reconstruction method is based mainly on the assumption
that 2 strains have greater similarity if they share more MA-
blocks in the MA. From the MA, the distance of sample i relative
to sample j is defined as follows:

di j = 1 − fi j/ f j j + f ji / fii

2
.

where fij represents the number of MA-blocks shared by i and j.
Note that fii ≥ fi j , fi j = f ji , and di j = dji .

A distance matrix was built to reconstruct the phylogenetic
tree via an unweighted pair-group method with an arithmetic
mean approach. The tree was then visualized with the Analyses
of Phylogenetics and Evolution (APE) package in R [18].

Generation of simulated genomes for phylogenetic analysis
The performance of our method of phylogenetic analysis was
assessed using simulated genomes without any error, or with
missing site rate of 7e−3, extra site rate of 1e−6, deletion rate
of 1e−5, and insertion rate of 1e−5. The virtual genomes were
simulated according to a virtual phylogeny in Fig. S14. Briefly,
in the first generation, random sequence mutations were intro-
duced into an ancestor genome using the profile-based Illumina
pair-end reads simulator (pIRS) program [19] to simulate 2 chil-
dren genomes. These genomes were then taken as the parent
genomes in the next generation to synthesize more children
genomes. At the nth generation, 2n children genomes were sim-
ulated. Only the children genomes at the last generation were
used as the input of OMMA.
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Assessment of phylogenetic tree accuracy
Based on the generation method, offspring of a parent genome
(2k children genomes for a parent genome at the (n − k + 1)th
generation, where n is the total number of generations) should
be classified in the same clade. The individual accuracy of each
phylogenetic tree was defined as the ratio of clades fulfilling the
above classification. The overall accuracy was then calculated
as the average accuracy of all phylogenetic trees from 100 sets
of simulated genomes.

Generation of optical mapping and sequencing data

Bacteria sample collection
All 21 isolates were sampled from inpatient specimens or col-
onization studies in children for A. baumannii. The isolates se-
lected for this project had been independently characterized by
pulsed-field gel electrophoresis and/or MLST. The results were
unknown to the optical mapping analysis procedure.

Genomic DNA extraction
Megabase-sized bacterial genomic DNA was extracted with the
agarose gel plug method. Embedment in the porous agarose ma-
trix protected the DNA from physical shearing while allowing
access to restriction enzymes. The bacterial cell pellets were re-
suspended and embedded in low-melting agarose to form gel
plugs. The plugs were treated with proteinase K and lysozyme
for cell lysis. After washing several times in 1× Tris-EDTA buffer,
the plugs were melted at 70◦C for 2 min and equilibrated at 42◦C
for 5 min before Gelase (Epicentre, Madison, WI) was added to
solubilize the sample. The solubilized DNA obtained was con-
centrated by drop-dialysis with 1× Tris-EDTA buffer for 2.5 h
at room temperature. The high–molecular weight DNA samples
were then quantified with a Quant-iT dsDNA Assay Kit (Thermo
Fisher Scientific, Walthan, MA). The DNA quality was checked by
contour-clamped homogenous electric field gel electrophoresis.

Nicking, labeling, and repairing reactions
The bacterial DNA samples were nicked, labeled, repaired, and
stained. In summary, the single-strand breaks (nicks) were intro-
duced to 300 ng bacterial DNA by nicking endonuclease Nt.BspQI
(New England Biolabs) at 37◦C for 2 h. The DNA nicks were filled
with fluorescent nucleotides by Taq polymerase and sealed with
Taq DNA ligase (New England Biolabs, Ipswich, MA). The back-
bone of the double-stranded DNA was stained overnight with
fluorescence dye YOYO-1 (Invitrogen, Carlsbad, CA).

Imaging and raw data processing
The stained double-stranded DNA with fluorescent labels was
loaded by electric current onto a chip that contained mas-
sively parallel nanochannel arrays, upon which the DNA was
linearized and imaged. The lengths and relative positions of the
fluorescent labels of the DNA molecules were calculated from
the images to individual single-molecule maps (optical maps)
by estimating any errors in size scaling and missing or spurious
labels.

Optical map assembly
The optical mapping assembly of the genome of A. baumannii
was performed using the standard pipeline in “Bionano Solve
3.1” [7], followed by a custom refinement script to trim the con-
tigs. The plasmids and incomplete genomes were removed from
further analysis. Because bacterial genomes are circular, for ease
of analysis and visualization, all genomes were oriented such

that they all began with a conserved pattern across most A. bau-
mannii strains.

Sequencing data generation and sequence assembly
To reveal the identity of the variations detected by optical map-
ping, 6 A. baumannii samples were selected for sequencing
and assembled using Short Oligonucleotide Analysis Package
(SOAPdenovo) [20]. The assembled contigs were annotated us-
ing Prokka [21]. To deduce annotations on optical mapping con-
tigs, the assembled sequence contigs were aligned on the optical
mapping contigs using OMBlast [5], with annotations assigned
on the relative aligned position on the optical mapping contigs.

Human optical maps data for validation
The generation of assembled contigs of 154 human individu-
als from 5 super-populations (African, ad-mixed American, East
Asian, European, South Asia) used for characterization of com-
plex genomic variations was reported by Levi-Sakin et al. [12].

Availability of supporting source code and
requirements

Project name: OMTools Project
Project home page: https://github.com/TF-Chan-Lab/OMTools
Operating system: Platform independent
Programming language: Java
Other requirements: Java 8 or higher
License: GNU GPL
The OMMA is a new module in the OMTools package as pub-
lished by Leung et al. [22]. The resource has been submitted to
SciCrunch.org with the RRID:SCR 017143.

Availability of supporting data and materials

The raw optical mapping and sequencing data of the A. bauman-
nii strains are available at NCBI (BioProject PRJNA486415). Other
data further supporting this work can be found in the GigaScience
repository, GigaDB [23].
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Figure S1: The performance of multiple alignment on genomes
with various types of errors at different rates

Figure S2: Phylogenetic tree reconstructed based on multiple
alignment by OMMA of simulated genomes

Figure S3: CPU time and memory usage for pairwise align-
ment and multiple alignment of different number of A. bauman-
nii genomes

Figure S4: CPU time and memory usage for pairwise align-
ment and multiple alignment of different number of E. coli
genomes

Figure S5: CPU time and memory usage for pairwise align-
ment and multiple alignment of different number of S. cere-
visiae genomes

Figure S6: Multiple alignment by OMMA of the contigs with
(A) and without (B) hg38 of Figure 2 using the same parameters

Figure S7: Multiple alignment by OMMA of the contigs from
all populations at the olfactory receptor region (1q44)

Figure S8: Multiple alignment of contigs by OMMA from all
populations at gene ANKRD30A

Figure S9: Alignment of optical maps from individual
GM19921 on chromosome 20 using IrysView
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Figure S10: Multiple alignment of the contigs by OMMA from
all populations at the subtelomeric region of chromosome 20p

Figure S11: Example of genome rearrangement
Figure S12: Occurrence of segments
Figure S13: An example showing the connection of two

chains of blocks
Figure S14: Data simulation for phylogenetic tree assessment
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