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Abstract
Berberine has been identified with anti-proliferative effects on various cancer cells. Many

researchers have been trying to elucidate the anti-cancer mechanisms of berberine based

on differentially expressed genes. However, differentially alternative splicing genes induced

by berberine might also contribute to its pharmacological actions and have not been

reported yet. Moreover, the potential functional cross-talking between the two sets of genes

deserves further exploration. In this study, RNA-seq technology was used to detect the dif-

ferentially expressed genes and differentially alternative spliced genes in BEL-7402 cancer

cells induced by berberine. Functional enrichment analysis indicated that these genes were

mainly enriched in the p53 and cell cycle signalling pathway. In addition, it was statistically

proven that the two sets of genes were locally co-enriched along chromosomes, closely

connected to each other based on protein-protein interaction and functionally similar on

Gene Ontology tree. These results suggested that the two sets of genes regulated by ber-

berine might be functionally cross-talked and jointly contribute to its cell cycle arresting

effect. It has provided new clues for further researches on the pharmacological mechanisms

of berberine as well as the other botanical drugs.

Introduction
Alternative splicing is a tightly regulated process during gene expression that can produce dif-
ferent forms of a protein from the same gene. Moreover, it has been proved that alternative
splicing can also determine binding properties, intracellular localization, enzymatic activity,
protein stability and posttranslational modifications of a large number of proteins [1]. In recent
years, more and more pharmacological researchers have found that small molecular drugs
could exert their pharmacological effects not only through regulating transcription levels of
genes but also through changing gene alternative splicing [2].
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Berberine, an isoquinoline quaternary alkaloid isolated from Berberis species [3], has a wide
spectrum of pharmacological effects such as anti-microbe, anti-diabetes and anti-inflammation
[4]. Clinically, it has been used to treat a range of disorders, including coronary artery disease,
diabetes, non-alcoholic fatty liver disease, hyperlipidaemia, metabolic syndrome, obesity and
polycystic ovary syndrome (https://www.clinicaltrials.gov/). Recently, accumulating studies
have found that berberine also possessed potent anticancer activity, with few or minimal unde-
sired toxic effects [5, 6]. Therefore, many researchers have been trying to elucidate the anti-
cancer mechanisms of berberine based on gene differential expression. For instance, it is
reported that berberine could induce apoptosis in HepG2 cells through AMPK-mediated mito-
chondrial pathway by increasing the ratio of Bax/Bcl-2 [7]. In our previous study, we also have
found that berberine could induce G1 cell cycle arrest in BEL-7402 cells partially via disturbing
the interaction of calmodulin with CaMKII and blocking subsequent p27 protein degradation.
[8]

Although these works have provided some fundamental knowledge about the anticancer
mechanism of berberine, alternative splicing in cancer cells after treated with berberine has not
been reported yet. Firstly, it has been implied that many anticancer drugs could inhibit the
growth of cancer cells by altering gene alternative splicing [9–11]. In addition, it is reported
that gene transcription and alternative splicing might be physically and functionally coupled
[12, 13], thereby jointly contribute to the pharmacological actions of these drugs. Therefore, it
is necessary to simultaneously measure the differentially expressed genes (DEGs) and the dif-
ferentially alternatively spliced genes (DASGs) in cancer cells after treatment with berberine
and systematically examine whether there is any kind of functional cross-talking between these
two sets of genes.

For the question mentioned above, the latest next-generation sequencing technology (RNA-
seq) was used to obtain the transcriptomic profiling of BEL-7402 cells after berberine treat-
ment. Then, the DEGs and DASGs induced by berberine were carefully detected by a suite of
sequence analysis tools. Finally, the functional crosstalk between these DEGs and DASGs was
statistically analysed and their possible contributions to the anticancer effect of berberine were
discussed.

Materials and Methods

Cell culture
The established human liver cancer cell line (BEL-7402, Cat. No.: TCHu_10) [8, 14, 15] was
bought from and deposited in the cell bank of the institute of Biochemistry and Cell Biology,
Shanghai Institutes for Biological Sciences, Chinese Academy of Science (http://www.cellbank.
org.cn/) and kindly provided by Dr. Xuan Liu (Shanghai Institute of Materia Medica, Chinese
Academy of Sciences, Shanghai, P.R.China). Cells were maintained in a humidified 37°C atmo-
sphere containing 5% CO2 and cultured in RPMI-1640 medium (GIBCO, Grand Island, NY,
USA) supplemented with 10% fetal bovine serum, 2 mM/L-glutamine, 50 units/mL penicillin,
and 50 mg/mL streptomycin. In this study, we have pooled 3~5 biological repeats into one
RNA-seq experiment to achieve the same amount of total RNA content. More specifically, at
the cell culturing section, cancer cells in 8~10 different petri dishes were divided into two equal
groups. One group was used as berberine treated group, the other was used as control/
untreated group.

RNA isolation
For extraction of total RNA, cells were plated on 10-cm plates (Corning, Acton, MA, USA) in
complete medium for 12 h. Then, 50 μM berberine (purity� 98%, Tauto Biotech, Shanghai,
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China, IC50 according to Ref.[8]) was added and left in contact for 24 h. After that, cells were
rinsed in PBS and lysed in TRIzol reagent (Invitrogen, Carlsbad, CA). Residual contaminating
genomic DNA was removed from the total RNA fraction using Turbo DNA-free kit (Ambion,
Austin, TX, USA). mRNA was isolated from DNA-free total RNA using the Dynabeads mRNA
Purification Kit (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol.
Finally, to obtain enough quantity of mRNA content for sequencing, the total RNA samples
from each group were pooled together as one pooled sample.

Transcriptome sequencing
mRNA selection, library preparation and sequencing was performed by Shanghai Ceneter for
Bioinformation Technology (SCBIT) on an Illumina Hiseq 2000 sequencing platform accord-
ing to manufacturer specifications. Briefly, mRNA was selected using oligo (dT) probes and
then fragmented using divalent cations. cDNAs were synthesized using random primers, modi-
fied and enriched for attachment to the Illumina flow cell. We sequenced two 60-cycle 100
bp × 2 paired-end lanes, generating ~83.1 million reads.

Read alignment
Raw sequencing reads were trimmed out Ns and low quality regions (average base quality
score in a 5-mer slide-window less than 20, that is, sequencing error rate�1%). Read-pairs
with at least 36 bp left in each read were kept as clean reads. Sequencing quality was assessed
using FastQC [16]. Then, clean reads were mapped to human reference genome (Ensembl
GRCh37.66 = hg19) using aligner Tophat [17] (version 2.0.6) with parameters (-r/—inner-
mate-distance: 70, -g/—max-multihits: 1,—no-coverage-search,—no-novel-junc, the others as
default). The outputs of Tophat were used as the inputs for HTSeq [18]and AltAnalyze [19] to
perform gene differential expression or alternative splicing analysis respectively.

Differential gene expression analysis
DEGs (Differentially Expressed Genes) refer to those genes with significant changes in their
expression level. Firstly, the number of reads mapped to the genomic region of each gene for
each sample was estimated with HTSeq [18]. Then DESeq [20] was used to assess the difference
in gene expression between different samples. Finally, DEGs were filtered by the following
rules: 1) the absolute value of log2 [fold-change] was greater than 1. 2) The p-value was less
than 0.05.

Differentially gene alternative splicing analysis
DASGs (Differentially Alternative Spliced Genes) refer to those genes with no or small varia-
tions in their whole-gene expression level but significant changes in their exon usage, especially
those alternative exons (Fig 1). Differential splicing analysis describes the differences in alter-
native splicing site usage between two samples, which is critical for studies involving mecha-
nisms of alternative splicing and its regulation, and able to uncover functional diversity that is
missed by differential gene expression analysis [21]. Dozens of available software tools and
packages, such as Cuffdiff2 [22], MISO [23], DEXseq [24], DEGseq [25], DiffSplice [26], Splic-
ing compass [27], AltAnalyze [19] and etc., took conceptually different approaches that could
identify differential splicing at the level of isoform/transcript, exon, or both. However, the
choice of a suitable approach for a study depends on the experimental objective and expected
outcome. Among these approaches and packages, only AltAnalyze provides a graphical user
interface, while the rest are run on the commend line. Besides, AltAnalyze provides a
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Fig 1. Representation of differentially expressed and alternatively spliced genes after berberine
treatment. A. The expression or alternative splicing of DPM1 gene remained unchanged after berberine
treatment. B. The splicing pattern of NFKBIA gene remained unchanged after berberine treatment as
indicated by the splicing index (SI) value of each of its exons. However, the expression of NFKBIA gene was
upregulated by more that 2-fold after berberine treatment (p<0.05) since each of its exons were
overexpressed. C. The splicing pattern of RLIM gene was altered by berberine treatment as indicated by the
SI value of exon 2 (SI < 0.5) within RLIM gene. But the expression of RLIM gene did not changed significantly
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convenient workflow to extract the significant alternative splicing regulation events and subse-
quently investigate the potential biological implications of such splicing events and related
mechanisms in the context of molecular interactions and binding sites [19]. Multiple algo-
rithms are available in AltAnalyze to identify individual features (exons or junctions) or recip-
rocal junctions that are differentially regulated relative to gene expression changes. In this
work, single feature analysis (Splicing Index, SI) was performed immediately after reciprocal
junction analyses (Analysis of Splicing by Isoform Reciprocity, ASPIRE) [28] on the same list
of expressed features, which allows us to examine alternative exons predicted by pairs of recip-
rocal junctions in addition to those predicted by a single regulated exons/junctions (see AltA-
nalyze-Manual). Splicing index is one measurement of differential splicing between two
samples. Exons with SI value larger than 1 means more inclusion of the exon in the matured
mRNA during splicing process in the treated sample compared with the control sample, while
those with SI value less than 1 means less inclusion but more skipping of the exon, and those
with SI value equal to 1 means there is no change in the usage of the exon.

Differentially alternative splicing analysis was carried out using AltAnalyze with default
parameters. Firstly, there were three criteria of exons to perform differentially gene alternative
splicing analysis: 1) At least 5 reads were mapped to the exon; 2) the RPKM (Reads Per Kilo-
base of exon model per Million mapped reads)value of the exon was larger than 0.3; 3) the
expression change of the corresponding gene was less than 2-fold. Then, two exon-centric algo-
rithms were used to detect the differentially alternative splicing exons: Splicing Index (SI) and
Analysis of Splicing by Isoform Reciprocity (ASPIRE) [28]. The SI value for each exon or junc-
tion was calculated as below.

SIðexoniÞ ¼
RPKMtreatmentðexoniÞ
RPKMtreatmentðgeneÞ

� �
� RPKMcontrolðexoniÞ

RPKMcontrolðgeneÞ
� �

ð1Þ

In which, RPKM(exoni) and RPKM(gene) were the expression value of the i-th exon and the
gene respectively. In SI algorithm, exons with SI>2-fold were called AS-exons_SI. In ASPIRES
algorithm, exons with ΔI>0.2 were called AS-exons_ASPIRE. The details of these two algo-
rithms have been described in AltAnalyze workflow (http://www.altanalyze.org/). Only over-
lapped AS-exons in both algorithms were chosen for further functional analysis. And the genes
containing these exons were called differentially alternative spliced genes (DASG).

Gene Set Functional Enrichment Analysis
Gene set enrichment analyses were performed for the functional annotation of the DEGs and
DASGs separately. Functional Annotation Tools in DAVID Bioinformatics Resources [29]
were used to carry out these analyses. Those gene ontology (GO) [30] biological process terms
or Kyoto Encyclopedia of Genes and Genomes (KEGG) [31] pathways with enrichment p-
value less than 0.05 (modified Fisher’s exact test) and more than two genes were considered as
significantly enriched functions for further analysis.

Local co-enrichment analysis along chromosome sequences
To test whether the DEGs and DASGs showed similar enrichment distribution along the chro-
mosomes, local co-enrichment analysis was performed. Firstly, an enrichment score (ES) was
calculated for a gene set at each chromosome band, which was also displayed as the intensity of

after berberine treatment. Relative expression, the relative expression level of the gene or all its exons
compared to the control sample. *, DEG; #, DSAG.

doi:10.1371/journal.pone.0143742.g001
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that region as shown in Fig 2A [32]. Given gene set X:{x1,x2,. . .xN}, chromosome band B:{b1,
b2,. . .bM}, the number of genes in each band G:{g1,g2,. . .gM}, then ES score was calculated as fol-
lowing.

ESðX; biÞ ¼ CountðX \ genes 2 biÞ
N � gi

ð2Þ

Fig 2. Positional co-enrichment of DEGs and DASGs along 24 chromosomes. A. Global intensity plot of positional enrichment for DEGs and DASGs.
Each cell represents a chromosomal band and the intensity of its color is proportional to the corresponding enrichment of DEGs or DASGs in this band, which
is normalized by both the total amount of genes in the band and the number of either DEGs or DASGs. Each column represents the chromosome containing
all the bands and the color, either blue or red, ahead of the column distinguishing the class of genes from DEGs and DASGs. B. The violin plot for the
positional co-enrichment score (distance) between two gene sets. The curve covering the yellow region represents the distance distribution of two random
gene sets in the same size of DEGs and DASGs respectively. A shorter distance means a higher co-enrichment of these two gene sets. The red diamond
point refers to the distance between DEGs and DASGs.

doi:10.1371/journal.pone.0143742.g002
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Then, a ES score vector EX:{ex1,ex2,. . .exM} was got for gene set X across all bands in B. Sim-
ilarly, another vector EY:{ey1,ey2,. . .eyM} could be got for another gene set Y. Finally, the simi-
larity (LCE) between the two color bands of X and Y was measured as the Euclidian distance
between them.

LCEðX;YÞ ¼ 1000�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i¼1

ðexi� eyiÞ2
s

ð3Þ

Global closeness in protein-protein interaction (PPI) network
To evaluate the topological closeness between DEGs and DASGs in the PPI network, average
shortest path length between them was used as the measure. Average shortest path length is a
concept in network topology that is defined as the average number of steps along the shortest
paths for all possible pairs of network nodes, which is a measure of the efficiency of information
transport in the network [33]. This measure is also applicable on two-subnetwork issues by calcu-
lating the average path distance for all possible pairs of nodes from these two networks, x and y.

Dis ðx; yÞ ¼
Xi¼M

i¼1

Xj¼N

j¼1
disði; jÞ

M � N
ð4Þ

Where dis(i, j) is the shortest path distance between the i-th gene of subset x and the jth gene of
subset y. In this analysis, the background network was built using the whole PPI data from online
database Human Protein Reference Database (HPRD).

Functional semantic similarity on Gene Ontology (GO) tree
On the tree of Gene Ontology, genes are categorized into different functional groups named as
GO terms based on the biological processes in which they are involved. Based on the graph
structure of GO, semantic similarity between any two GO terms was calculated as described in
Wang et.al [34] using GOSemSim package [35]. Then the semantic similarity between two
gene sets such as DEGs and DASGs could be calculated as the average of all possible pairs of
GO terms involving genes in these two gene sets. Given two lists of GO terms, go1 and go2
involving genes in two gene sets, X and Y, the semantic similarity SemSim was defined as:

SemSimðg1; g2Þ ¼
Xm

i¼1

Xn

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
simðgo1i; go2jÞÞ

q
m� n

� 1ffiffiffiffiffiffiffiffi
NGO

p ð5Þ

Where NGO is the total amount of GO terms used for semantic similarity calculation.

Results

Summary of RNA-seq results for BEL-7402 cells treated with berberine
The whole transcriptomic profiling of BEL-7402 cells treated with or without berberine was
assessed at base-pair resolution via RNA sequencing. After low-quality reads (as mentioned in
Read alignment section, Materials and Methods) were cleaned, approximately 30 million reads
out of ~41.5 million raw reads (reads retention rate:>70%, GC content: 45~46%, sequence
length:36~100 bp) were mapped to reference genome for each sample (Table 1). According to
the “Standards, Guidelines and Best Practices for RNA-Seq” adopted by ENCODE [36], this
sequencing depth is good for differential expression analysis and is acceptable for alternative
splicing analysis in human transcriptome.
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Differentially expressed and alternatively spliced genes induced by
berberine treatment
After analyzed by using DESeq software, RNA-seq results returned 343 DEGs in BEL-7402
cells after treated with berberine, with 111 up-regulated and 232 down-regulated (Table A in
S1 File). Interestingly, biological process response to bacterium (GO: 0009617) was found to be
significantly enriched by up-regulated DEGs (Table 2), which is consistent with the clinical
usage of berberine as a broad-spectrum anti-microbial medicine [3]. And we found the genes
related to positive regulation of angiogenesis were significantly down-regulated by berberine,
which accounts for the anti-angiogenetic activity of berberine reported in previous works. [37–
39] According to KEGG pathway enrichment analysis, the DEGs were significantly enriched in
p53 signalling pathway (hsa04115) and several cancer-related pathways such as Jak-STAT sig-
nalling pathway (hsa04630), Apoptosis (hsa04210) and Pathways in cancer (hsa05200)
(Table 3). The Jak-STAT signalling pathway is a major signalling involved in regulation of the
immune system, suggesting the immunity-regulating activity of berberine may contribute to its
anti-cancer effect.

Meanwhile, alternative splicing analysis was carried out using AltAnalyze software. The
results showed that 1083 differentially alternatively spliced exons, corresponding to 867
DASGs (Table B in S1 File) were identified in BEL-7402 cancer cells after berberine treatment.
Taken RLIM gene as an example (Fig 1), the inclusion level of exon 2 in the matured mRNA
was significantly changed (splicing index< 0.5) after berberine treatment, while there was only
a small change in its whole gene expression level. In comparison with RLIM, there was dramat-
ically variation (fold-change> 6) in the gene-expression level of NFKBIA (as an example of
DEG) but no significant changes (splicing index� 1) in the inclusion of its exons (Fig 1). As
shown in Table 2, the DASGs were involved in a variety of biological processes such as cell
cycle (GO: 0007049), chromosome organization (GO: 0051276), macromolecular complex
assembly (GO: 0065003) and cellular response to stress (GO: 0033554). Pathway enrichment
analysis represented that these DASGs were enriched in PI3K-AKT-mTOR signalling pathway
(has: 04150) and regulation of actin cytoskeleton (has: 04810) (Table 3), which all highly
related with cell cycle process and cell proliferation [40]. Clearly, these results suggested that
these DASGs might also be related with the anticancer action of berberine.

Statistical analysis of the functional cross-talking between DEGs and
DASGs
To explore whether there is any kind of functional cross-talking between DEGs and DASGs,
statistical tests were carried out from three primary but different perspectives.

Local co-enrichment among chromosome sequences. Intuitively, it should be tested
firstly whether those DEGs and DASGs are enriched together at the same or nearby regions on
the chromosomes. To carry out this exam, an enrichment score was assigned to each band on
all the chromosomes for DASGs and DEGs respectively [32]. As shown in Fig 2A, those DEGs

Table 1. General Statistics of Reads Alignment Process.

Ctrl Berberine

Count(left+right) % Count(left+right) %

raw reads 41671690 100.00 41434030 100.00

clean reads 33260886 79.81 32645126 78.78

mapped reads 29934588 71.83 29109042 70.25

doi:10.1371/journal.pone.0143742.t001
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and DASGs exhibited quite different enrichment distributions globally. However, patterns
could be found in each local region. Most of the DASG-enriched sites are at or near the sites
enriched by DEGs. To quantify the co-enrichment pattern between DEGs and DASGs, Euclid-
ean distance (0.941) was calculated between the enrichment scores on all chromosome bands
of DEGs and DASGs. To test the statistical significance of the distance between DEGs and
DASGs, simulations by randomly sampling two gene sets in the same size of DEGs and DASGs

Table 2. Gene Ontology Enrichment Result of DEGs and DASGs.

GeneClass GO_ID GO term Count# p-value

DEG_up GO:0006334 nucleosome assembly 8 <0.001

DEG_up GO:0043066 negative regulation of apoptosis 11 <0.001

DEG_up GO:0009617 response to bacterium 8 <0.001

DEG_up GO:0045595 regulation of cell differentiation 11 <0.001

DEG_up GO:0045637 regulation of myeloid cell differentiation 5 <0.001

DEG_up GO:0002521 leukocyte differentiation 6 <0.001

DEG_up GO:0051174 regulation of phosphorus metabolic process 10 <0.010

DEG_up GO:0030097 hemopoiesis 7 <0.010

DEG_up GO:0051726 regulation of cell cycle 8 <0.010

DEG_up GO:0031667 response to nutrient levels 6 <0.010

DEG_up GO:0006986 response to unfolded protein 4 <0.010

DEG_up GO:0008284 positive regulation of cell proliferation 8 <0.010

DEG_down GO:0006350 transcription 58 <0.001

DEG_down GO:0051252 regulation of RNA metabolic process 52 <0.001

DEG_down GO:0045766 positive regulation of angiogenesis 5 <0.001

DEG_down GO:0031328 positive regulation of biosynthetic process 18 <0.010

DEG_down GO:0051174 regulation of phosphorus metabolic process 14 <0.010

DEG_down GO:0042127 regulation of cell proliferation 19 <0.010

DEG_down GO:0043067 regulation of programmed cell death 19 <0.010

DEG_down GO:0007050 cell cycle arrest 6 <0.010

DEG_down GO:0008284 positive regulation of cell proliferation 12 <0.010

DEG_down GO:0006915 apoptosis 15 <0.010

DASG GO:0007049 cell cycle 48 <0.001

DASG GO:0051276 chromosome organization 35 <0.001

DASG GO:0065003 macromolecular complex assembly 41 <0.001

DASG GO:0008104 protein localization 47 <0.001

DASG GO:0006259 DNA metabolic process 30 <0.001

DASG GO:0045184 establishment of protein localization 40 <0.001

DASG GO:0006468 protein amino acid phosphorylation 36 <0.001

DASG GO:0033554 cellular response to stress 32 <0.001

DASG GO:0006350 transcription 85 <0.001

DASG GO:0045926 negative regulation of growth 11 <0.010

DASG GO:0051640 organelle localization 10 <0.010

DASG GO:0016044 membrane organization 23 <0.010

DASG GO:0043407 negative regulation of MAP kinase activity 6 <0.010

DASG GO:0008219 cell death 34 <0.010

DASG GO:0008361 regulation of cell size 14 <0.010

DASG GO:0042770 DNA damage response, signal transduction 8 <0.010

#the number of DEGs or DASGs in each Gene Ontology Biological Process term.

doi:10.1371/journal.pone.0143742.t002
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were carried out for 10000 times to produce the distribution of the Euclidean distance between
any two gene sets on the chromosomes. As shown in Fig 2B, the distance between DEGs and
DASGs was significantly shorter than those between randomly sampled sets. These results
clearly demonstrated that the DEGs and DASGs are physically co-enriched on the correspond-
ing chromosomes.

Global closeness based on protein-protein interaction (PPI) network. Following the
above result, additional efforts were taken to measure the functional connection between these
two gene sets based on PPI network. At first, 100000-time random simulations were performed
to build the distribution of averaged shortest path distance between any two gene sets in the
same scales as DEGs and DASGs [33]. Then, the averaged distance between DEGs and DASGs
were calculated and compared with the distribution. As shown in Fig 3, the former is far away
from the mean of the simulated distribution at a statistical significance of p-value< 0.05. The
results indicated that these DEGs and DASGs might be closely connected through protein-pro-
tein interaction.

Functional semantic similarity on Gene Ontology (GO) tree. While DEGs and DASGs
were found to have a significantly shorter distance compared with random-sampled gene sets
according to PPI network, this kind of functional correlation is indirect and not with strong
biological significance. Thus, a more straightforward method was employed to measure the
functional correlation between DEGs and DASGs based on the biological processes affected by
them [35]. To balance the computational efficiency and measurement robustness, those GO
biological process terms with at least 10 genes were select as the reference biological process set
(Fig 4A). A semantic similarity score was assigned to each two GO terms based on the graph
structure of GO, as illustrated in Fig 4B. Then an averaged semantic similarity score was calcu-
lated over all pairs of GO terms respectively from the biological processes affected by DEGs
and DASGs using the best-match average strategy. And the procedures were performed on two
randomly sampled gene sets in the same scale as DEGs and DASGs for 10000 times to get the
distribution of the averaged semantic similarity. As shown in Fig 4C, the averaged semantic
similarity between DEGs and DASGs is extremely higher than two random-pickup sets, indi-
cating that these two set genes might be functionally connected.

Table 3. KEGG pathway enrichment result of DEGs and DASGs.

GeneClass KEGG_ID KEGG pathway Count# p-value

DEG hsa04115 p53 signaling pathway 7 <0.001

DEG hsa05020 Prion diseases 5 <0.010

DEG hsa04060 Cytokine-cytokine receptor interaction 12 <0.010

DEG hsa05322 Systemic lupus erythematosus 7 <0.010

DEG hsa04640 Hematopoietic cell lineage 6 <0.050

DEG hsa04630 Jak-STAT signaling pathway 8 <0.050

DEG hsa04210 Apoptosis 6 <0.050

DEG hsa04710 Circadian rhythm 3 <0.050

DEG hsa05200 Pathways in cancer 11 <0.050

DASG hsa04150 mTOR signaling pathway 6 <0.050

DASG hsa04144 Endocytosis 12 <0.050

DASG hsa04810 Regulation of actin cytoskeleton 13 <0.050

DASG hsa00310 Lysine degradation 5 <0.050

DASG hsa04360 Axon guidance 9 <0.050

#the number of DEGs or DASGs in each pathway.

doi:10.1371/journal.pone.0143742.t003
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Fig 3. The PPI closeness (averaged shortest path distance) between DEGs and DASGs. A. An example illustration of the closeness between two gene
sets. Each circled point represents a node in the network and each line represents the edge between two nodes. The red-colored path is the shortest path
between X and Y in this network, which is with 3 steps. The right part is the matrix of shortest path length between all possible pairs from two gene sets (set_1
{Y, C, D}, set_2{X, A, F}). And their averaged shortest path length is 2.78. B. The blue curve above the yellow histogram fits the distribution of closeness
between two random gene sets in the same sizes of DEGs and DASGs respectively. The red dotted line refers to the distance between DEGs and DASGs.
The p-value represents the proportion of gene set pairs with shorter distance than that between DEGs and DASGs.

doi:10.1371/journal.pone.0143742.g003
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Discussion
Transcription and alternative splicing are two important biological processes during gene
expression, which together determine the proteome of cells under a certain condition. In this
study, for exploring the functional connection between differentially expressed genes and dif-
ferentially alternative spliced genes in cancer cells treated with berberine, the mRNA profiling
of BEL-7402 cells was collected via RNA-seq. Then, both the DEGs and DASGs induced by
berberine were carefully identified by a suite of sequence analysis software. Based on the DEGs
functional enrichment analysis, two potential mechanisms underlying the cell cycle arrest
property for berberine were suggested as below.

1. Berberine might induce p53-dependent G1 phase arrest of BEL-7402 cancer cells. After
BEL-7402 cells were treated with berberine, five genes (BBC3, FAS, CCNG2, GADD45B, and
IGFBP3) were up-regulated and two genes (CASP9, THBS1) were down-regulated (Table C
in S1 File) in p53 signaling pathway. Notably, the five up-regulated genes are downstream
targets of p53 [41–45]. Meanwhile, p53 was found to be expressed at a modest level in BEL-
7402 cells before and after berberine treatment. The wild-type p53 status in BEL-7402 cell
line was also confirmed by other researchers [46, 47]. These results suggested that p53 sig-
naling pathway might be influenced under berberine perturbation. As is known, p53 is a
crucial cell cycle checkpoint protein that will cause cell cycle arrest responding to DNA
damage [48]. Two cell cycle-related genes (CDKN2D, GADD45B), which are in the down-
stream pathway of p53, were found to be up-regulated after berberine treatment. They
could inhibit the activity of CDKs that regulate the G1-S phase transition. And Cell cycle
arrest at G1 phase in BEL-7402 cells induced by berberine was also found in our previous
work through flow cytometric analysis.[8] Taken together, our results indicated that berber-
ine might inhibit BEL-7402 cell proliferation by inducing G1 cell cycle arrest in a
p53-dependent manner. Additionally, p53-dependent cell cycle arrest at G1 phase was also
reported in several other cancer cell lines after berberine treatment.[37–39] Our previous
studies reported the cell cycle arrest effect of berberine by targeting calmodulin, which
might be the upstream signal of p53 pathways [8].

2. Berberine might suppress the production of inflammatory cytokines through NFκB
inhibition. RNA-seq results indicated that NFKBIA (IκB) was significantly up-regulated by
berberine treatment (Table D in S1 File). As an inhibitor of NFκB, IκB can hinder the trans-
location of NFκB from cytoplasm to nucleus [49]. Previous studies have proved that the
inhibition of NFκB may influence the expression of many inflammatory factors which
could promote tumor cell growth and facility tumor invasion and metastasis [50]. In this
study, five cytokines (IL-6, IL-8, IL1A, IL-33 and IL11) (Table D in S1 File) were found to be
down-regulated after berberine treatment according to the RNA-seq results. Notably, all
these cytokines have been reported as pro-inflammatory factors. For example, IL-6 and IL-8
were reported to be significantly high expressed and play an important role in migration
and sustainable proliferation of human liver cancer cells [51–53]. In addition, the silencing
of IL-8 by siRNA could inhibit proliferation and delay the G1 to S cell cycle progression in

Fig 4. The Gene Ontology semantic similarity between DEGs and DASGs. A. The pie plot shows the
proportion of GO terms with the corresponding gene number. The barplot represents the number of GO terms
with genes more than each cutoff of gene number. And the part of GO terms with more than 10 genes were
selected for further calculation. B. the heatmap of GO semantic similarity between each two selected GO
terms. The warmer the color is, the higher the similarity is between the two terms. C. The curve represents the
distribution of semantic similarity between two randomly sampled gene sets in the same size of DEGs and
DASGs respectively. The red diamond point refers to the semantic similarity between DEGs and DASGs.

doi:10.1371/journal.pone.0143742.g004

Functional Cross-Talking between Differentially Expressed and AS Genes

PLOS ONE | DOI:10.1371/journal.pone.0143742 November 25, 2015 13 / 18



breast cancer cells or prostate cancer cells lines [54]. This result suggested that suppressing
the production of inflammatory cytokines through NFκB inhibition might also contribute
to the anti-proliferative effect of berberine in BEL-7402 cells.

Meanwhile, according to the functional annotation on those DASGs, the splicing pattern of
a group of cell cycle related genes were also interfered with berberine treatment (Table 2). In
addition, the connections between the DEGs and DASGs were measured by statistically analyz-
ing local co-enrichment among chromosomes, network distance and functional semantic simi-
larity on GO trees. The results indicated that these DEGs and DASGs might be connected and
functionally cross-talked.

In addition to overall statistically analysis of the connection between DEGs and DASGs, an
integrated network included 15 DEGs and 18 DASGs was re-constructed based on p53 signal-
ing pathway, PI3K-AKT-mTOR pathway, and NFκB signaling pathway (Fig 5). In light of this

Fig 5. The integrated network affected by DEGs and DASGs. This plot shows an integrated gene-regulation network which is built based on those KEGG
pathways affected by DEGs and DASGs. In the plot, red boxes represent those DEGs which are up-regulated; the green ones represent those DEGs which
are down-regulated. Those DASGs are displayed as blue-colored boxes.

doi:10.1371/journal.pone.0143742.g005
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network, two potential functional connections between DEGs and DASGs were suggested as
below.

1. DEGs and DASGs synergically regulate p53 pathway. In the upper part in Fig 5, two genes
(CHK2, ATR) were differentially alternative spliced, which are responsible for the phosphor-
ylation and activation of p53 [55, 56]. Meanwhile, another four genes (PUMA, FAS,
IGF-BP3, CyclinG) were all significantly overexpressed, which are the transcriptional targets
of p53 [41–45]. These results highly suggested that these DEGs and DASGs might act syner-
gistically on p53 pathway, thereby inhibit cell cycle progression in cancer cells.

2. DEGs and DASGs synergically regulate PI3K-AKT-mTOR pathway. Considering the
PI3K-AKT-mTOR part in the integrated network (middle part in Fig 5), DASGs were widely
distributed both at the upstream and downstream of this pathway. In addition, this pathway
seems to play a linking role between p53 pathway and NFκB pathway (Fig 5). For example,
AKT is involved in the regulation of NFκB activation through the phosphorylation of IκB
kinase (IKK), which could phosphorylate IκB and induce its degradation [57]. Based on
DEGs functional analysis, both p53 signalling pathway and NFκB signalling pathway were
found to contribute to the anti-proliferative effect of berberine. Moreover, via the DASGs-
perturbed PI3K-AKT-mTOR pathway, these two pathways might be linked together for
generating berberine’s anticancer effect.

Thus, based on the findings in the current study, we would like to draw attention that in
addition to differential expression, differential splicing is very important as well to regulate the
cellular activities. The biological outcome of differential splicing is actually the collaborative
effects of multiple DASGs coupling with DEGs [13]. Preferably, further experimental valida-
tion is desirable when key factors can be identified or the multi-targeting interference could be
achieved in one experiment.

Conclusion
In this study, the genome-wide profiling of transcription and alternative splicing of BEL-7402
cells treated with berberine were analysed by RNA-seq. The results showed that the DEGs and
DASGs induced by berberine were functionally enriched in the p53 and cell cycle signalling
pathway. Importantly, our results indicated that these two sets of genes might be functionally
cross-talked and jointly contribute to the anticancer effect of berberine. This RNA-seq study
gave us a better understanding of the molecular mechanisms of anti-cancer effect of berberine.
In addition, it has provided new clues for further researches of pharmacological activity of ber-
berine as well as other drugs.

Supporting Information
S1 File. Information of all selected DEGs and DASGs, and those DEGs in specific pathways.
There are four supplementary tables. Table A, information about all the DEGs. Table B, infor-
mation about all the DASGs. Table C, expression data of DEGs in p53 signaling pathway.
Table D, expression data of DEGs in NFκB pathway.
(XLSX)
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