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Early days: genomics and human responses to infection
Minghsun Liu1, Stephen J Popper2, Kathleen H Rubins2 and
David A Relman1,2,3
DNA microarray-based gene transcript-profiling of the

responses of primates to infection has begun to yield new

insights into host–pathogen interactions; this approach,

however, remains plagued by challenges and complexities that

have yet to be adequately addressed. The rapidly changing

nature over time of acute infectious diseases in a host, and the

genetic diversity of microbial pathogens present unique

problems for the design and interpretation of functional-

genomic studies in this field. In addition, there are the more

common problems related to heterogeneity within clinical

samples, the complex, non-standardized confounding

variables associated with human subjects and the complexities

posed by the analysis and validation of highly parallel data.

Whereas various approaches have been developed to address

each of these issues, there are significant limitations that

remain to be overcome. The resolution of these problems

should lead to a better understanding of the dialogue between

the host and pathogen.
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Introduction
Since the last review in this journal of DNA microarray-

based transcriptome analysis for studying host responses

to infection [1], the adoption of this approach by research

groups around the world has continued unabated. This is

not surprising, given the rewards that have so far been

reaped from this genomic technology, especially in

understanding cancer and in the development of new

practical tools for classifying cancer patients on the basis

of disease outcome or predicted treatment-response. Yet,
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as shown in Figure 1, the number of published papers on

DNA microarray-based host response profiling in the

setting of infectious diseases still lags significantly behind

the number of papers on the use of this approach in the

study of cancer. There are many probable reasons for this

discrepancy.

In this review, we focus on studies published from 2004 to

present that rely on the use of DNA microarrays to study

the host-response to pathogens using human clinical

samples or non-human primate models. The use of clin-

ical samples allows the study of host–pathogen interac-

tions in a clinically and physiologically relevant setting by

exploring the relationships between patterns of human

transcript abundance, human physiological parameters,

the natural history of the disease process, and pathogen

characteristics. The resulting complexity presents chal-

lenges beyond those posed by in vitro experimental

systems or small animal models. In this review, we

address some of the methodological issues raised by this

approach in this setting. An overview of some of the

factors to consider in designing DNA microarray-based

studies of infectious diseases is provided in Figure 2.

Readers interested in a broad overview of DNA micro-

array technology and microbial pathogenesis are referred

to two other recent reviews [2�,3].

Where to ‘listen’: target tissue and cell type
In the study of naturally-occurring human disease the

restricted availability of tissues and cells of various types

often dictates the kinds of studies that are feasible. As

reflected in the current literature, two different approaches

dominate in the selection of human clinical samples. The

first approach focuses on peripheral blood: peripheral

blood is a relatively accessible source of human cells

and RNA, and is a natural choice for analyzing host

transcript-based responses in systemic infection. This

approach has been used in the study of HIV infection

[4,5], sepsis [6], severe acute respiratory syndrome (SARS)

[7,8], malaria [9�] and febrile illness as a result of upper

respiratory tract infections [10]. Most often, RNA is har-

vested from either peripheral blood mononuclear cells

(PBMC) or from whole blood; whole blood analysis

involves less manipulation of the specimen than do most

PBMC collection methods [11] and for this reason might

be particularly suitable for clinical field studies. However,

whole blood (which includes erythrocytes, granulocytes

and platelets in addition to the PBMC) is obviously a more

complex mixture of cell types, creating additional con-

founding variables, such as the relative abundance levels of

these different cell types (see below). In addition, the large
www.sciencedirect.com
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Figure 1

Number of published articles on gene expression profiling per year, by topic. The following search strategy was used in PubMed

(http:/www.pubmed.com) to identify articles focused on host-pathogen interactions: (‘‘Gene Expression Profiling’’ [MeSH] OR ‘‘Oligonucleotide

Array Sequence Analysis’’ [MESH]) AND (‘‘Parasitic Diseases’’ [MeSH] OR ‘‘Bacterial Infections and Mycoses’’ [MeSH] OR ‘‘Virus Diseases’’

[MeSH]). To identify similar articles discussing cancer-related gene expression patterns, the pathogen MeSH terms were replaced with

‘‘Neoplasms’’ [MeSH]. Abbreviation: MeSH, medical subject heading.

Figure 2

Factors to consider in microarray-based studies of the host response to infection. An overview of variables and points to consider when

designing and performing microarray experiments. Abbreviations: ANOVA, analysis of variance; CART, classification and regression tree;

MIAME, minimum information about a microarray experiment; PAM, predictive analysis of microarrays; qPCR, quantitative PCR; SAM,

significance analysis of microarrays; SOM, self organizing map; SVD, singular value decomposition.
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amount of haemoglobin gene transcripts present in RNA

preparations from whole blood samples might interfere

with microarray signals on some platforms (http://www.

affymetrix.com/support/technical/technotes/blood2_

technote.pdf), although we have not found any evidence

of this problem using cDNA arrays in our laboratory (J Yen,

unpublished data).

The second approach has been to examine tissues or cells

that are prominently involved in infectious disease-asso-

ciated pathology: synovial fluid cells in septic knees [12],

explanted hearts in cardiomyopathy as a result of Chagas

disease [13], liver biopsies in hepatitis C-related fibrosis,

or in response to interferon therapy for this disease [14–

18], and gastric biopsies in Helicobacter pylori infection

[19,20]. In addition, several studies have examined HIV-

related dementia and encephalitis using brain tissues

obtained during autopsy [21–23]. The degree to which

host responses to infection are compartmentalized and

distinct between different compartments remains poorly

described. For example, the correlation between tran-

script abundance patterns in the peripheral blood and

those within local cells of various types at the site of a local

infection is unclear. It is not known how well peripheral

blood cells might discriminate between local infections

caused by different agents at different sites, or how well

they might reveal basic mechanisms of local immune

response. Clearly, the boundaries between local and

systemic compartments are not always distinct, because

there are molecular markers in the systemic circulation

that can be used as indicators of local infection. For

example, serum levels of creatine kinase-MB isoenzyme

and cardiac troponin I can be used to monitor myocardial

involvement in viral myocarditis; and serum hepatic

transaminase levels are used to measure the extent of

hepatocellular injury in viral hepatitis. Furthermore,

microbial disease agents might traffic through the per-

ipheral blood to a greater degree than previously sus-

pected (e.g. gastroenteritis-associated rotavirus).

Human clinical samples other than blood, and cells and

tissue from the primary site of infection associated pathol-

ogy might be useful for DNA microarray-based analysis of

infectious diseases. It remains to be seen how robust and

informative the RNA-based signatures are from saliva

[24] and other body fluids in this context; despite the

obvious challenges, the ease of access to some of these

sample types justifies further investigation. Various body

fluids have already been pursued as sources of protein-

based signatures of infectious disease.

The challenges of minimizing biases and
controlling confounding variables
Transcript abundance analysis of the host-response to

infection in model systems provides the opportunity to

control for, or eliminate, many of the variables present

during infection, including differences in environmental
Current Opinion in Microbiology 2006, 9:312–319
factors, host genetic background, pathogen strain, infec-

tious dose, route and timing. Controlled studies of global

gene expression patterns in human subjects following

infection have not yet been published, although several

studies have reported on the consequences of adminis-

tering microbial components [25�,26]. Instead, all of the

microarray-based studies cited above were observational

studies. As with any observational study, findings take the

form of associations between the measured variable (gene

transcript abundance) and other characteristics of the

process being studied (e.g. associated microbial agent,

survival and response to treatment); these findings are

subject to potential bias and confounding effects. An

unidentified or unspecified factor, or characteristic, might

lead to an incorrect interpretation — an unwarranted

inference of causality — or might limit the ability to infer

generalizations from the findings. This issue is prominent

in the typical microarray experiment, where thousands, or

tens of thousands of genes, reflecting diverse physiolo-

gical processes are examined all at once.

The potential for selection bias can be seen in one report

aimed at identifying genes whose expression levels might

be used as pretreatment predictors of responsiveness to

interferon therapy in patients with chronic hepatitis C

[17]. Patients infected with genotype 1 hepatitis C virus

have a significantly lower rate of response to interferon

therapy [27]. Not surprisingly, in these studies, patients

with genotype 1 infection were relatively over-repre-

sented in non-responder groups. Chen et al. [17]

addressed the possibility that the non-response transcrip-

tional profile was simply a genotype 1 profile, by deter-

mining that the same set of genes distinguished

responders and non-responders among those with geno-

type 1 infections. However, they did not evaluate their

findings in an independent set of samples, and because all

non-responders had genotype 1 virus, it is possible that

the identified genes only are associated with treatment

response in genotype 1 infection.

The collection of comprehensive data for a variety of

potentially-relevant clinical parameters provides an

important means of evaluating the role of potential con-

founders, and should be carefully considered during study

design. Studies in rats have shown that the expression of

some liver genes is influenced by fasting and circadian

rhythms [28]. However, none of the reports evaluating

liver gene expression in hepatitis C indicate whether diet

and time of day were recorded during sample collection,

or even considered in the data analysis [14–18,29]. The

issue is not unique to hepatic gene expression; transcript

abundance profiles in blood are also known to vary

according to gender, blood cell subset abundance, time

of day and age [11,30]. One approach, used in a study of

H. pylori-associated patterns of expression in gastric tissue

[19], is to match cases and controls on the basis of

potential confounding variables — in this study, samples
www.sciencedirect.com
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were matched for age and gender. A second approach is to

eliminate from further analysis genes known to be sig-

nificantly associated with certain clinical parameters

[31�]. Whereas both of these approaches if executed

carefully reduce the possibility of arriving at spurious

conclusions about the relationship between gene expres-

sion and an outcome of interest, they also limit the set of

possible subjects from which to draw samples for analysis,

and limit the possibility of discovering novel, interesting

associations between gene transcript abundance and the

matching variables. A third approach is to evaluate the

role of the clinical parameters during analysis. Chen et al.
[17] used multivariate analysis to evaluate the association

of specific genes with clinical parameters, and Griffiths

et al. [9�] evaluated the strength of association of gene

expression patterns with each clinical parameter, and

identified gene subsets that were associated with each

variable. This latter study also demonstrated that certain

clinical parameters can help highlight for further study

specific aspects of the host transcript-based response to

infection, and help to elucidate biological mechanisms.

Sample size, pooling, replication, and
frequency
Determining the minimum and/or optimal number of

samples (the sample size) for microarray-based studies

remains an active research area (reviewed in [32�]). None

of the studies reviewed for this paper made sample-size

determination explicit. At this time, sample size remains

largely determined by resource and sample availability.

Yet, it is disconcerting to find published microarray-based

in vivo studies that include only one sample for each

experimental group [33,34]. In addition to the obvious

benefit of achieving statistical significance, sample size

estimations facilitate collection of samples in sufficient

numbers so that a ‘tester set’ is available for cross-valida-

tion (see further discussion below).

Allison et al. [32�] suggested that pooling of biological

samples can reduce variability but obscure the ability to

compare variables across individual samples. Pooling of

human clinical samples masks the clinical data from each

individual sample. The subsequent ability to correlate

gene expression patterns with specific clinical parameters

is then lost. Once a technical platform is proven reliable in

a given laboratory, biological replicates provide much

more information and value than technical replicates

(i.e. the same biological sample processed and hybridized

more than once).

Determining appropriate sampling frequency and time-

points is another important aspect of experimental

design. Unlike oncological or rheumatological diseases,

where the process evolves over months and years, the host

response during acute infectious disease is a much more

dynamic process, and can produce gene expression

changes over time scales ranging from minutes to hours.
www.sciencedirect.com
Calvano et al. [25�] showed that transcript responses to

one dose of intravenous endotoxin occur by the second

hour and resolve within 24 hours. In a previous report

from our lab, Rubins et al. [35��] sampled blood from

monkeys with smallpox infection over multiple days and

found that an interferon-associated transcript abundance

response had begun by the first day or two after infection,

increased during the first four days and then plateaued

around day six. Other data from this study showed that

transcript abundance changes can precede the develop-

ment of clinical signs [35��]. Taken together, these stu-

dies suggest that dense sampling over the time course of

infection, beginning prior to the appearance of clinical

signs, might be crucial for a complete picture of the gene

expression program during acute infectious disease.

Heterogeneity of cell populations in samples
Most human tissues and samples collected for microarray

analysis are a mixture of distinct cell types. A mixed cell

population, such as whole blood or PBMC, gives a com-

prehensive picture of gene expression during the sys-

temic host-response to infection, and reflects the overall

interactions within a complex system. However, the

complex dynamics of a heterogeneous sample poses

two different challenges for in vivo experiments. An

important gene expression pattern might be undetectable

amidst a ‘noisy’ environment, particularly a pattern gen-

erated by a rare cell population. In addition, increases or

decreases in the relative abundance of a cell type alters

the overall proportion of unique transcripts from that cell

type in the total pool of RNA from a given sample. The

resulting gene transcript data might simply be a reflection

of the sum of unique, constitutive transcript profiles from

each cell type, rather than an actual increase or decrease

in transcript levels within a given cell type in response to

the infection or stimulus.

Two studies have examined the different contributions of

individual cell types in a complex in vivo mixed popula-

tion. Mueller et al. [36��] used laser micro-dissection to

harvest the three major epithelial cell types from murine

stomach tissue and showed that a H. pylori-specific tran-

scriptional profile is induced only in the mucus-producing

pit cells. McLaren et al. [34] compared gene expression

differences between antigen-stimulated PBMC and

CD4+ and CD8+ T-lymphocyte subpopulations. Their

limited analysis suggested that the transcript patterns of

lymphocyte subpopulations are distinct and differ from

the PBMC population as a whole.

Some in vitro experiments have explored gene transcript

patterns of specific cell subpopulations, sometimes in

response to specific stimuli [30,37] (Waddell et al., manu-

script in preparation). These ‘reference studies’ have

produced gene lists that can potentially be used as sig-

natures for determining the contributions of different cell

subsets to the profile of a mixed population without
Current Opinion in Microbiology 2006, 9:312–319
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having to separate each subset ex vivo. Several in vivo
studies have recognized the contribution of cell popula-

tion dynamics to gene expression patterns and have

performed correlation analysis to identify cell subset

abundance effects [9�,11,35��]. However, the utility of

these secondary data analysis techniques, for example,

correlation and signature gene lists, for identifying infec-

tion responses in a complex cell mixture remains to be

determined.

Whether cell sorting and separation is necessary in a study

will depend upon the specific experimental aims. For

studies with a focus on diagnosis, prediction or classifica-

tion, it might be acceptable to include patterns reflective

of both fluctuating cell populations and gene regulation.

However, for studies that are designed to elucidate

pathogenesis or mechanism, the difficulties in sorting

out contributions from each of these factors could prove

too problematic. At a minimum, studies that sample

complex tissues and mixtures of cells should collect data

on the abundance of various cell types during the time-

frame of the disease process. Reduction of sample com-

plexity through purification of individual cell populations

might be a necessary and important approach in the

future.

Reporting and availability of microarray data
One of the most powerful and as yet, under-utilized

approaches to microarray data analysis is to combine

primary gene transcript abundance data from different

studies in a ‘meta-analysis’. Jenner and Young [2�]
employed this approach with a re-analysis of data from

32 studies of host–pathogen interactions. This study

demonstrated both a common transcriptional response

to pathogens across cell types and studies, as well as

specific responses involving Toll-like receptors and sub-

sets of pathogens. However, the usefulness of this

approach is limited by the quality and availability of

the underlying data. Many transcript profiling papers

simply list ‘‘induced’’ or ‘‘repressed’’ genes, without

making available the underlying raw data, or even the

values of the clustered and filtered data upon which the

lists were based. This type of data reporting structure

does not allow for rigorous peer-review of the data, and

prohibits future types of combinatorial analysis. In addi-

tion, many investigators simply create rank lists of fold

changes in transcript abundance as proof for differential

expression and proceed to make inferential statements

and conclusions based on the highly ranked genes. This

approach assumes that the variance in transcript levels for

every gene is the same — this is not true in most

experiments, leading to unfounded conclusions [32�].

In 2001, a set of standards was proposed for the review

and publication of microarray data [38] (http://www.mged.

org/Workgroups/MIAME/miame.html). Submission of

microarray data to a public database such as ArrayExpress
Current Opinion in Microbiology 2006, 9:312–319
[39], Gene Expression Omnibus (GEO) [40], or the

Center for Information Biology Gene Expression Data-

base (CIBEX) [41], should be a basic requirement by all

journals for publication of manuscripts that present these

data, in the same way that submission of gene or protein

sequence data to public databases is currently required

for publication. The latter requirement has proved

invaluable for researchers worldwide. The wealth of

information generated with microarray experiments

can only be fully exploited if the data are made accessible

to the public.

Validation
‘Validation’ is a term that has been used loosely in the

gene expression literature. Generally, validation of results

from microarray profiling of host response refers to the

corroboration of changes in gene transcript levels using an

independent experimental method, such as quantitative

real-time PCR (RT-PCR). There is no current consensus

on the suitability or need for RT-PCR as an appropriate

and/or indicated method for confirmation of microarray

data [32�]. Need might be, in part, based on the impor-

tance of obtaining precise quantitative data for specific

transcripts in a particular study. At the same time, when a

group of co-varying transcripts is found, all of which are

known to be associated with the same biological system or

signaling pathway, this is strong evidence that this system

or pathway is affected by the process under study; inde-

pendent measurements of specific transcripts might not

be necessary. Some recent microarray designs incorporate

extensive internal controls, further reducing the need for

RT-PCR: one example is the HEEBO (human exonic

evidence-based oligonucleotide) and MEEBO (mouse

exonic evidence-based oligonucleotide) arrays designed

by Alizadeh et al. (http://alizadehlab.stanford.edu). As an

alternative, measurement of predicted protein products

might be more appropriate in some settings [19]. Rubins

et al. [35��] pursued leads generated by microarray experi-

ments with measurements of interferon protein — fol-

lowing up on the increased abundance of known

interferon-regulated gene transcripts, and with detection

of apoptotic T-cells by TUNEL (terminal deoxynucleo-

tidyl transferase biotin–dUTP nick end labelling) assays

— following up on the decreased abundance of certain

T-lymphocyte-associated transcripts. Obviously, valida-

tion of biological leads using in vitro models of host–

pathogen interaction remains far easier than validation of

such findings in humans [42�,43].

One of the major advantages of an agnostic method like

genome-wide transcript profiling is that it can highlight

potentially important genes without being biased or lim-

ited by prior assumptions about an experimental system.

Researchers tend to ‘‘only look where the streetlight is’’,

in focusing on genes with familiar names. Pre-existing

reagents and tools encourage this behavior, but the

increasing availability of comprehensive, genome-wide
www.sciencedirect.com
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gene ‘knock-down’ tools [44] should significantly

improve the ability to study unknown genes identified

in microarray experiments.

Appropriate cross-validation should be performed in stu-

dies that generate classifier or predictor sets of genes

based on microarray data; Tibshirani et al. [45] provides a

brief discussion on the challenges of classification in this

setting. In several studies, sets of differentially expressed

genes were used to assign samples or cases to clinical

categories [6,9�,10,14,17]. However, in at least one study,

no effort was made to deal with generalization error [6],

thus severely weakening the strength of the findings.

Conclusion: forming the big picture
The promise that genomics would improve our under-

standing of host–pathogen interactions has yet to be fully

realized. Yet there are clear indications that progress is

accelerating and new insights are accruing. The popular-

ity of microarray-based technologies for examining these

interactions will continue to expand as costs diminish,

standards are propagated and techniques improve. The

degree to which the associated explosion in the quantity

of available data is accompanied by comparable gains in

biological insight will depend on thoughtful study design,

careful data analysis, appropriate follow-up experiments,

and public availability of well-annotated, raw, standar-

dized microarray data.

Currently, it is also clear that we are not extracting all

available higher-order information from these data. Sev-

eral gene class annotation tools have been developed to

identify and organize biological themes among differen-

tially expressed genes [46,47]. Bioinformatics tools, such

as those employed by Calvano et al. [25�] and Koller’s

group [48,49�], will further enhance the interpretation of

microarray data. In particular, Koller et al. have developed

creative computational modeling approaches for dedu-

cing biological processes and regulatory networks, based

on integration of multiple kinds of highly-parallel gen-

ome-wide data, such as primary sequence, gene transcript

abundance and protein–DNA association data [48].

From the genomic perspective, host–pathogen interac-

tions involve the interplay of two (or more) distinct

genomes. A more comprehensive study of these interac-

tions will entail simultaneous monitoring of all of the

associated genes and gene products [50,51]. We believe

that one of the most exciting prospects for this field lies in

the integration of genome-wide data from multiple

sources. Large-scale random shotgun sequencing efforts

using samples from complex microbial communities pro-

vide an opportunity to discover and monitor the expres-

sion of genes directly from samples of these communities,

whether they are host-associated or environment-asso-

ciated. Community-wide patterns of gene transcript

abundance and their variation with respect to time, space
www.sciencedirect.com
and perturbation will reveal fundamentally important

aspects of microbial community ecology and physiology,

and provide potentially useful diagnostic and prognostic

information about the hosts in which communities play

critical roles in health and disease. As we construct a high

resolution and dynamic picture of the conversation

between humans and microbes, we will not only enhance

our understanding about fundamental aspects of human

biology, but improve the clinical management of infec-

tious diseases.
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