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Exceptionally accurate genome reference sequences have proven to be of great value to microbial researchers. Thus, to
date, about 1800 bacterial genome assemblies have been ‘‘finished’’ at great expense with the aid of manual laboratory
and computational processes that typically iterate over a period of months or even years. By applying a new laboratory
design and new assembly algorithm to 16 samples, we demonstrate that assemblies exceeding finished quality can be
obtained from whole-genome shotgun data and automated computation. Cost and time requirements are thus dra-
matically reduced.

[Supplemental material is available for this article.]

Knowing the genome as exactly as possible is of fundamental value

to microbial biology. Once thought to be impossible, de novo as-

sembly of short, massively parallel sequencing data is now com-

mon practice, with several tools now available (e.g., Chaisson and

Pevzner 2008; Zerbino and Birney 2008; MacCallum et al. 2009;

Simpson et al. 2009; Li et al. 2010; Chapman et al. 2011; Gnerre

et al. 2011; Simpson and Durbin 2012). Standard automated

methods have yielded genome assemblies that are generally of

good quality, and in a few cases, with some manual work, near-

complete genomes have been achieved (Nagarajan et al. 2010;

Rasko et al. 2011a). However, most assemblies have had many er-

rors and gaps, both in the era of Sanger sequencing (Fraser et al.

2002) and in the current short read era (Klassen and Currie 2012).

Importantly, the most difficult (e.g., rapidly evolving) regions are

often absent or incorrectly rendered. Fortunately, bacteria have

small genomes (generally 2–6 Mb), and thus in many cases, it has

been feasible to expend extra effort to determine their sequences

correctly. Indeed, to date, about 1800 bacterial genome assem-

blies (Genomes Online Database; http://www.genomesonline.org)

(Kyrpides 1999), have gone through a process known as ‘‘finishing,’’

involving a combination of manual laboratory and computational

processes (Chain et al. 2009). These processes are applied itera-

tively and are thus slow and expensive. There remains a need for

new methods that are both faster and more economical.

To that end, in this study, we define a new recipe for whole-

genome shotgun sequencing and a new algorithm to assemble

such data, incorporated as part of the program ALLPATHS-LG

(MacCallum et al. 2009). The recipe uses a mixture of three data

types generated using sequencing technology from two vendors,

Illumina (Bentley et al. 2008) and Pacific Biosciences (Eid et al.

2009), that together span a broad range in their resolving power.

These technologies are complementary and, at least theoretically,

provide the capability of accurately assembling the entire genome.

All of the laboratory and computational methods are essentially

automated, thus reducing costs and keeping project turnaround

time to a minimum.

We apply these methods to 16 bacterial samples, three of which

were previously finished, thus functioning as controls for our

work. We applied the same laboratory methods and identical

(pushbutton) computations to each of the resulting data sets. We

describe the resulting assemblies (complete circles in several cases),

and for those having the finished reference sequences are able to

assess the accuracy both of our assemblies and the finished refer-

ences rigorously.

Approach

Laboratory formula

We reasoned that creation of optimal assemblies would require

both a new laboratory formula and a new algorithm, and that these

would need to be synchronized. For our formula, we settled on

three data types and approximate levels of coverage that could

facilitate generation of assemblies of exceptionally high quality

(Table 1; Grad et al. 2012; Supplemental Methods). In order of DNA

size range, these data are (A) short fragment read pairs from Illu-

mina, (B) long reads from Pacific Biosciences, and (C) jumping

pairs from Illumina with a wide size range.

These data have complementary attributes. Thus, Illumina

data have high base accuracy, compensating for the relatively

low accuracy of the Pacific Biosciences data (Eid et al. 2009).

Conversely, the Pacific Biosciences data are generated without

amplification and thus could provide coverage in regions that are

underrepresented or absent in Illumina data due to amplification

bias in the sample preparation. Finally, the data are spread across

three size ranges. In particular, we note that because the jumping

pairs are created from a wide size range of material, they can span

considerable distances (5 kb or more). However, there is a trade-

off because a tight size range would give greater accuracy to dis-
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tinguish shorter distances. Fortunately, the Pacific Biosciences

reads are effective in the middle distance range where the jumps

are not.

Assembly algorithm

A new algorithm was needed to exploit the relative strengths of the

data types with respect to accuracy, bias, and resolution range. In

outline, the algorithm proceeds roughly according to the following

steps (for more detail, see Supplemental Methods; for explanatory

diagrams, see Fig. 1):

Step I: Build unipaths using a minimum overlap of K = 96

We build the unipath graph (Pevzner et al. 2001; Butler et al. 2008),

which can be formally described in terms of the de Bruijn graph.

Informally a ‘‘unipath’’ is a maximal unbranched sequence in the

genome, relative to the given K (Butler et al. 2008), so that the

perfect unipath graph for the genome could be obtained from it by

‘‘gluing together perfect repeats of size K or longer.’’ The exact same

graph could be obtained from a collection of perfect reads of

length > K, at high enough depth so that all K-base overlaps are

represented. An approximation to the perfect unipath graph can

Table 1. Laboratory formula for finished genome assembly

Typea
Size of input

materialb (kb) Constructc
Sequencing
platformd

Read lengthe

(bases)
Coveragef

(3) Advantagesg

A 0.16–0.22 Paired reads from
fragments

Illumina 100 503 Accurate, resolves short-range repeats

B 1–3 Single read Pacific Biosciences 1000 503 Relatively unbiased, resolves
medium-range repeats

C 2–10 Paired reads from jumps Illumina 100 503 Resolves long-range repeats

aType is one of three data types, A, B, or C.
bSize of input material (kb) is the approximate size range of the input DNA.
cConstruct is the molecular biology construction from the input DNA.
dSequencing platform is the technology brand on which data were generated.
eRead length (bases) is the target read length (approximate average for Pacific Biosciences reads).
fCoverage (3) is the approximate fold coverage of the genome to be generated. Coverage is computed based on all reads, passing or not; however for
Illumina reads, we count only Q20 bases in such reads, and for Pacific Biosciences reads, we count only bases lying in the aligning portion of a given read.
gAdvantages are the reasons this data type could improve assembly quality.

Figure 1. Diagram of assembly method. (A) The ideal unipath graph depends on the genome and a constant K, the ‘minimum overlap.’ Perfect repeat
copies of size K are ‘glued together.’ In the figure, this happens to two copies of a repeat R. (Unipath graphs are actually directed, and both strands of the
genome must be accounted for, but we elide these points to facilitate exposition.) (B) As in main text Step I.1, starting from fragment read pairs (data type A),
we construct an approximation to the ideal unipath graph. First, individual fragment read pairs are ‘closed’ by recruiting a third read (red; from some other
pair). Then the resulting ‘super-reads’ are glued together along perfect repeats of size $K. We use K = 96, about half the fragment size. Primarily because of
bias introduced by amplification in the sample preparation process, there are gaps in the resulting graph. (C ) Gaps in the initial unipath graph are closed either
using (top) high-quality bits of jumping reads (data type C, main text Step I.2) or (bottom) lower-quality long reads (data type B, main text Step I.3). (D) Long
reads are unrolled along unipath graph as in main text Step II.1. (Top) Long read L is correctly represented as (u1,r,u2). (Bottom) The region contains highly
similar unipaths r1 and r2 (perhaps differing by only a single indel base). Long read L9 incorrectly passes through r2 rather than r1, perhaps because it has an
error at the same place where r1 and r2 differ. (E ) Long read consensus (main text Step II.2). The long read (blue) traverses an incorrect path through the lower
part of the middle bubble, whereas several reads (red) traverse the correct upper path, suggesting that a simple voting scheme might work. However, all these
reads start at a unipath u1 that is unique in the genome, and it is very challenging to devise heuristics that work well for reads that are not anchored at a unique
sequence. (F ) Consensus long reads from across the genome are now used to create a unipath graph using K = 640, about half the long read length. Still
repeats longer than this K cause the genome to be ‘glued’ together. (G) Unipath scaffolding (main text Step III.2). Jumping pairs are now used to connect
unipaths, e.g., u1–u2 and v1–v2 (top), but links to repeats, e.g., u1 to r (bottom) are avoided where possible. (H) Closure (main text Step III.3). (Top) Circular
genome whose assembly might be resolved except for a ‘bubble’ in a repeat region (perhaps with branches differing only by a single base). (Bottom)
Representation of genome in which vertices represent unambiguous sequence (in this case, nearly all of the genome), and edges represent ambiguous
sequences (in this case, two sequences in each of two cases). These edges would correspond to the short unresolved part of the repeat.
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be obtained by the same method from a less perfect collection of

sequences. In all cases, the method is as described as in Butler at al.

(2008). Here we use K = 96, which is approximately half the length

of the fragments for data type A (the exact value is not significant).

The steps are as follows:

1. As previously described (Gnerre et al. 2011), data type A (read

pairs from short fragments) are first error-corrected then merged

into single ‘super-reads.’ These are then formed into an initial

unipath graph. This graph is expected to be highly accurate;

however, it has gaps arising from bias in the Illumina data.

2. Because data type C (jumping pairs) can be less biased than

data type A (Supplemental Fig. 1), we next fill some gaps in the

unipath graph using the jumping reads, ignoring their pairing.

These differences in bias are not well understood but might be

attributable to protocol differences between data types or

sample-to-sample variability in protocol instantiation.

3. Next, we use data type B (Pacific Biosciences reads) to fill in

gaps in the unipath graph. This process involves defining data

(r,u1,u2) consisting of part of a long read r that bridges a gap

between unipaths u1 and u2, then forming the consensus of the

read parts associated with a given pair (u1,u2), then improving

this consensus using data type A (fragment pairs). These patches

are inserted into the unipath graph.

Step II: Build unipaths using a minimum overlap of K = 640

By using a larger K, we now build a unipath graph in which only

longer repeats are glued together. Here K = 640 is about half the

read length for data type B (Pacific Biosciences reads).

1. These reads are laid out on the unipath graph, each read being

converted into a sequence u1,. . .,un of unipaths (or in short, u).

The typical read lands within a single large unipath, providing

essentially no information. However, some reads bridge repeat

boundaries, thus being expressed as a sequence of more than

one unipath (n > 1). These reads provide information; however,

the larger n is, the more likely u is to contain an error. For ex-

ample, in cases in which two unipaths are identical except for

a single-base indel, there is some chance that the Pacific Bio-

sciences read will have an error at the same position, and thus

a chance that the wrong unipath will be placed in u. Thus, at

this stage, we are limited by the resolving power of single reads.

2. Now we form the ‘consensus’ of the sequences u (see Methods).

Here the difficulty is that to find the consensus, we must group

together similar sequences; however, when we do so, it is in-

evitable that different repeat copies will appear in the same

group. Therefore, in general, we cannot form a single consensus.

Because differences between repeat copies are difficult to distin-

guish from errors, we do not know a priori how many different

genomic sequences appear in the group, and hence we do not

know how many consensus sequences should be formed.

3. These consensus sequences are used to create the K = 640 uni-

path graph.

Step III: Build the assembly

1. We use the unipath graph first to determine the fragment size

distribution for data type C (jumping pairs), then estimate the

distances between unipaths. We found that because of the wide

distribution of the jumping pair fragment sizes (2–10 kb), it was

necessary to devise a new statistical model to compute these

distances.

2. Now we use the jumping links to connect the unipaths into

a graph. In doing this, we try not to link directly to repeats, but

rather to jump over them to unique sequence. We note that given

the biology of our samples (for example, chromosomes and

plasmids are not necessarily equimolar), it is not possible to assess

uniqueness directly using an absolute measure of read density.

3. Each link is then replaced by all possible sequence paths

through the large K unipath graph that are consistent with the

linking information. The totality of the data is then used to

eliminate as many as possible of these ‘alternatives.’

4. This process yields graph assemblies (Fig. 2).

The assemblies generated by this method can contain local

ambiguities, i.e., loci where two or more alternatives are possible,

insofar as the assembly algorithm has been able to determine. We

note that such ambiguities could be due to systematic sequencing

errors, or repeat copies that could not be distinguished, or actual

mixed sites in the input DNA sample. For prokaryotes, these can

arise as mutations in the growing culture. Of course, for eukaryotic

genomes, allelic polymorphism would also give rise to local am-

biguities. Assemblies can also contain global ambiguities, repre-

senting large-scale features that are not fully resolved in the

assembly (Fig. 2).

The graph assemblies that we display here (Figs. 2, 3; Sup-

plemental Fig. 3) have the following semantics. Vertices represent

completely known sequences. Edges between two vertices repre-

sent the n possible sequences that could occur between the vertices

and are labeled accordingly. Usually n $ 2, because otherwise the

edge would have been absorbed into one of the vertices, but the

case n = 1 can occur where there is branching in the graph (cor-

responding to global ambiguity), and the case n = 0 corresponds to

a gap.

To make these graph assemblies accessible to existing pipe-

lines, we convert them into standard FASTA assembly files by se-

lectively introducing breaks at branch points. We note that work in

progress by the community will likely lead to a common format for

representing the actual content of these assemblies and those

produced by other groups (DB Jaffe, I MacCallum, DS Rokhsar, and

MC Schatz, in prep.).

The assembly algorithm is implemented as part of ALLPATHS-

LG and is automatically invoked if long-read data are provided as

input to the algorithm.

Results

Data

We chose 16 bacterial samples to apply our new method to (Table

2). Reference sequences for three of these samples—Escherichia coli

(Blattner et al. 1997), Streptococcus pneumoniae (Tettelin et al. 2001),

and Rhodobacter sphaeroides—were available, allowing us to use

them as known controls. In addition to the three control genomes,

the remaining samples were selected on the basis of availability,

with the exception of a single sample that was excluded after data

generation because its jumping library failed. We note a wide range

of GC content, from 27% to 69%, thus providing a test of perfor-

mance at GC extremes.

For each sample, we generated data in accordance with the

recipe of Table 1 (for protocols, see Supplemental Methods). In

most cases, the Illumina data sets were generated by pooling 24

libraries within a single lane. Delivered coverage levels varied

depending on production conditions, and we deliberately lowered

Ribeiro et al.
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coverage in some cases to get closer to the Table 1 specifications

(Supplemental Tables 2–4), using an initial genome size estimate,

prior to assembly. Note also that coverage levels are difficult to

interpret. For example, for R. sphaeroides, we had nominal long

read coverage in Pacific Biosciences data of 2063, but coverage by

reads $2 kb was only 1.63, whereas for E. coli, nominal read cov-

erage was 643, but coverage by reads $2 kb was 10.63 (Supple-

mental Table 3b). The primary contributor to this variation is likely

variability in production conditions, which is unsurprising given

how recently the technology was introduced.

Reference sequences

For three of our samples (#1–#3), finished reference sequences were

available to compare to; however, in each case, we observed dis-

crepancies between the reference and our sequence reads. To assess

the quality of both our assemblies and the reference sequences

rigorously, it was necessary to resolve all of these discrepancies. In

previous work (MacCallum et al. 2009), we have described and

validated reference sequence corrections for samples #1–#2: E. coli,

six corrections, and R. sphaeroides, 374 corrections. We note that

some of these corrections involved multiple bases, and in some

cases, large-scale rearrangements of the reference sequences were

corrected. In this study, we make additional corrections: one for E.

coli, and 32 for R. sphaeroides.

For sample #3, S. pneumoniae, we had access not only to our

data from our sample, but also to the primary sequence read data

from which the finished reference was generated, enabling a

comprehensive analysis of the discrepancies between the original

reference sequence and our new read data, which could also ac-

count for true sequence differences between the two samples

themselves. We describe here in detail the nature of the discrep-

ancies, validation methods, and results. First, we note that dis-

crepancies could be due to (1) errors in our data or analysis, or (2)

errors in the original reference sequences, or (3) true biological

differences between the sample used to create the reference se-

quence and our sample for this work. While we could not resolve

this completely without access to the original DNA sample and

extensive laboratory experiments, as we explain below, we were

nonetheless able to estimate the error rate in the original reference

sequence accurately.

We observed 63 discrepancies between the S. pneumoniae

reference sequence and our data. An initial investigation suggested

that in 60 of these cases, our sample was correctly called as different

from the original reference. The other three cases were likely sites

that are mixed in the population, for which either of two alter-

natives could be chosen as ‘correct’ (see Supplemental Table 7). We

note that three of the discrepancies (including two of the mixed

sites) occur within a complex 13-kb repeat region, whose exact

sequence could not be determined with the available data, and that

we are thus limited in our ability to draw conclusions about the

accuracy of assemblies of this region. We next edited the reference

to introduce these ‘corrections,’ yielding a corrected reference se-

quence. Next, we aligned all of our Illumina reads to both the

corrected reference and the original reference, and counted those

reads that supported one reference but not the other (Supple-

mental Table 7). These counts were overwhelmingly supportive of

the corrections, with support typically in the range of 100 to 1 for

the corrected reference, with the exception of the putatively mixed

sites, as expected. This gave us confidence that most if not all of our

‘corrections’ were bona fide differences between our sample and

the original reference sequence.

We next obtained the 26,174 original Sanger-chemistry reads

for the S. pneumoniae project. We aligned these reads to the original

reference, then manually investigated the discrepancies by directly

examining the Sanger chemistry traces, producing a report in each

case (summary in Supplemental Table 7; Supplemental Fig. 2). In

summary, we found that 36 of the 63 discrepancies appeared

clearly supported by the data as errors in the reference sequence,

and 16 appeared to be due to bona fide differences between the two

samples. The status of the remaining 11 discrepancies could not be

ascertained from the available sequence read evidence.

Figure 2. ALLPATHS-LG assemblies of three finished genomes. Vertices in the graph represent completely determined sequences, whereas an
edge labeled n represents n possibilities for the sequence lying between its vertex sequences. For n > 1, these are local ambiguities. (1) E. coli. The
assembly represents a circular chromosome that is completely determined except for a single local ambiguity for which there are two alternatives, as
denoted by the edge labeled 2. This ambiguity represents either a T or a G. (2) R. sphaeroides. Each component of the graph is circular and
corresponds to either a chromosome or plasmid, except for plasmids 4 and 5, which are highly similar and joined together in the assembly, resulting
in two global ambiguities. The nine edges with labels exceeding 1 represent local ambiguities. (3) S. pneumoniae. The assembly is a circle. There are
six local ambiguities.
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Finally, we carried out additional laboratory work for 55 of

the discrepancies to determine the exact sequence present in our

sample, using PCR and Sanger sequencing as in Grad et al. (2012). In

all cases, we found that the new Sanger reads support our changes.

In summary, we note that while it is impossible to know the

exact number of error events in each of the reference sequences for

samples #1–#3, we know that for:

E. coli, the number of error events likely is at most seven, and

possibly less, since such a small number of discrepancies could

be attributable to sample mutations;

S. pneumoniae, the number of error events is probably between 36

and 47;

R. sphaeroides, the number of error events is probably close to 400,

because it seems very unlikely that such a large number of dis-

crepancies could be attributable to differences in DNA sequence

between the samples.

Assemblies

We next applied the assembly algorithm to all 16 data sets

(ALLPATHS-LG revision 41343; computational performance

shown in Supplemental Table 8), using default parameters in each

case, then assessed the assemblies (Table 3). For the control as-

semblies #1–#3, we could use the corrected reference sequences to

assay accuracy precisely.

We first describe the three control assemblies (Fig. 2; Table 3).

We note that the table accounts for all imperfections in assemblies.

For E. coli, there is a single circular contig, which is completely

determined except for a single base. Thus, the entry in Table 3

shows one local ambiguity. There are two errors, both sub-

stitutions, separated by three bases.

For R. sphaeroides, which has two chromosomes and five plasmids,

there are 11 contigs. The extra four contigs are accounted for by

the fact that two of the plasmids share an essentially perfect

19-kb repeat and are consequently glued together in the as-

sembly, forming a ‘twinned’ plasmid structure (Fig. 2). All other

chromosomes and plasmids are present as simple circles. There

are nine local ambiguities, involving 2, 2, 3, 5, 6, 14, 15, 17, and

21 alternatives, respectively, representing uncertainty about the

exact sequence of short regions of size up to ;100 bases, and

occurring mostly in repeat regions. Relatively large numbers of

alternatives (e.g., 21) typically arise where several bases are am-

biguous, resulting in an exponential growth of alternatives. There

are four errors, consisting of three substitutions and one single-

base deletion (G16! G15).

For S. pneumoniae, there is a single circular contig. There are six

local ambiguities. There are no errors.

Critically, we note that (1) in all three cases, there are no gaps;

(2) the contigs for these projects are essentially complete chromo-

somes (or plasmids); and (3) the overall accuracy is substantially

higher than the finished reference sequences for the same genomes.

In particular, we note that there were only four incorrect bases for

our assembly of R. sphaeroides, as compared with several hundred

error events for the reference sequence (many involving multiple

bases), and none for our assembly of S. pneumoniae, as compared

with more than 30 for the reference.

We note that the overall contiguity of the 16 assemblies is

very high: the median N50 contig size is 2.2 Mb (Table 3). Although

we cannot assess the accuracy of the 13 ‘unknown’ genomes, we

Figure 3. Increased jump coverage simplifies assembly of Eubacterium. Two assemblies (A) and (B) of sample #10 (Eubacterium sp.) are shown. The
assembly algorithm was applied identically in both cases; however, for B, jump coverage was increased by 2.5-fold.
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can describe their global properties (Supplemental Fig. 3). For ex-

ample, three of the assemblies (#7, #9, #16) are again simple circles.

Some of the assemblies are completely resolved except for large-

scale global features. For example, #10 (Eubacterium sp.) is a circle

having a single global ambiguity, consisting of two parallel

branches of size 0.5 Mb, flanked by 12.7-kb perfect inverted repeats

that are not bridged by the data. In contrast, as suggested by the

number of contigs, scaffolds, and global

ambiguities, some assemblies are less well

resolved. To understand why this might be

the case, we computed the expected num-

ber of jumping pairs that would bridge

windows of specified size (Supplemental

Table 4a). For example, for 2-kb windows,

among samples, this number varies from

28 to 285 (factor of 10), whereas for 6-kb

windows, the number varies from 0.2 to

15 (factor of 75). These data suggest that

for particular samples, the presence of

somewhat longer repeats and/or some-

what less successful jumping libraries

could easily result in failure to bridge all

repeats, and thus a less well-resolved

assembly.

To a certain extent, less successful

jumping libraries can be compensated for

by increasing coverage. Thus, as an ex-

periment, we enlarged the jump data set

for sample #10 by 2.5-fold by using the

full amount of data that had been gener-

ated, resulting in a striking simplification

of the assembly graph (Fig. 3). Indeed,

because library construction rather than Illumina sequencing per

se is the primary driver of assembly cost for our model, increasing

coverage is in general practical. However, without going to extremes,

it is limited in its effect, because intrinsic variation in jumping li-

brary ‘bridging capacity’ exceeds 10-fold between samples, and the

capability of a given library to bridge repeats of a given size de-

creases roughly exponentially, by n-fold for each kilobase increase

Table 3. Assembly results

Sample Counta

Genome sizeb

(Mb)

N50
c (Mb) Ambiguities Accuracyf

# Name Contigs Scaffolds Contig Scaffold Locald Globale Error events Base quality

1 E. coli 1 1 4.6 4.6 4.6 1 0 2 63.6
2 R. sphaeroides 11 11 4.6 3.2 3.2 9 2 4 58.2
3 S. pneumoniae 1 1 2.2 2.2 2.2 6 0 0 >60g

4 B. eggerthii 28 27 4.6 0.6 0.6 3 2
5 B. fragilis 12 12 5.3 1.3 1.3 6 3
6 B. thetaiotaomicron 16 15 5.1 0.5 0.7 8 1
7 B. bifidum 1 1 2.2 2.2 2.2 4 0
8 Coprobacillus sp. 9 8 3.9 2.8 2.8 1 2
9 E. casseliflavus 1 1 3.4 3.4 3.4 0 0
10 Eubacterium sp. 6 4 3.1 1.0 2.6 15 1
11 F. nucleatum F0419 4 4 2.4 2.3 2.3 3 0
12 F. nucleatum 7_1 4 4 2.5 2.2 2.2 1 1
13 K. oxytoca 4 4 6.0 5.8 5.8 2 0
14 N. gonorrhoeae FA19 11 10 2.2 0.5 1.3 8 2
15 N. gonorrhoeae MS11 7 6 2.2 1.3 1.3 9 2
16 S. wiggsiae 1 1 1.6 1.6 1.6 2 0

aCount is the number of contigs and scaffolds in each assembly.
bGenome size (Mb) is from Table 2.
cN50 is the contig (or scaffold) size such that half the assembly bases were included in contigs (or scaffolds) of that size or larger. Gaps were not included in
scaffold sizes.
dLocal ambiguities: Each is an instance where one or more alternatives are reported.
eGlobal ambiguities: These represent unresolved global topology, not representable by a single number; as a proxy, we report the number of vertices in
the graph having multiple entering edges. See Figure 2 for an example.
fAccuracy: Error events are the total number of discrepancies between assembly and corrected reference; base quality is the phred base quality score
(Ewing and Green 1998; Ewing et al. 1998), computed as �10 3 log10(n/g), where n is the total number of substitution and indel bases occurring in the
discrepancies, and g is the total number of bases in contigs.
gFor sample #3, n = 0 (there are no errors), and thus �10 3 log10(0) = ‘, but this is not meaningful as a base quality.

Table 2. Samples

# Species Strain
Genome

sizea (Mb)
GCb

(%)
Reference
sequencec

1 Escherichia coli K12 MG1655 4.6 50.8 Finished
2 Rhodobacter sphaeroides 2.4.1 4.6 68.8 Finished
3 Streptococcus pneumoniae Tigr4 2.2 39.7 Finished
4 Bacteroides eggerthii 1_2_48FAA 4.6 44.7 None
5 Bacteroides fragilis CL05T00C42 5.3 43.6 None
6 Bacteroides thetaiotaomicron CL09T03C10 5.1 42.5 None
7 Bifidobacterium bifidum NCIMB 41171 2.2 62.8 None
8 Coprobacillus sp. D6 3.9 31.5 None
9 Enterococcus casseliflavus EC20 3.4 42.8 None
10 Eubacterium sp. 3_1_31 3.1 38.0 None
11 Fusobacterium nucleatum F0419 2.4 27.0 None
12 Fusobacterium nucleatum 7_1 2.5 26.9 None
13 Klebsiella oxytoca 10-5248 6.0 55.0 None
14 Neisseria gonorrhoeae FA19 2.2 52.4 None
15 Neisseria gonorrhoeae MS11 2.2 52.4 None
16 Scardovia wiggsiae F0424 1.6 52.9 None

Species and strain for each sample.
aGenome size: for 1–3, reference sequence size; for 4–16: assembly size, including gaps.
bGC (%): for 1–3, computed from reference sequence; for 4–16: estimated from assembly.
cReference sequence: finished for 1–3, none available for other samples.
Origin of samples: see Supplemental Table 1. Samples 4–7, 10–13, and 16 were sequenced as part
of the Human Microbiome Project (HMP); see http://www.hmpdacc.org.
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in the repeat size (Supplemental Table 4a), where n ranges from ;2

to 4, depending on library quality.

Discussion
Perfection of bacterial genome assembly is an important goal since

imperfections, like missing genes, misassemblies, or miscalled ba-

ses may result in incorrect biological conclusions being made re-

garding the biology and evolutionary history of the sequenced

organism (Fraser et al. 2002; Klassen and Currie 2012). In the early

days of sequencing bacterial genomes, great energy and resources

were expended to finish bacterial genomes into their full circular

forms, which was acceptable because the pace of sequencing itself

was slow. As newer and faster methodologies and sequencing

technologies arrived, perfection was increasingly sacrificed for

speed and cost. Draft genome assemblies can now be rapidly

produced, but they are far from perfect. In this study, we present

a new recipe that relies on fast sequencing technologies and a new

assembly methodology. The resulting assemblies appear at least

in some cases to be better than the finished genome reference

sequences produced in the past and yet can be produced rapidly

at a cost that is about an order of magnitude lower (see ‘‘Supple-

mental Analysis’’).

Our method starts with three data types, whose accuracy,

evenness of coverage, and range of repeat resolution span a wide

range and are compensatory, thus enabling the results presented

here. We consider the natural question of whether fewer ingre-

dients could be used. First, it is plausible that a substantially

modified algorithm could omit data type A (fragment read pairs),

because jumping reads might provide high-quality coverage in

their place. Second, omission of data type B (long reads) cuts at the

heart of the method and would be expected to have deleterious

effects. We tested this: for example, for seven of the 16 samples, the

N50 contig size is >10-fold smaller without these data (Supple-

mental Table 9). Finally, direct measurement of bridging power

(Supplemental Tables 3a, 4a) indicates that even the best long reads

generated here have substantially less power than jumping pairs

for linking over distance; however, this could change with improve-

ments to technology.

We note that, beyond generating longer long reads, improve-

ments to laboratory technology could improve results. For exam-

ple, amplification bias might be further reduced (Aird et al. 2011).

This would have significance for medically important pathogens

at GC extremes such as Mycobacterium tuberculosis (high GC) and

Plasmodium falciparum (low GC). Similarly, we have seen signifi-

cant variability in the ability of jumping libraries to bridge long

repeats (Supplemental Table 3a). This variability may be rooted in

DNA extraction protocols or the jumping library protocol itself,

both of which might be improved. Moreover, we note that the

methods described here are designed for DNA from culturable

bacterial strains, and that their extension to amplified material

from single cells could prove challenging.

We have demonstrated a computational method that is fully

automated and pushbutton, using default arguments for all sam-

ples. Our method achieves exceptionally high accuracy, and we

note that this is achieved by explicitly encoding ambiguities that

represent uncertainty regarding the true sequence of the genome.

It would be valuable to classify such ambiguities, for example, to

distinguish between positions that are mixed in the sample and

those that are uncertain because of limitations in the resolving

power of the data. Our methods have been demonstrated only on

bacterial genomes because changes to the algorithm would be

needed to assemble significantly larger genomes. This would be

eased by any future reductions in the error rate of the long read

data. We note that at present, cost considerations might preclude

generation of data by our recipe for large genomes. With changes

to algorithms, coverage requirements might be reduced; however,

we have not carefully controlled for coverage in this study because

it would be difficult to do so meaningfully, given sample-to-sample

variability.

With this work we make clear that it is now possible to rapidly

generate bacterial genome assemblies that are nearly perfect, at

relatively low cost. Importantly, using our approach, these high-

quality genome assemblies could be generated by any researcher

with access to sequence data and computational infrastructure.

This capability will be critical for interpreting genomics-based

studies of bacteria such as those being applied to studies of bacte-

rial epidemiology, which require precise information to track the

emergence and spread of virulence and antibacterial resistance

among bacterial populations infecting humans (Harris et al. 2010;

Lieberman et al. 2011; Parkhill and Wren 2011; Rasko al. 2011b;

Grad et al. 2012). In general, the goal of driving genome assemblies

to perfection remains important for the field.

Methods

Laboratory methods
For Illumina sequencing, 180-bp insert fragment and ;3-kb jump-
ing whole genome shotgun libraries were generated and sequenced
with 101-base paired-end reads on an Illumina HiSeq 2000 instru-
ment using standard methods (for more details, see Supplemental
Methods). Jumping libraries were size-selected using magnetic
beads rather than agarose gel, thus yielding a wide size distribution.
For Pacific Biosciences sequencing, ;3 kb (plus 6 kb and 10 kb for
samples #4 and #8) insert whole genome shotgun libraries were
generated and sequenced on a Pacific Biosciences RS instrument
using standard methods (for more details, see Supplemental
Methods).

Computational methods

The algorithm is as described above, with further details provided
here and in Supplemental Methods. In particular, after converting
each long read into a sequence of unipaths, we then form the
‘consensus’ of these sequences (algorithm Step II.2 above, and
Supplemental Methods). In brief, starting from these sequences,
we carry out a local voting process that involves choosing between
two parallel branches in a bubble. This yields a collection of se-
quences s (each itself a sequence of unipaths). From these, we form
two sets of sequences of unipaths that we call their ‘consensus.’
One consists of one-sided left and right neighborhoods of each
unipath u, extending up to a fixed length (600 k-mers beyond u), and
drawn from subsequences of the sequences s. The second consists of
sequences constructed from s and bridging between two unipaths of
size $1000 k-mers, but otherwise unbounded in length.

Data access
The raw data are available via NCBI GenBank (http://www.ncbi.nlm.
nih.gov/genbank). Accession numbers are listed in Supplemental
Tables 5 and 6. The three modified reference sequences and 16 as-
semblies are accessioned in GenBank by the following identifiers,
which should all be suffixed with ‘01000000’): #1 (DAAD = reference;
AKVX = assembly), #2 (AKVW = reference; AKBU = assembly), #3
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(AKVY = reference; AKBW = assembly), #4 (AKBX), #5 (AKBY), #6
(AKBZ), #7 (AKCA), #8 (AKCB), #9 (AKCC), #10 (AKCD), #11
(AKCE), #12 (AKBT), #13 (AKCF), #14 (AKCG), #15 (AKCH), and
#16 (AKCI). The full data sets of reads and assemblies are also available
on the Broad Institute website at ftp://ftp.broadinstitute.org/pub/
papers/assembly/Ribeiro2012.
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