
 International Journal of 

Molecular Sciences

Article

Insights into Comparative Modeling of VHH Domains

Akhila Melarkode Vattekatte 1, Frédéric Cadet 1, Jean-Christophe Gelly 2 and Alexandre G. de Brevern 2,*

����������
�������

Citation: Vattekatte, A.M.; Cadet, F.;

Gelly, J.-C.; de Brevern, A.G. Insights

into Comparative Modeling of VHH

Domains. Int. J. Mol. Sci. 2021, 22,

9771. https://doi.org/10.3390/

ijms22189771

Academic Editor: Istvan Simon

Received: 27 July 2021

Accepted: 4 September 2021

Published: 9 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Laboratoire d’Excellence GR-Ex,
Université de la Réunion, F-97715 Saint Denis Messag, France;
akhila.melarkode-vattekatte@univ-reunion.fr (A.M.V.); frederic.cadet.run@gmail.com (F.C.)

2 Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Laboratoire d’Excellence GR-Ex,
Université de Paris, F-75739 Paris, France; jean-christophe.gelly@univ-paris-diderot.fr

* Correspondence: alexandre.debrevern@univ-paris-diderot.fr; Tel.: +33-1-44493000

Abstract: In the particular case of the Camelidae family, immunoglobulin proteins have evolved
into a unique and more simplified architecture with only heavy chains. The variable domains
of these chains, named VHHs, have a number of Complementary Determining Regions (CDRs)
reduced by half, and can function as single domains making them good candidates for molecular
tools. 3D structure prediction of these domains is a beneficial and advantageous step to advance
their developability as molecular tools. Nonetheless, the conformations of CDRs loops in these
domains remain difficult to predict due to their higher conformational diversity. In addition to CDRs
loop diversity, our earlier study has established that Framework Regions (FRs) are also not entirely
conformationally conserved which establishes a need for more rigorous analyses of these regions
that could assist in template selection. In the current study, VHHs models using different template
selection strategies for comparative modeling using Modeller have been extensively assessed. This
study analyses the conformational changes in both CDRs and FRs using an original strategy of
conformational discretization based on a structural alphabet. Conformational sampling in selected
cases is precisely reported. Some interesting outcomes of the structural analyses of models also draw
attention towards the distinct difficulty in 3D structure prediction of VHH domains.

Keywords: nanobodies; protein structure; homology modeling; secondary structures; structural alphabet

1. Introduction

Immunoglobulins or antibodies are crucial proteins of the immune system in jawed
vertebrates. Their function is to bind antigens. Amongst the large family of immunoglobu-
lin, immunoglobulin gamma (IgG) has been extensively analyzed, as it is more abundant
compared to the rest of the isoforms. IgG is composed of two heavy and two light chains,
comprised of approximately 3000 residues organized into multiple regions. Each heavy
chain is folded into three conserved domains and one variable domain, and each light chain,
into one variable domain and one conserved domain. All the domains have the characteris-
tic immunoglobulin fold. In the N-terminal, domains display larger sequence variability
compared to the succeeding domains in each chain; hence, they are called the variable
domains (VH and VL of the heavy and light chains). The rest of the sequence is organized
into successive conserved domains (CL in light chain and CH1, CH2, CH3, etc., in the heavy
chain). The immunoglobulin fold in variable domains is formed by the arrangement of nine
antiparallel β-strands (as opposed to 7 β-strands in the conserved domains) connected by
loops and arranged into two β-sheets (see Figure 1A [1]). Variable domains contain antigen-
binding regions predominantly formed by the loops towards the N-terminus. Belonging
to the family of V-set domains in the immunoglobulin superfamily (named IgSF), these
variable domains, both VH and VL, are composed of two regions: (i) the framework regions
(FRs) that correspond mainly to the β-strands, and (ii) the complementarity determining
regions (CDRs) composed of the exposed loops, which bind antigenic epitopes. The CDRs
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exhibit the largest variability in terms of sequence, length, and composition of amino
acids, resulting in conformational variability. This large diversity explains the ability of the
antibodies to recognize a large number of epitopes. Due to their sensitivity and specificity
to bind specific antigens, antibodies have become useful molecules for biotechnological
and pharmaceuticals development [2]. Such applications require antibody engineering to
improve binding affinity, facilitate humanization process, increase solubility, and alter other
biophysical and biochemical properties. Knowledge of the immunoglobulin 3D structure
is therefore of great interest, in order to increase their developability. Unfortunately, the
availability of large antibody structures is rather limited. Thus, 3D structure prediction of
antibody structure is of crucial importance for the development of applications.

The heavy chain only antibodies (HCAbs) from the Camelidae family [3,4] are an
interesting class of IgGs that completely devoid of light chains. In camelids, they occur in
addition to classical IgGs. Due to a specific mutation during the course of evolution, they
have lost the entire light chain and CH1 domain of the heavy chain. Thus, they bind to
antigens using only one variable domain (named VHH for the VH domain from HCAb, see
Figure 1B [5]). These domains are 120 to 130 residues in length; retain their ability to bind
antigens even when expressed independently. This, along with their unique biophysical
and biochemical properties, have made them therapeutic, diagnostic, and biotechnological
tools [6–8]. Due to their increasing applications, these domains need to be engineered to
improve their physiochemical properties. Structure prediction of these domains during
VHH design process can save time and resources. Although the complexity of their 3D
structure prediction is slightly reduced in terms of the number of domains to be modeled
and the subsequent prediction of their relative orientations, VHH has a CDR3 loop that is
much more diverse compared to its counterpart in canonical antibodies [9].

Figure 1. Structural representation of variable regions of immunoglobulins. (A) VH–VL complex
(taken from PDB ID 4P49 [1]) and (B) VHH (taken from PDB ID 1JTO [5]). The lighter colored regions
represent complementarity determining regions (named CDR-H and CDR-L for the VH-VL complex
and CDR for VHH) and darker colored regions the framework regions in each domain.

The structure prediction of antigen-binding domains for classical antibodies (see
Figure 1A) mainly focuses on the two variable domains (VH from the heavy chain and VL
from the light chain), each domain comprising four FRs and three CDRs. Although, it is
believed/accepted so far that the structure prediction of FRs is straightforward, the CDRs
pose a non-trivial task for structure prediction. Another specific difficulty is to predict their
relative orientations, which was attempted in recent studies [10,11]. Structure prediction
of variable domains, in general, does not specifically require de novo/ab initio methods,
as a large number of structures were resolved and deposited in the Protein Data Bank
(PDB) [12]. Thus, a typical template-based structure prediction method should be able
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to generate structural models for these domains. The main difficulty in modeling IgG
antibody variable domains lies rather in specific topology of each CDR and the orientations
between the two V-set domains to obtain a high accuracy model.

To address this question, a consortium, called the antibody modeling assessment
(AMA), exclusively dedicated to IgG structure prediction, was organized twice in the recent
past. In these assessment challenges, algorithms, such as RosettaAntibody [13], antibody
modeling of Discovery Studio (Accelrys, later BIOVIA from Dassault Systèmes) [14,15],
antibody design of the Chemical Computing Group (CCG), and prediction of immunoglob-
ulin structure (PIGS) [16,17] participated in the first evaluation meeting (AMA-I) [18]. The
second evaluation (AMA-II) [19] included with the aforementioned four algorithms, are
four others groups from Schrödinger, Macromoltek, and a collaborative group by Osaka
University and Astellas Pharma. These algorithms differ in their model scorings and
refinement protocols, but all of them use template-based modeling, at least to predict the
FRs. In both of these assessments, the root mean square deviation (RMSD) was adopted
as the gold standard to assess the structural similarity and quality of the models. Most
algorithms performed well in the FR prediction with a combined average RMSD range
of 0.9 Å ± 0.2 for the domains in the dataset tested. The heavy chain CDR3 remained the
most difficult one, with a combined average RMSD of 2.8 Å ± 0.4. The assessments by the
two AMAs represent the current state-of-the-art antibody modeling tools [18–20].

Both AMA assessments did not include any camelid antibody variable domains (VHH)
in their evaluations. Although some of the algorithms could predict VHH structural models,
in our literature survey, the generic structure prediction methods are often used. While
using comparative modeling, template backbone conformations are critical in determining
the protein conformations in the query model, for this reason, a template with best sequence
identity to the query was selected to model. In some cases, two or more overlapping
templates are used to sample conformational space more exhaustively as seen in few
structure prediction studies of VHH. In our previous study [21], we observed few examples
where the choice of the templates was critical and the variability in sequence identity
between FRs and CDRs could be quite complex to handle, e.g., the choice of the structural
template with the best sequence identity with query sequence may not always be the
best option.

This study addresses the problem of the impact of template conformations on the
VHH domain modeling, especially when using single and multi-templates (see Figure 2).
It attempts to underline the effect of sequence identity and structural similarity in different
regions of these domains, which affect model backbone conformations. Towards this
goal, the most extensive dataset of solved VHH domains was assembled. Each VHH
sequence of the dataset was then used blindly to perform comparative modeling using
template(s) selected through pairwise sequence identity or structural similarity. Four
different scenarios of modeling were assessed to model each query sequence in the dataset;
(i) using the best sequence identity template (bestSeqIdTemp); (ii) using the best structural
template (bestStructTemp); (iii) using three best sequence identity templates in a multiple
template mode (3bestSeqIdTemp) and, finally, as a gold standard, to evaluate the maximal
reachable accuracy; (iv) all potential structural templates were tested (All). As the AMA
competitions, the structural similarity was assessed using RMSD of Cα residues of the best
models to the reference native structures. In addition, protein blocks [22,23] were used to
measure differences in protein local conformations. As expected, using sequence identity
to choose the better template is, most of the time, a reasonable choice. However, for some
complex cases, we also highlight that selection of the template based on sequence identity
is the worse choice, and identify some VHH domains that cannot be properly modeled.
Finally, this study presents interesting perspectives that will enable the development of
better strategies for VHH modeling.
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Figure 2. Schematic representation of comparative modeling workflow employed in the first three scenarios.

2. Results
2.1. Selection of VHH Sequences

An initial dataset of 140 PDB entries of VHH domains were retrieved from the PDB [12]
in a similar way to our previous research [18]. A non-redundant dataset of 125 domains was
selected. Out of which, 25 had missing structural data for few residues and, hence, were
removed. The final structural dataset consisted of 100 structures. The sequence identity
threshold may seem high, but it is a reflection of the highly conserved FRs; closely related
FRs can, structurally, be very different [21]. On average, the sequence identity between
VHH in this structural dataset is only of 64% (see Figure A1).

2.2. Global Assessment of Structural Models
2.2.1. VHH Models

We generated 100 models for each VHH with Modeller [24,25]. Models were ranked
accordingly to their predicted quality determined by the DOPE score [26]. Structural
similarity of these models to the originally resolved crystal structures was quantified
using root mean square deviation (RMSD). Figure 3 represents the structural similarity
of best models for the first three scenarios, which are (1) using the best sequence identity
template (namely scenario bestSeqIdTemp); (2) lowest RMSD template (namely scenario
bestStructTemp); and (3) multiple template (i.e., three templates that are close in terms
of highest sequence identity to the query, namely scenario 3bestSeqIdTemp). The median
RMSD values for the three cases in the ascending order are scenario 2—bestStructTemp
(1.4 Å) < scenario 3—3bestSeqIdTemp (1.6 Å) < scenario 1—bestSeqIdTemp (1.9 Å). For the
three scenarios, the majority of the best-selected models are at least less than 2.0 Å from
the native structure (76% cases for bestStructTemp, 74% cases for 3bestSeqIdTemp, and 56%
for bestSeqIdTemp). On the contrary, some proposed structural models are of low accuracy.
Hence, 9% of bestStructTemp, 12% of 3bestSeqtIdTemp, and 14% of bestSeqIdTemp have a
RMSD value higher than 3.0 Å. This result may seem surprising in comparison to the
simplicity of immunoglobulin fold, but the same was also observed during multiple
previous analyses [27,28]
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Figure 3. RMSD values between the true VHH structure and its best-selected models. (A) Scenario 1—bestSeqIdTemp;
(B) scenario 2—bestStructTemp; and (C) scenario 3—3bestSeqIdTemp. The black dotted line indicates the median value of the
distributions 1.9 Å, 1.4 Å, and 1.7 Å, respectively.

Only 11 VHHs share the same template for scenario 1 and 2, i.e., the best sequence
identity is also the closest in terms of RMSD. Thus, to summarize, using only the se-
quence identity, the addition of two other templates provides an average gain of 0.2 Å
(bestSeqIdTemp and 3bestSeqIdTemp), and an average at 0.5 Å to the best possible template
(bestSeqIdTemp and bestStructTemp). Finally, the addition of two more templates that are
closer in sequence identity increase the quality of 0.3 Å in regards to theoretical best
available approach (3bestSeqIdTemp and bestStructTemp, respectively).

However, comparison of these different results shows that scenario 1 is not always
the most unfavorable method (see Figure A2). Indeed, 22% of the proteins have a better
structural model using scenario 1 (bestSeqIdTemp) compared to scenario 2 (bestStructTemp,
see Figure A2A). No correlation or clear trend can be observed from the comparison of the
difference in terms of sequence identity to the difference in terms of structural similarity
(see Figure A2B). When using multi-templates (scenario 3—3bestSeqIdTemp), the number of
cases where best models have higher RMSD value are more limited, but still represent 12%
of the models (see Figure A2C). The improvement of RMSD values is also slightly limited,
it is better distributed when scenarios 2 and 3 are compared (see Figure A2D).

2.2.2. Difficult Cases

The factors that mainly affect the quality of models are the sequence identity and
structural similarity between the query and the template. Thus, to investigate their impacts,
results are analyzed under two categories with models having an RMSD higher than 3 Å,
or not. Table 1 summarizes cases that can be considered difficult with RMSD values higher
than 3 Å for at least one scenario. For the 22 cases, nine are worst for scenario 1, three for
scenario 3 and, more surprisingly, 10 for scenario 2. While the first cases (bestSeqIdTemp) are
expected, the three examples of scenario 3 could imply multiple sequences (3bestSeqIdTemp)
and could provide spurious constraints that decrease the quality of the structural models.
Besides, for the worst scenario 2, the reasons seem more complex, as the closest structural
template does not provide the best structural model: the small differences in CDRs are
more important than expected. The best models are provided 11 times by scenario 2 and
11 times by scenario 3.
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Table 1. Structural models with more than 3Å RMSD. Listed below are the PDB IDs and chain IDs of the VHH query
(column 1) with corresponding RMSD values of DOPE score selected models for the three scenarios (columns 2 to 4), the
sequence identity (or mean sequence identity for the multi-template case) with the structural template (columns 5 to 7, SI
and MSI), and the RMSD with the structural templates for scenario 1 (column 8) and scenario 2 (column 9). The scenario in
which the best model has the highest RMSD is marked in red for scenario 1, green for scenario 2, and blue for scenario 3. A
‘*’ indicates the lowest RMSD value.

Query RMSD
SC1 (Å)

RMSD
SC2 (Å)

RMSD
SC3 (Å) SI SC1 (%) SI SC2 (%) MSI SC3

(%)
RMSD T
SC1 (Å)

RMSD T
SC2 (Å)

3G9A:B 7.87 3.46 * 3.89 69.17 59.63 68.2 4.63 1.82
3SN6:N 6.87 6.87 3.05 * 83.03 83.03 78.7 1.42 1.42
3EAK:B 5.59 1.39 * 1.64 67.86 66.39 67.2 1.89 1.44
5E7B:A 5.52 4.01 * 6.21 75.63 70.53 74.1 4.04 1.56
4C57:C 5.49 1.78 * 4.13 67.86 54.1 67.0 2.13 1.74
4IDL:A 5.13 2.72 * 3.18 67.26 60.17 65.9 3.01 1.27
5F1O:B 4.28 6.62 2.09 * 76.47 68.75 74.4 3.91 1.08
1KXV:D 4.08 2.00 * 4.47 64.96 63.33 64.1 2.89 2.00
5GXB:B 3.94 1.74 * 4.01 78.13 69.04 77.3 3.21 1.43
5BOP:C 3.91 1.36 * 1.97 78.63 70.24 78.0 2.46 1.14
4HEP:G 3.81 5.09 3.60 * 77.23 63.47 75.1 3.06 1.84
5F7L:B 3.29 1.34 * 2.66 76.72 71.42 75.5 1.90 1.01

4WEN:B 3.28 0.99 0.68 * 75.63 74.38 74.7 3.23 0.97
4WGV:D 3.04 2.49 * 2.94 75.83 64.34 74.9 2.86 1.73
4EIZ:D 2.93 6.89 2.37 * 76.78 73.21 76.3 3.14 1.12
3K3Q:A 2.86 5.96 2.55 * 56.19 50.00 55.1 2.03 1.71
2X1O:B 2.57 4.73 2.53 * 74.17 69.64 73.6 2.86 1.32
1I3U:A 2.06 4.31 2.29 * 65.85 61.46 64.7 1.66 1.53
4LAJ:H 2.29 4.30 2.04 * 79.67 65.21 78.6 2.11 1.60
2X6M:A 2.51 3.94 1.60 * 70.58 64.34 69.9 3.12 1.25
4GRW:F 2.43 3.77 1.97 * 79.67 71.42 76.8 2.11 1.54
3K81:B 2.74 2.45 * 3.41 72.50 65.81 71.5 2.80 1.91

At first, the analyses of raw values do not provide any simple explanation. For
example, VHHs with PDB IDs 1KXV:D, 5GXB:B, and 3K81:B, all have templates with
63–69% sequence identity and the RMSD of the template with the structure is always
between 1.4 and 2.0 Å, suggesting correct structural similarity. Other cases are also striking,
the highest approximation value is observed for the structural model of a VHH complexed
to green fluorescent protein (PDB ID 3G9A:B) leading to a large RMSD of more than
7.8 Å with scenario 1 (bestSeqIdTemp), while its structural template is “only” at 4.7 Å
(See Figure A3A). The fact that this VHH is complex may not be the best explanation for
the observed difference, as the most structurally similar VHH could have given a good
structural approximation. This is not the case, as often outliers are difficult to capture.

The second most striking case is one VHH binding to a GPCR protein (namely PDB
ID 3SN6:N, see Figure A3B); it has its best structural template that is solved as a complex
with nucleoporin (PDB ID 5C3L:D, RMSD of 1.4 Å) and shares also the best sequence
identity (SI of 83%). However, it only results in a 6.9 Å structural model. This poor quality
result is mainly due the long CDR3 in 3SN6:N, which has 14 residues more compared to
the template 5C3L:D. The CDR3 was slightly improved when two more templates were
added with multi-template scenario 3 (3bestSeqIdTemp) as the structural template CDR3 was
slightly longer with dive residues more than 5C3L:D, but still nine residues were without
template information.

In fact, most of the alignments of these poor-quality models have more gaps in their
alignment in comparison to the rest of the cases in a similar scenario (more than five gaps),
12 out of 14 alignments, 12 out of 12 (all alignments), and 7 out of 9 in scenarios 1, 2 and
3 respectively. To add further, in the case of a VHH binding to LacY (PDB ID 5GXB:B,
129 aa length) is particularly relevant. When modeled with scenario 1 template PDB ID
4TVS:A (SI 78%, see Figure A4A), this VHH has higher RMSD compared to scenario 2
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template PDB ID 5E0Q (SI 69% of 126 aa, see Figure A4B), the former does not improve
even after the addition of two more closely related templates (mean sequence identity (MSI)
of 77%). These results are interesting as they underline cases for which there is: (i) with no
significant difference in sequence length, and (ii) lower sequence identity, a template can
lead to better structural models.

More cases in which the best models have RMSD < 3.0 Å in both scenario 1 and
scenario 2 were examined. Using sequence length (especially in CDRs) as a criterion
influencing their structural similarity, 18 of such cases where the sequence lengths between
query and template sequences were less than 3 aa, and were found to be structurally
dissimilar. As an example of these cases, a case of 5GXB:B modeling, scenario 2 was better
than scenario 1, conveying using the best sequence identity template to build the best
structural model must be used carefully with VHHs.

2.2.3. Impact of Sequence Similarity between Template and Query on Selected Models

An analysis of the systematic impact of sequence identity between the template and
the query sequences on structural model qualities measured by RMSD were examined
in detail. As expected, bestSeqIdTemp showed a cluster between 70 and 80% sequence
identity and 1–3 Å RMSD, with no direct correlation between sequence identity and RMSD
(see Figure A5A). Interestingly, some templates are already at more than 4 Å from the
query structure. For bestStructTemp cases, the sequence identity of the query sequence
with the template in this scenario is lower (as we have a priori knowledge of structures
of the query sequences), they have a better structural approximation, forming a cluster
between 60 and 80% and 1–2 Å RMSD. Here, no correlation could be observed between
sequence identity and RMSD (see Figure A5B). The generation of structural models is
directly dependent of the structural proximity with the query, but is not the only parameter
that impacts the quality of the model. It is not shocking to see that for both bestSeqIdTemp
and bestStructTemp scenarios (see Figure A5C,D), the best structural models have higher
RMSD with the true structures. The bestStructTemp scenario modes shows more deviation
in RMSD in comparison to crystal structures than models from the bestSeqIdTemp scenario,
leading to eight structural models at more than 4 Å RMSD when the RMSD is, at most, less
than 2 Å with the query structure.

However, even for query and template sequences of the same residue lengths and of
high sequence identity, the RMSD can vary. For example, the VHH domain from 1BZQ:N is
modeled with (i) 4POY:A (94% sequence identity) for scenario 1; (ii) 2P4A:D (92% sequence
identity) for scenario 2. They both share equal lengths to the query and have RMSDs
of 1.9 Å and 0.4 Å, respectively. Even with this strikingly minimal difference (only 2%
sequence identity, in CDR 1 and CDR3 in both cases) between the two template sequences),
the induced structural change is three times greater in terms of RMSD values of models
from both cases. In fact, there are more residues conserved in the alignment of the query
(i.e., 1BZQ:N) with the template from scenario 1 (i.e., 4POY:A) than for the template from
scenario 2 (i.e., 2P4A:D), which, in the CDR regions, are contributing to the change in
RMSD (see Figure A6).

Structural similarity between best models of different scenarios (see Figure A7A,B)
suggest that (a) templates in scenario 2 had a more negative impact than scenario 1 and
(b) as the template used in scenario 1 is also used in scenario 3, along with two more
templates, the structural similarity is not too divergent in most regions of the VHH. Indeed,
there are surprising cases where the best structural template had more deviation than the
best sequence identity template. Comparison of scenarios 1 and 3 (see Figure A7B) shows
that no such drastic deviations were observed. Nonetheless using the best possible struc-
tural template was able to reduce the worse RMSD in scenario 1, around 8 Å to 4 Å. Indeed,
multiple sequence alignments properly done might have better structural approximation.
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2.3. Assessment of Structural Models in FRs and CDRs

After analyzing complete VHH best models, region-wise analyses were undertaken to
understand the precise differences in them (see Figure 4 for CDRs and Figure A8 for FRs).
FRs are not as simple as anticipated. Despite that, the RMSD values are limited on average,
two points can be noted: (i) for every scenario and every type of FRs, some RMSD values
are higher than 1 Å. It is surprising since FRs are supposed to be the most rigid part of the
VHH to handle; (ii) scenario 2 is only better for FR2 (0.4 Å), while scenario 3 is better for
FR1 (0.6 Å) and FR3 (0.4 Å) and even scenario 1 for the short FR4 (0.3 Å). It underlines a
specific difficulty of VHH topology; high local sequence identity with a lot of β-sheet does
not mean easy modeling.

Figure 4. Distribution of RMSD values for different CDRs between selected model and crystal struc-
ture. CDR1 for (A) bestSeqIdTemp (median value of 2.2 Å), (B) bestStructTemp (1.4 Å), and (C) 3bestSe-
qIdTemp (1.8 Å), CDR2 for (D) bestSeqIdTemp (0.4 Å), (E) bestStructTemp (0.7 Å), and (F) 3bestSeqIdTemp
(0.5 Å), CDR3 for (G) bestSeqIdTemp (2.5 Å), (H) bestStructTemp (1.9 Å), and (I) 3bestSeqIdTemp (2.4 Å).

The RMSD in CDR regions is of much higher range, especially for CDR3. The CDR2
region has the lowest RMSD values, as it is the smallest in length. It is unexpected to
have high RMSD values for CDR2 (only two cases can be observed are more than 2.0A).
Modeling of CDR1 is more complex with RMSD values at best are close to 1.5 Å for scenario
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2. CDR3 has the maximum diversity owing to changes in length and sequence identity. The
addition of a multi-template does not greatly improve the structural approximation (gain
of 0.27 Å) and is close to the theoretical limit of RMSD for scenario 2 (which is at 0.35 Å).

2.4. Conservation of CDR Loop Termini Distances in Best Models in Comparison to
Crystal Structures

Prediction of loop conformations is known to depend on the conformations of the
anchor residues and the distance between the anchor residues [29–32]. To understand if the
distances between the loop termini in the templates influence the distances in the models,
these distances between Cα atoms of the CDR loop termini were computed. Figure 5
shows the comparison of loop termini distances in query crystal structure versus their
corresponding best model in each scenario. Figure 5D–I shows that the Cα distances of
CDR2 and CDR3 termini are well approximated with few deviations compared to the native
structures. Hence, distances for CDR2 are at less than 1 Å between crystal structures and
models, with only 7 models are at more than 1 Å (with 2 are more than 4 Å). Interestingly,
it is found for every scenario. For CDR3, it is the same trend, but it is accentuated for
scenario 1, which is supposed to be the best approach. The CDR1 distance comparison
showed larger deviations in most of the loops modeled. On average, CDR1 distance is
of 13 Å, but the predicted distance is at +/− 1.5 Å, for every scenario, sampling with no
preference; thus, adding a new difficulty in the VHH model prediction (see Figure 5A–C).
This loop is particularly interesting as it extends between the two β-sheets of the domain
and is the largest distance of the three loop termini.

2.5. Case Studies: Analyzing Local Backbone Conformations of Two VHH Domains in Different
Scenarios for Two Representative Modeling Case Studies of VHH

The first is a llama VHH targeting muscarinic acetylcholine receptor M2 (PDB ID
4MQS:B, 125 residues) [33], while the second is from dromedary and binds Phage Tuc2009
Baseplate Tripod (PDB ID 5E7B:A, 131 residues with additional disulfide bridge) [34].
These two were chosen for the following reasons: (i) the structural models obtained by
the three scenarios for the first one has interesting structural similarity, and (ii) structural
models of the second one show greater deviations.

2.5.1. Case 1

The query sequence from VHH 4MQS:B was modeled with structural template 5HDO:A [35]
(sequence identity or SI of 72%) in case of scenario 1, 3STB:B [36] (SI 64%) in case of scenario
2 and in case of scenario 3, combining 4TVS:a [37] and 4LAJ:H [38] along with 5HDO:A
(mean sequence identity or MSI 70%). The best models from the respective scenarios 1,
2, and 3 had RMSD values of 2.3 Å, 2.5 Å, and 2.7 Å to the original structure. Figure 6
shows the superimposition of the query structure and the different structural template/best
model. The β-strand structural similarity is excellent in all of the cases. Figure 6A,C,E show
the superimposition of the 4MQS:B and its template in each scenario. It is obvious that
CDRs 1 and 3 of 4MQS:B (olive green color) display no similarity with any of the templates.
The selected models of scenarios 1, 2, and 3 are shown in Figure 6B,D,F. CDR1 and CDR3
loops that are structurally dissimilar in all the templates also remain quite dissimilar in
these selected models.
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Figure 5. Distance between the Cα residues of CDR termini in crystal structures and corresponding
selected models. (A) to (C) CDR1, (D–F) CDR2, and (G,H) CDR3, scenario 1—bestSeqIdTemp, corre-
sponds to (A,D,G), scenario 2—bestStructTemp to (B,E,H), while scenario 3—3bestSeqIdTemp is (C,F,I).
The x-axis values represent the distance observed in crystal structure (DCS (Å)) and the y-axis values
the distance observed in the best model (DBM (Å)).

To add further, native structures, structural templates and selected models have been
analyzed using protein blocks (see Figure A9A) [39]. The CDR1 sequence ‘GFDFDNFD-
DYA’ adopts a ‘hiehiafklpc’ PB signature in the structure, which none of the models exhibit.
Although all three of them exhibit more or less similar PB sequences at the start of the
loop, hiafblklmmc, hjafklmmmpc, hiankjoklpc, they quickly deviate into highly divergent
signatures. The CDR2 sequence ‘DPSDGST’ shows ‘fknopacd’ PB signature in the crystal
structure, which, in the best models, are slightly changed to ‘fkgoiacd’, ‘fknopacd’ and
‘fkomaccd’. These results are accurate and highly close in terms of PBs (exact match for
scenario 2, two mismatches only for the two other scenarios).

It seems that the amino acids aspartate and proline at the start of the group and
provide tight constraints in all of the modeling cases. In the case of CDR3, the sequence
SAWTLFHSDEY shows PB signature ‘dddehhlagcd’ in the crystal structure, which is
largely modified in ehiabddfkpa, ‘ddfblmlcfbd’, and ‘ehiafblcddd’ in scenarios 1, 2, and 3.
These conformations are far away from the VHH crystal structure, with only a few PBs d at
the extremity for scenario 2 and no common PBs for scenario 1 and 1 for scenario 3. This
example underlines that although models are closely similar in terms of RMSD, their CDRs
can be quite different in conformations.
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Figure 6. Superimposition of VHH query structure (VHH binding to human M2 muscarinic acetyl-
choline receptor, PDB ID 4MQS:B) and templates/models. The query PDB ID 4MQS:B [33] is
superimposed with templates used in (A) scenario 1 (in yellow PDB ID 5HDO:A [35], (C) in sce-
nario 2 (in dark blue PDB ID 3STB:B [36], and (E) in addition to template from scenario 1, PDB
ID 4TVS:a [37] in cyan, and in pink PDB ID 4LAJ:H [38]. (B,D,F) are best-selected models using
templates shown in (A) (in purple), (C) (in magenta), and (E) (in light blue).

2.5.2. Case 2

In case study 2, the VHH sequence 5E7B:A [34] is modeled using (i) 1SJX:A [40] (SI
74%) in scenario 1, (ii) 5H8D:A [41] (SI 70%) in scenario 2, and (iii) in case of scenario 3
4ZG1:F [42] and 5JQH:C [43] were additional used, along with the template from scenario
1 (mean SI 74%). The RMSD of the best model from scenarios 1, 2, and 3 are 5.5 Å,
4.0 Å, and 6.2 Å, respectively. Figure 7A,C,E show the superimposed representations
of the query structure and the templates used. It is obvious that none of the template
structures can provide a good model in the region of CDR3; this case is highly related to
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the one observed in [28]. Figure 7B,D,F show the best model in scenarios 1, 2, and 3, in
each case superimposed to 5E7B:A crystal structure. As seen in the previous case study
of 4MQS:B, PBs were assigned (see Figure A9B). For CDR1, the amino acids sequence
‘GFTFDDSD’ is associated to PB sequence hiafklpc, while in its models it is associated
to hjfklpcc, hiafklpc, and hieolmpc for CDR1 from scenarios 1, 2, and 3, respectively.
Hence, differences in their PB signature are seen in scenario 1, as only the first and last
PBs are in common, and in scenario 3, as only the two first and two last PBs are in
common; CDR1 PB signature in model from scenario 2 is exactly the same. For CDR2, the
amino acids sequence ‘FSDGSTY’ is associated to the PB signature ‘fkopacd’. The models
provided PB series fkopacd, ehiacdd, and fkopacd in scenarios 1, 2, and 3, respectively.
The CDR2 signatures from scenario 1 and scenario 3 are identical to the crystal structure
signature. In case of CDR3 sequence ‘AAATTTVASPPVRHVCNGY’ shows PB signature
‘dfbfbdcfklmmmmnommb’, which has extended conformations in the beginning (presence
of PBs d, b and f ) and helical (PB m) in the end. In the best models selected from the
three scenarios, the CDR3 is assigned the PB signatures ddddddfbdcfehiafbdc (scenario 1),
djbdcdfbfbdcfbgoiac (scenario 2), dddfbdfbdfblbdcdddd (scenario 3). It can be inferred that
none of these model CDR3 PB signatures are close to the crystal structure PB signature.
Moreover, they tend to be more extended in their conformation than helical in all cases.
This example shows that most of the regions can be modeled with good accuracy, while
CDR3 is more difficult to model and dictate the high global RMSD seen here.

2.5.3. Assessment of Backbone Conformational Sampling in Models Using Protein Blocks

In previous sections, we have underlined the interest of specific approaches by se-
lecting a ‘best’ model. The generation of the large number of models can also provide
interesting information. Hence, to understand how each modeling scenario is different
from the other and what conformations each of them have sampled is carried out by
analyzing PB signatures of both case studies in each scenario using PB maps. The two
examples presented in Figures 6 and 7 were chosen.

For 4MQS, little diversity is observed for FRs, conformational sampling is limited but can
be impacted differently in each scenario (see Figure A10A,C,E). Hence, FR1 is well conserved
in scenarios 1 and 2 modelling, but shows some variations for scenario 3; all other FRs are
equivalent in all scenarios. Conformational diversity in CDR 1 (positions 26–36) and CDR
2 (55–62) and especially in CDR3 (97–110) is significantly more pronounced. However, in
case of CDR3, the strong PB signature in scenario 1 and scenario 2 is not at all preserved in
scenario 3. Hence, the multi-template allows the deepest conformational exploration.

For 5E7B:A, models have sampled strand conformation for CDR3 in all the modeling
scenarios (see Figure A10B,D,F). There are very few positions for this case in scenarios
1 and 3 that show conformational diversity in CDR1 and CDR2. The FRs also show less
diversity in all cases except for just after CDR2 (position 63–68).

PB entropies (Neq [22]) are shown in Figure 8. PB Neq is able to analyze and capture
information of conformational diversity. For 4MQS:B (see Figure 8A,B), the CDRs have
Neq values higher than 2. CDR1 showed greater values of Neq in scenario 2 (more than 8)
followed by scenarios 3 and 1. Whereas for CDR2 and CDR3, scenario 3 shows high and
higher values of ~5 and ~7, respectively; both are considered high, suggesting a lot of
diverse sampling. Many FRs along with CDRs, positions 26–36, 55–62, 97–110, have Neq
values are >1, suggesting some limited sampling of local conformation, e.g., Neq of 2 for
scenario 3 is seen four times. The differences in the conformations advocate the influence
of template through the constraints they provide to the model-building algorithm.
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Figure 7. Superimposition of query structure VHH binding to phage Tuc2009 receptor binding protein
(PDB ID 5E7B:A) with templates and models. The query structure VHH that was binding to phage
Tuc2009 receptor binding protein (PDB ID 5E7B:A [34] is superimposed to different templates/models:
(A), used in scenario 1 (PDB ID 1SJX:A [40]; (B) in scenario 2 (PDB ID 5H8D:A [41]); and (C) in
addition to 1SJX:A, PDB ID 4ZG1:F [42], PDB ID 5JQH:C [43] are shown, respectively. (B,D,F) are the
best-selected models using templates shown in (A,C,E).
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Figure 8. Summary of changes in conformational sampling. Two modeling case studies of PDB ID 4MQS:B (Case 1) and PDB
ID 5E7B:A (Case 2) are presented. (A,B) PB entropy (Neq) [22] (raw values can be found in Supplementary Files S1 and S2);
(C,D) change in PB entropy (∆Neq) [44] and (E,F) differential PB signature at each position (∆PB) in different scenarios [44,45].
Each graph has all the three scenarios represented in different colors and notations c1, c2, and c3 for scenarios bestSeqIdTemp,
bestStructTemp, and 3bestSeqIdTemp. The dotted rectangles approximately denote the regions CDR1, CDR2, and CDR3
indicated from left to right in each figure.

Analysis of 5E7B:A models in terms of Neq shows drastic differences in comparison to
4MQS:B models. The CDR3 region (93–112) models from all three scenarios show high Neq
values, more than 6 in this region. For CDR1 region (26–33 aa region), no scenarios exhibit
much conformational diversity (see Figure 8B). It is surprising as the CDR1 region is the
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next difficult region to model. In the CDR2 region (52–58), except models from scenario 2,
which show slightly higher Neq, the other scenarios are conformationally less diverse. Even
in the FR regions, conformational diversity is less observed compared to the previous
case study.

A quantitative comparison of Neq values between any two scenarios is calculated and
represented as ∆Neq values (see Figure 8C,D). It mainly underlines a large difference for
4MQS in CDR3 between all scenarios and in CDR1 between scenarios 2 and 3; for 5E7B, it
is only distinctly different in CDR3 regions while the rest of the modelled regions in all the
scenarios do not show much variations.

To apprehend more precise, qualitative differences, in terms of PBs, the ∆PB is com-
puted [44]. In addition to ∆Neq [44], ∆PB is used to compare two different scenarios, but it
gives qualitative information. Its value ranges from 0 to 2, suggesting identical conforma-
tions at 0 and completely different conformations at 2. The comparison of ∆PB values for
scenario 1 vs. scenario 2, scenario 1 vs. scenario 3, and scenario 2 vs. scenario 3 are shown
for case studies in Figures 8C and 7D. In Figure 8C, the three CDR regions (positions 25–33,
52–58, and 97–110) show ∆PB values for some cases around 2. This analysis underlines
local protein conformations that are significantly different, e.g., the end of CDR2 regions
between all scenarios. However, the FR regions, which should be more tightly constrained,
also show non-zero ∆PB values in the regions of FR1 between scenarios 2 and 3, after CDR1
(42–45), after CDR2 (62–65), and for positions 74–76, mostly in scenario 1 vs. scenario 3 and
scenario 2 vs. scenario 3. In case of 5E7B:A, similar to 4MQS:B, the CDR3 region (93–112)
shows much diversity in all comparisons as represented by the ∆PB values. The ∆PB
values for scenario 2 vs scenario 3 are close to 2 in the CDR 1 (26–33) and CDR 2 (52–58).
These regions show local conformations entirely different between the two scenarios. Some
regions other than CDR have non-zero ∆PB values in all comparisons; amongst these, one
region stands slightly conspicuous, the amino acid region 74–76 for all scenarios. The
antibody research community considers this region as the fourth CDR loop, in both cases
5E7B:A and 4MQS:B this appears to have non-zero ∆PB values in this region, suggesting
conformational diversity is possible in this region. Thus, this region might not confer many
constraints as a regular secondary structured region, which results in higher sampling in
this region. The above analysis of modeling in different scenarios shows the applicability
of PBs as a tool for analyzing conformational sampling during modeling and its efficiency
in discriminating local conformations.

2.6. Systematic Modeling of VHH Domains (Scenario 4—All)

Some examples presented in this study suggest that the choice of the template with
the higher sequence identity is not always a guarantee to obtain the most structurally
accurate model possible. Thus, to investigate whether it is the case for all VHH domains,
each domain was modeled using the 99 remaining domains. A summary of the RMSD
distribution of best model superimposed over the original crystal structure obtained for
each domain is provided in Figures 9A and 10A, as well as their corresponding sequence
identities between the crystal structure and template used (see Figures 9B and 10B). The
pair-wise sequence identity distributions only had two outlier values for 3K3Q:A and
4IDL:A, which were lower than 40%. 1BZQ:N, 2P4A:D, 2XA3:A, 3R0M:B, and 4POY:A
have pairwise sequence identity outliers above 90%. Most of the pairwise sequence identity
values are between 50 and 80%, suggesting that it is the case for homology modeling.
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Figure 9. Structural similarity and sequence identity for first 50 VHH. (A) RMSD of best models from 99 modeling cases
computed against the crystal structure. The RMSDs of best models from scenario 1, 2, and 3 are marked in magenta, purple,
and green, respectively. (B) The values of sequence identities are shown. The sequence used in scenario 1 is in cyan at the
upper limit, the one for scenario 2 is represented by a pink circle, and an olive green circle represents the average of the
sequence identities, of the templates used for scenario 3.
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Figure 10. Structural similarity and sequence identity for last 50 VHHs. (A) RMSD of best models from 99 modeling cases
computed against the crystal structure. The RMSDs of best models from scenario 1, 2, and 3 are marked in magenta, purple,
and green, respectively. (B) The values of sequence identities are shown. The sequence used in scenario 1 is in cyan at the
upper limit, the one for scenario 2 is represented by a pink circle, and an olive green circle represents the average of the
sequence identities, of the templates used for scenario 3.

The RMSD value distributions of 2XT1:B, 3K74:B, 3ZKX:C, 4X7F:D, 5F7N:C, 5H8D:A,
and 5IP4:A show very narrow distribution because of smaller sequence lengths (≤115)
suggesting a reduced structural misalignment due to CDR lengths (see Figures 9A and 10A).
Another notable observation is that when distributions were analyzed there were 30 cases
where a lower RMSD value compared to any of the previous scenarios (such as best sequence
identity, closest structural approximate, and multiple templates, see Figures 9B and 10B)
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was observed. This observation suggests that there are other template features that could
lead to a lower RMSD value.

3. Discussion

To understand and appreciate the effects of the template backbone conformations on
the models generated, a large-scale analysis of the VHH domain modeling was performed
in this study. Four different scenarios were conceived, which cover most aspects of variable
domain modeling. All of these scenarios were carried out with simple approaches, easily
reproducible by the scientific community. Preliminary analyzes did not show significant
gains with more advanced settings of Modeller.

The first scenario is the classical case, which is often used in VHH structure prediction
studies and must be considered as the basic expectation. The main difficulty of this strategy
is the length of CDR3 loops, and the conformation of the CDR1 loop, even if its length is,
in most cases, constant. Moreover, 14% of the cases show an RMSD of the selected model
higher than 3 Å.

The second scenario reflects the best theoretical values possible, where the structural
similarity, overall, plays a major role, and must be considered as the best theoretical result.
Even if the CDR lengths do not match, the FRs in this scenario are expected to be highly
similar between the templates and the query. In most cases, the structural similar template
had the sequence length almost the same as the query, but for some cases, the differences
in length of the region to be modeled, and the template, were drastically different. This, in
particular, allowed CDR3 and a couple of CDR1 regions to adopt non-template dependent
conformations. Hence, 12% of these VHHs have a RMSD higher than 3 Å.

In the third scenario, the additional constraints are applied by adding two other
templates with the next best sequence identity values. It leads to only 9% of models
with RMSD values more than 3 Å. When RMSD of the best models were compared,
only 22 cases in scenario 1 had better RMSD when compared to scenario 2, and this
number was slightly reduced to around 12 cases when compared to scenario 3. The
rationale here is simply: (i) best sequence identity template provides better constraints,
or, (ii) adding more constraints at each residue position by adding more templates will
improve the approximation.

Different regions (FRs and CDRs) of models from three scenarios were assessed using
RMSD. As expected, CDRs showed higher values than the FRs; however, even in FRs,
RMSD analyses from different scenarios, unexpectedly, scenario 2 showed higher values
of median RMSD than the other two. Similarly, the distance between the Cα of residues
in CDR loop termini between original crystal structures and their corresponding models
were not preserved in every case. CDR1 had the highest distance between the termini
and it appeared to change without any specific trend. The deviations at CDR2 and CDR3
loop termini were highly limited as their loops connected two adjacent β-strands where
it was not the case for CDR1. This is an opportunity to think of a larger sampling than
expected in terms of both loops and distance. It should be noted that the different scenarios
always produce relevant 3D models, i.e., having no aberrant conformations. For example,
the number of residues proposed in unfavorable regions is, on average 1%, and is always
over 90% in the highly favorable regions of the Ramachandran map (see Figure A11). On
average, the models selected have a better number of residues in the favorable regions of
the Ramachandran map than the experimental structures [46].

Two examples were selected to explain to the reader the differences in the models
influenced by the templates. The case study of VHH 4MQS:B revealed that even though
the models are close in terms of RMSD, they could be quite different in local conformations.
In the case of VHH 5E7B:A, it surprising to note that most of the protein, except the CDR3,
could be modeled very efficiently, even from different templates. Further, the last scenario
is studied if a better RMSD is possible with any other template other than best sequence
identity template; in 30 cases, it was observed to have a model with lower RMSD than the
other three scenarios.
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In our analyses, we find that FRs are simpler to understand than CDRs, but they have
a direct effect on the quality of the models. Next, CDR1 has unexpected features; they
are not very diverse in terms of conformations (and lengths), but the distances between
loop extremities are not conserved and show variations between templates and models,
irrespective of the scenario, while this is not the case for CDR2 and CDR3. Analyses of
multiple template modeling show that, due to lack of constraints in a few cases, com-
parative modeling is not easy to perform. For these specific cases, a hybrid method of
modeling using multiple CDR templates could be a good strategy. Similarly, this study also
emphasizes the need for different tools to assess VHH models. Interestingly, the generation
of the models still shows an excellent correlation between the value of the DOPE score
and the quality of the model (compared to the experiential structure in terms of RMSD).
Similarly, the analysis of the models selected using PROSA software [47] shows that the
models have compatibility scores very close to those of the solved structures, even in the
case of models that are difficult to build (see Table A1). In addition to RMSD for the analysis
of the entire domain or its different regions, a protein block-based scoring function may be
useful for analysis of local conformation.

In summary, this study had shown that, often, a multi-template is the best method
to obtain, on average, a correct VHH model, and that DOPE score is a relevant measure
to select this model. However, it also shows that, for some VHHs, it is difficult to propose
satisfactory models. In the same way, the use of the structurally closest VHH is not always
the best choice, underlying the possibility for future improvement.

4. Materials and Methods
4.1. Dataset

VHH structures were retrieved from the Protein Databank (https://www.rcsb.org/,
accessed on 31 September 2018) [12] using keywords ‘VHH’ and ‘Nanobody’. Only VHH
structures without missing residues and/or modified ones were selected. After a structural
inspection, a final redundancy filter (of 95% of sequence identity) was applied.

4.2. Sequence Alignment

In order to (i) compute the sequence identity and (ii) to prepare files for the compara-
tive modeling (see details below), pairwise sequence alignments were performed using
Clustal Omega (v 1.2.4) [48].

4.3. Structural Similarity of Protein Structures and Structural Models

The root mean square deviation (RMSD) was used locally to quantify the structural
similarity between two aligned protein structures. ProFit (http://www.bioinf.org.uk/
programs/profit/, accessed on 31 September 2018) based on the McLachlan algorithm for
the superposition [49] was used in the study to calculate RMSD.

4.4. Comparative Modeling of VHH

Comparative modeling was performed using Modeller software [24,25], one of the
most popular comparative modeling approaches, and also the most widely used for VHH
molecular models [21]. Modeller 9 v.16 was used to model VHH query sequences. As input,
an alignment file in the prescribed format of the query with the target template(s) was
generated. The best structural model was chosen using the DOPE score implemented in
Modeller to rank the models [26,50].

Four different strategies to address different hypotheses were conceived:

• In the first scenario, sequence identity between the query and template sequences is
used as a criterion to select a template that shares the best sequence identity with each
query sequence (namely scenario bestSeqIdTemp). It is the most classical protocol for
template selection used in homology modeling,

• In the second scenario, templates are selected using structural similarity (to already
solved structures of query sequences) measured using RMSD as criterion (namely sce-

https://www.rcsb.org/
http://www.bioinf.org.uk/programs/profit/
http://www.bioinf.org.uk/programs/profit/
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nario bestStructTemp). The template that had the lowest RMSD with the experimentally
resolved structure of the query was chosen. This scenario is not possible in factual
sense and it is a theoretical assessment, to check the maximal accuracy reachable with
the closest structural template.

• The third scenario is based on a multi-template strategy. Three templates exhibiting
the highest sequence identity with the query were selected (namely scenario 3best-
SeqIdTemp). In a multiple template mode, better models are expected thanks to the
combination of different structures.

• The last scenario is also a theoretical case to access the maximal reachable accuracy
using all possible templates (namely scenario All). Indeed, all previous scenarios had
a specific a priori. Here, all structures were used independently as potential templates.
It permits us to have more insights that would have been missed in previous scenarios
such as; could another VHH template, other than the best sequence identity, and the
best structurally close ones provide a better structural model.

4.5. Local Conformational Analysis

Secondary structure assignment was performed using DSSP 2015 version 2.2.1 [51]
with default parameters [52]. Similarly we used also protein blocks (PBs [22]); they are
a structural alphabet composed of 16 local prototypes [23]. Each PB is characterized
by a series of 8 ϕ, ψ dihedral angles of five consecutive residues. Each PB assignment
focuses on the central residue. PBs give a reasonable approximation of all local protein
3D structures [53]. They are labelled from a to p. PBs m and d can be roughly described
as prototypes for α-helix and central β-strand, respectively. PBs a to c primarily represent
β-strand N-caps and PBs e and f representing β-strand C-caps; PBs g to j are specific to
coils; PBs k and l to α-helix N-caps while PBs n to p to α-helix C-caps. PB assignment was
carried out using PBxplore tool (available at GitHub) [39].

The equivalent number of PBs (Neq) is a statistical measure similar to entropy. It
represents the average number of PBs for a residue at a given position, which is calculated
as follows [22]:

Neq = exp(−
16

∑
x=1

fx ln fx) (1)

where, fx is the probability of PB x. A Neq value of 1 indicates that only one type of PB is
observed, while a value of 16 is equivalent to a random distribution.

To detect a change in PBs profile, a ∆PB value was calculated [44]. It corresponds to
the absolute sum of the differences for each PB between the probabilities of a PB x to be
present in the first and the second structures (x goes from PB a to PB p). ∆PB is calculated
as follows:

∆PB =
16

∑
x=1

∣∣∣( f 1
x − f 2

x

)∣∣∣ (2)

where, f 1
x and f 2

x are the percentages of occurrence of a PB x in the analyzed structures. A
value of 0 indicates perfect PB identity, while a score of 2 indicates a total difference.

4.6. Protein Structure and Structural Model Visualization

Visualization of models and/or original structures were performed using PyMOL
Version 1.7.2 [54,55].

4.7. Scripting

All scripts for analyzing VHH structures and models were done using Python 3.6 [56]
with NumPy library [53] and R 3.3.3 [57].
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Appendix A

Figure A1. Distribution of sequence identity in the dataset. The black line indicates the median value
of the distribution (i.e., sequence identity of 64%).
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Figure A2. Difference between selected models. Difference between RMSD (∆RMSD) of selected
models (A) between bestSeqIdTemp—scenario 1 and bestStructTemp—scenario 2, (C) between scenario
1 and scenario 3—3bestSeqIdTemp, and (D) between scenario 2 and scenario 3. (B) ∆Sequence identity
(%) (between query and template sequences of scenario 1 and scenario 2) vs ∆RMSD (selected model
with the original crystal structure).

Figure A3. Representation of structural templates and models of query sequences from (A) PDB id
3G9A, (B) PDB ID 3SN6.
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Figure A4. Sequence alignment of VHH binding to LacY (PDB ID 5GXB:B, 129 aa) with its templates.
(A) Alignment with template PDB ID 4TVS:A (127aa) in bestSeqIdTemp scenario, (B) Alignment with
template PDB ID 5E0Q:A (126 aa) in bestStructTemp. The highlighted regions in red in each alignment
are CDRs separating the FRs. The “:” under aligned residues indicate strong similarity in amino acid
conservation, “*” indicates identical residues and ‘.’ indicates weak conservation.

Figure A5. Sequence identity vs. RMSD. Between query and template crystal structures (A) in
bestSeqIdTemp and (B) in bestStructTemp, and between best model and original crystal structures (C) in
bestSeqIdTemp and (D) in bestStructTemp.
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Figure A6. Sequence alignment of VHH complexed with RNase I (PDB ID 1BZQ:N) with templates.
(A) Alignment with template PDB ID 4POY:A in bestSeqIdTemp scenario, and (B) alignment with
template PDB ID 2P4A:D in bestStructTemp scenario. The highlighted regions in red in each align-
ment are the CDRs separating the FRs. The “:” under aligned residues indicate strong similarity in
amino acid conservation, “*” indicates identical residues.

Figure A7. Comparison of scenario 1—bestSeqIdTemp with other scenarios. The RMSD of best models
in Scenario 1 (x-axis) vs. (A) the difference in terms of RMSD with selected models of scenario 2 and
(B) of scenario 3 (y-axis).
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Figure A8. Distribution of RMSD in FR between best model and crystal structure. The dotted line
represents the median value in each plot; they are indicated in brackets. FR1 (A–C), FR2 (D–F), FR3
(G–I), and FR4 (J–L) with scenario 1 (A: 0.66 Å, D: 0.56 Å, G: 0.52 Å, and J: 0.32 Å), scenario 2 (B: 0.61
Å, E: 0.4 Å, H 0.45 Å and K 0.47 Å) and scenario 3 (C: 0.58 Å, F: 0.47 Å, I: 0.42 Å, and L: 0.37 Å).
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Figure A9. Amino acid and PB sequences of two VHHs (PDB IDs 4MQS:B and 5E7B:A). (A) In
case study 1; 1: PDB ID 4MQS:B amino acid sequence; 2: PB sequence of PDB ID 4MQS:B crystal
structure, 3, 4, and 5 PB sequences of models from bestSeqIdTemp, bestStructTemp, and 3bestSeqIdTemp
scenarios. (B) In case study 2; 1: PDB ID 5E7B:A amino acid sequence, 2: PB sequence of PDB ID
5E7B crystal structure, 3, 4, and 5 are PB sequences of models from bestSeqIdTemp, bestStructTemp, and
3bestSeqIdTemp scenarios. The highlighted regions in red are the CDRs.
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Figure A10. Conformational Sampling in models visualized using protein blocks. Conformational diversity in models
represented as PB maps. (A,C,E) are PB maps for query sequence PDB ID 4MQS:B modeled in scenario 1, 2, and 3,
respectively. (B,D,F) are for query sequence PDB ID 5E7B:A modeled in scenario 1, 2, and 3, respectively. The regions
enclosed by white rectangles are CDR1, CDR2, and CDR3, denoted from left to right in each figure.
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Figure A11. Ramachandran map distribution of residues. (A) 5E7B:A crystal structure, (B) best model from scenario 1
(bestseqIdTemp), (C) best model from scenario 2 (beststructTemp), and (D) best model from scenario 3 (3bestseqIdTemp).
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Table A1. Prosa II Z -Score values for the best DOPE models selected. Column 1: sequence from the
PDBID:chainID used. Column 2, 3, 4, and 5: Z-score value of the selected model from scenario 1,
scenario 2, scenario 3, and solved crystal structure, respectively.

Prosa II Z Scores for 22 Difficult Cases

SC1 SC2 SC3 Crystal
Structure

1I3U:A −4.98 −5.37 −5.36 −5.53
1KXV:D −4.08 −6.4 −4.41 −4.73
2X1O:B −6.06 −5.64 −5.68 −5.72
2X6M:A −6.01 −5.98 −5.8 −6.84
3EAK:B −5.45 −5.63 −5.81 −5.97
3G9A:B −4.51 −4.75 −4.14 −5.79
3K3Q:A −6.12 −5.87 −5.89 −5.22
3K81:B −4.91 −5.11 −5.21 −5.44
3SN6:N −4.02 −4.05 −5.21 −5.14
4C57:C −5.54 −5.02 −5.00 −5.80
4EIZ:D −6.94 −6.01 −6.05 −6.56

4GRW:F −5.76 −5.78 −6.52 −6.6
4HEP:G −5.48 −6.19 −5.98 −6.59
4IDL:A −4.40 −4.25 −5.18 −4.30
4LAJ:H −5.94 −5.84 −6.45 −6.72
4WEN:B −4.93 −6.09 −6.15 −6.4
4WGV:D −4.95 −4.78 −5.21 −5.04
5BOP:C −5.97 −6.09 −6.12 −6.04
5E7B:A −5.58 −6.12 −5.99 −6.16
5F1O:B −5.77 −6.42 −6.59 −6.71
5F7L:B −6.43 −5.78 −5.57 −5.66
5GXB:B −6 −6.15 −5.75 −5.35
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