
ORIGINAL RESEARCH
published: 22 April 2021

doi: 10.3389/fninf.2021.659005

Frontiers in Neuroinformatics | www.frontiersin.org 1 April 2021 | Volume 15 | Article 659005

Edited by:

Gaute T. Einevoll,

Norwegian University of Life Sciences,

Norway

Reviewed by:

Mikael Djurfeldt,

Royal Institute of Technology, Sweden

Alexander K. Kozlov,

Royal Institute of Technology, Sweden

*Correspondence:

James C. Knight

j.c.knight@sussex.ac.uk

Received: 26 January 2021

Accepted: 15 March 2021

Published: 22 April 2021

Citation:

Knight JC, Komissarov A and

Nowotny T (2021) PyGeNN: A Python

Library for GPU-Enhanced

Neural Networks.

Front. Neuroinform. 15:659005.

doi: 10.3389/fninf.2021.659005

PyGeNN: A Python Library for
GPU-Enhanced Neural Networks
James C. Knight 1*, Anton Komissarov 2,3 and Thomas Nowotny 1

1Centre for Computational Neuroscience and Robotics, School of Engineering and Informatics, University of Sussex,

Brighton, United Kingdom, 2 Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany, 3Department of

Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany

More than half of the Top 10 supercomputing sites worldwide use GPU accelerators and

they are becoming ubiquitous in workstations and edge computing devices. GeNN is

a C++ library for generating efficient spiking neural network simulation code for GPUs.

However, until now, the full flexibility of GeNN could only be harnessed by writing model

descriptions and simulation code in C++. Here we present PyGeNN, a Python package

which exposes all of GeNN’s functionality to Python with minimal overhead. This provides

an alternative, arguably more user-friendly, way of using GeNN and allows modelers

to use GeNN within the growing Python-based machine learning and computational

neuroscience ecosystems. In addition, we demonstrate that, in both Python and C++

GeNN simulations, the overheads of recording spiking data can strongly affect runtimes

and show how a new spike recording system can reduce these overheads by up to

10×. Using the new recording system, we demonstrate that by using PyGeNN on a

modern GPU, we can simulate a full-scale model of a cortical column faster even than

real-time neuromorphic systems. Finally, we show that long simulations of a smaller

model with complex stimuli and a custom three-factor learning rule defined in PyGeNN

can be simulated almost two orders of magnitude faster than real-time.

Keywords: GPU, high-performance computing, parallel computing, benchmarking, computational neuroscience,

spiking neural networks, python

1. INTRODUCTION

A wide range of spiking neural network (SNN) simulators are available, each with their own
application domains. NEST (Gewaltig and Diesmann, 2007) is widely used for large-scale point
neuron simulations on distributed computing systems; NEURON (Carnevale and Hines, 2006)
and Arbor (Akar et al., 2019) specialize in the simulation of complex multi-compartmental models;
NeuroKernel (Givon and Lazar, 2016) is focused on emulating fly brain circuits using Graphics
Processing Units (GPUs); and CARLsim (Chou et al., 2018), ANNarchy (Vitay et al., 2015),
Spice (Bautembach et al., 2021), NeuronGPU (Golosio et al., 2021), and GeNN (Yavuz et al., 2016)
use GPUs to accelerate point neuron models. For performance reasons, many of these simulators
are written in C++ and, especially amongst the older simulators, users describe their models either
using a Domain-Specific Language (DSL) or directly in C++. For programming language purists,
fully custom DSLs such as the HOC network description language in NEURON (Carnevale and
Hines, 2006) or the NestML (Plotnikov et al., 2016) neuron modeling language may be elegant
solutions and, for simulator developers, using C++ directly and not having to add bindings to
another language is convenient. However, both choices act as a barrier to potential users. Therefore,
with both the computational neuroscience andmachine learning communities gradually coalescing
toward a Python-based ecosystem with a wealth of mature libraries for scientific computing

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.659005
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.659005&domain=pdf&date_stamp=2021-04-22
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:j.c.knight@sussex.ac.uk
https://doi.org/10.3389/fninf.2021.659005
https://www.frontiersin.org/articles/10.3389/fninf.2021.659005/full

Knight et al. PyGeNN

(Hunter, 2007; Millman and Aivazis, 2011; Van Der Walt
et al., 2011), exposing spiking neural network simulators to
Python with minimal domain specific modifications seems like
a pragmatic choice. NEST (Eppler et al., 2009), NEURON (Hines
et al., 2009), and CARLsim (Balaji et al., 2020) have all taken this
route and now all offer Python interfaces. Furthermore, newer
simulators such as Arbor and Brian2 (Stimberg et al., 2019) have
been designed from the ground up with a Python interface.

Our GeNN simulator can already be used as a backend
for the Python-based Brian2 simulator (Stimberg et al., 2019)
using the Brian2GeNN interface (Stimberg et al., 2020) which
modifies the C++ backend “cpp_standalone” of Brian 2 to
generate C++ input files for GeNN. As for cpp_standalone,
initialization of simulations is mostly done in C++ on the
CPU and recording data is saved into binary files and re-
imported into Python using Brian 2’s native methods. While we
have recently demonstrated some very competitive performance
results (Knight and Nowotny, 2018, 2020) using GeNN in C++,
and through the Brian2GeNN interface (Stimberg et al., 2020),
GeNN could so far not be used directly from Python and it is
not possible to expose all of GeNN’s unique features through
the Brian2 API. Specifically, GeNN not only allows users to
easily define their own neuron and synapse models but, also
“snippets” for offloading the potentially costly initialization of
model parameters and connectivity onto the GPU. Additionally,
GeNN provides a lot of freedom for users to integrate
their own code into the simulation loop. In this paper we
describe the implementation of PyGeNN—a Python package
which aims to expose the full range of GeNN functionality
with minimal performance overheads. Unlike in the majority
of other SNN simulators PyGeNN allows defining bespoke
neuron and synapse models directly from Python without
requiring users to extend the underling C++ code. Below,
we demonstrate the flexibility and performance of PyGeNN
in two scenarios where minimizing performance overheads is
particularly critical.

• In a simulation of a large, highly-connected model of a
cortical microcircuit (Potjans and Diesmann, 2014) with small
simulation timesteps. Here the cost of copying spike data off
the GPU from a large number of neurons every timestep can
become a bottleneck.

• In a simulation of a much smaller model of Pavlovian
conditioning (Izhikevich, 2007) where learning occurs over
1 h of biological time and stimuli are delivered—following
a complex scheme—throughout the simulation. Here any
overheads are multiplied by a large number of timesteps and
copying stimuli to the GPU can become a bottleneck.

Using the facilities provided by PyGeNN, we show that both
scenarios can be simulated from Python with only minimal
overheads over a pure C++ implementation.

2. MATERIALS AND METHODS

2.1. GeNN
GeNN (Yavuz et al., 2016) is a library for generating
CUDA (NVIDIA et al., 2020) code for the simulation of spiking

neural network models. GeNN handles much of the complexity
of using CUDA directly and automatically performs device-
specific optimizations so as to maximize performance. GeNN
consists of a main library—implementing the API used to define
models as well as the generic parts of the code generator—and an
additional library for each backend (currently there is a reference
C++ backend for generating CPU code and a CUDA backend.
An OpenCL backend is under development). Users describe their
model by implementing a modelDefinition function within a
C++ file. For example, a model consisting of four Izhikevich
neurons with heterogeneous parameters, driven by a constant
input current might be defined as follows:

void modelDefinition(ModelSpec &model)
{

model.setDT(0.1);
model.setName("izhikevich");

IzhikevichVariable::VarValues popInit(
-65.0, -20.0, uninitialisedVar(),
uninitialisedVar(), uninitialisedVar(),
uninitialisedVar());

model.addNeuronPopulation(
"Pop", 4, {}, popInit);

model.addCurrentSource(
"CS", "Pop", {10.0}, {});

}

The genn-buildmodel command line tool is then used to compile
this file; link it against the main GeNN library and the desired
backend library; and finally run the resultant executable to
generate the source code required to build a simulation dynamic
library (a .dll file on Windows or a .so file on Linux and
Mac). This dynamic library can then either be linked against a
simulation loop provided by the user or dynamically loaded by
the user’s simulation code. To demonstrate this latter approach,
the following example uses the SharedLibraryModel helper
class supplied with GeNN to dynamically load the previously
defined model, initialize the heterogenous neuron parameters
and print each neuron’s membrane voltage every timestep:

#include "sharedLibraryModel.h"

int main()
{

SharedLibraryModel model(
"./", "izhikevich");

model.allocateMem();
model.initialize();
float *aPop = model.getScalar("aPop");
float *bPop = model.getScalar("bPop");
float *cPop = model.getScalar("cPop");
float *dPop = model.getScalar("dPop");
aPop[0] = 0.02; bPop[0] = 0.2;
cPop[0] = -65.0; dPop[0] = 8.0;
aPop[1] = 0.1; bPop[1] = 0.2;
cPop[1] = -65.0; dPop[1] = 2.0;
aPop[2] = 0.02; bPop[2] = 0.2;
cPop[2] = -50.0; dPop[2] = 2.0;
aPop[3] = 0.02; bPop[3] = 0.2;
cPop[3] = -55.0; dPop[3] = 4.0;
model.initializeSparse();

float *vPop = model.getScalar("VPop");
while(model.getTime() < 200.0f) {

model.stepTime();
model.pullVarFromDevice("Pop", "V");
printf("%f, %f, %f, %f, %f\n",

t, VPop[0], VPop[1],
VPop[2], VPop[3]);

Frontiers in Neuroinformatics | www.frontiersin.org 2 April 2021 | Volume 15 | Article 659005

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Knight et al. PyGeNN

}
return EXIT_SUCCESS;

2.2. SWIG
In order to use GeNN from Python, both the model creation
API and the SharedLibraryModel functionality need to be
“wrapped” so they can be called from Python. While this is
possible using the API built into Python itself, wrapper functions
would need to bemanually implemented for eachGeNN function
to be exposed which would result in a lot of maintenance
overhead. Instead, we chose to use SWIG (Beazley, 1996) to
automatically generate wrapper functions and classes. SWIG
generates Python modules based on special interface files which
can directly include C++ code as well as special “directives” which
control SWIG. For example, the following SWIG interface file
would wrap the C++ code in test.h in a Python module called
test_module within a Python package called test_package:

%module(package="test_package") test_module
%include "test.h"

The %module directive sets the name of the generated module
and the package it will be located in and the %include directive
parses and automatically generates wrapper functions for the
C++ header file. We use SWIG in this manner to wrap both
the model building and SharedLibraryModel APIs described
in section 2.1. However, key parts of GeNN’s API such as
the ModelSpec::addNeuronPopulation method employed in
section 2.1, rely on C++ templates which are not directly
translatable to Python. Instead, valid template instantiations need
to be given a unique name in Python using the %template SWIG
directive:

%template(addNeuronPopulationLIF)
ModelSpec::addNeuronPopulation<NeuronModels::LIF>;

Having to manually add these directives whenever a model
is added to GeNN would be exactly the sort of maintenance
overhead we were trying to avoid by using SWIG. Therefore,
when building the Python wrapper, we instead search the GeNN
header files for the macros used to declare models in C++ and
automatically generate SWIG %template directives.

As previously discussed, a key feature of GeNN is the ease
with which it allows users to define their own neuron and
synapse models as well as “snippets” defining how variables
and connectivity should be initialized. Beneath the syntactic
sugar described in our previous work (Knight and Nowotny,
2018), new models are defined by simply writing a new C++
class derived from, for example, the NeuronModels::Base class.
Being able to define such classes from Python was a key
requirement of PyGeNN. However, to support this, GeNN’s C++
code generator would need to be able to call through to the
methods in the Python class used by the user to implement a
model. SWIG makes this easy by generating all of the boilerplate
code required to make C++ classes inheritable from Python using
a single SWIG “director” directive:

%feature("director") NeuronModels::Base;

2.3. PyGeNN
While GeNN could be used from Python via the wrapper
generated using SWIG, the resultant code would be unpleasant

to use directly. For example, rather than being able to specify
neuron parameters using native Python types such as lists
or dictionaries, one would have to use a wrapped type such as
DoubleVector([0.25, 10.0, 0.0, 0.0, 20.0, 2.0, 0.5]).
Therefore, in order to provide a more user-friendly and pythonic
interface, we have built PyGeNN on top of the wrapper generated
by SWIG. PyGeNN combines the separate model building and
simulation stages of building a GeNNmodel in C++ into a single
API, likely to be more familiar to users of existing Python-based
model description languages such as PyNEST (Eppler et al.,
2009) or PyNN (Davison et al., 2008). By combining the two
stages together, PyGeNN can provide a unified dictionary-
based API for initializing homogeneous and heterogeneous
parameters as shown in this re-implementation of the
previous example:

from pygenn import genn_wrapper, genn_model

model = genn_model.GeNNModel("float", "izhikevich")
model.dT = 0.1

izk_init = {"V": -65.0,
"U": -20.0,
"a": [0.02, 0.1, 0.02, 0.02],
"b": [0.2, 0.2, 0.2, 0.2],
"c": [-65.0, -65.0, -50.0, -55.0],
"d": [8.0, 2.0, 2.0, 4.0]}

pop = model.add_neuron_population(
"Pop", 4, "IzhikevichVariable",
{}, izk_init)

model.add_current_source("CS", "DC", "Pop",
{"amp": 10.0}, {})

model.build()
model.load()

v = pop.vars["V"].view
while model.t < 200.0:

model.step_time()
model.pull_state_from_device("Pop")
print("%f, %f, %f, %f, %f"

% (model.t, v[0], v[1], v[2], v[3]))

Initialization of variables with homogeneous values—such as
the neurons’ membrane potential—is performed by initialization
kernels generated by GeNN and the initial values of variables
with heterogeneous values—such as the a, b, and c parameters—
are copied to the GPU by PyGeNN after the model is loaded.
While the PyGeNN API is more pythonic and, hopefully,
more user-friendly than the C++ interface, it still provides
users with the same low-level control over the simulation.
Furthermore, by using SWIG’s numpy (Van DerWalt et al., 2011)
interface, the host memory allocated by GeNN can be accessed
directly from Python using the pop.vars["V"].view syntax
meaning that no potentially expensive additional copying of data
is required.

As illustrated in the previously-defined model, for
convenience, PyGeNN allows users to access GeNN’s built-
in models. However, one of PyGeNN’s most powerful features
is that it enables users to easily define their own neuron and
synapse models from within Python. For example, an Izhikevich
neuron model (Izhikevich, 2003) can be defined using the
create_custom_neuron_class helper function which provides
some syntactic sugar over directly inheriting from the SWIG
director class:

Frontiers in Neuroinformatics | www.frontiersin.org 3 April 2021 | Volume 15 | Article 659005

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Knight et al. PyGeNN

izk_model = genn_model.create_custom_neuron_class(
"izk",
param_names=["a", "b", "c", "d"],
var_name_types=[("V", "scalar"),

("U", "scalar")],
sim_code=

"""
$(V)+=0.5*(0.04*$(V)*$(V)+5.0*$(V)+140.0-$(U)+$(Isyn))*DT;
$(V)+=0.5*(0.04*$(V)*$(V)+5.0*$(V)+140.0-$(U)+$(Isyn))*DT;
$(U)+=$(a)*($(b)*$(V)-$(U))*DT;
""",

threshold_condition_code="$(V) >= 30.0",
reset_code=

"""
$(V)=$(c);
$(U)+=$(d);
""")

The param_names list defines the real-valued parameters that
are constant across the whole population of neurons and the
var_name_types list defines the model state variables and their
type (the scalar type is an alias for either single or double-
precision floating point, depending on the precision passed to
the GeNNModel constructor). The behavior of the model is then
defined using a number of code strings. Unlike in tools like
Brian 2 (Stimberg et al., 2019), these code strings are specified
in a C-like language rather than using differential equations.
This language provides standard C control flow statements as
well as the transcendental functions from the standard maths
library. Additionally, variables provided by GeNN such as the
membrane voltage in the model above can be accessed using
the $(V) syntax and functions provided by GeNN can be
called using the $(F, 1, 2) syntax (where F is a 2 argument
function). Using C-like code strings allows expert users to choose
their own solver for models described in terms of differential
equations and to programatically define models such as spike
sources. For example, in the model presented above, we chose
to implement the neuron using the idiosyncratic forward Euler
integration scheme employed by Izhikevich (2003). Finally,
the threshold_condition_code expression defines when the
neuron will spike whereas the reset_code code string defines
how the state variables should be reset after a spike.

2.4. Spike Recording System
Internally, GeNN stores the spikes emitted by a neuron
population during one simulation timestep in an array
containing the indices of the neurons that spiked alongside
a counter of how many spikes have been emitted overall.
Previously, recording spikes in GeNN was very similar to the
recording of voltages shown in the previous example code—
the array of neuron indices was simply copied from the
GPU to the CPU every timestep. However, especially when
simulating models with a small simulation timestep, such
frequent synchronization between the CPU and GPU is costly—
especially if a slower, interpreted language such as Python is
involved. Furthermore, biological neurons typically spike at a
low rate (in the cortex, the average firing rate is only around
3Hz; Buzsáki and Mizuseki, 2014) meaning that the amount of
spike data transferred every timestep is typically very small. One
solution to these inefficiencies is to store many timesteps worth of
spike data on the GPU and use more infrequent, larger transfers
to copy it to the CPU.

When a model includes delays, the array of indices and the
counter used to store spikes internally are duplicated for each
delay “slot.” Additional delay slots could be artificially added to
the neuron population so that this data structure could be re-used
to also store spike data for subsequent recording. However, the
array containing the indices has memory allocated for all neurons
to handle the worst case where all neurons in the population
fire in the same time step. Therefore, while this data structure
is ideal for efficient spike propagation, using it to store many
timesteps worth of spikes would be very wasteful of memory.
At low firing rates, the most memory efficient solution would
be to simply store the indices of neurons which spiked each
timestep, for example in a data structure similar to a Yale sparse
matrix with each “row” representing a timestep (Eisenstat et al.,
1977). However, not only would the efficiency of this approach
rely on GeNN only being used for models with biologically-
plausible firing rates, but the amount of memory required to
store the spikes for a given number of timesteps could not be
determined ahead of time. Therefore, either GeNN or the user
would need to regularly check the level of usage to determine
whether the buffer was exhausted, leading to exactly the type
of host-synchronization overheads the spike recording system is
designed to alleviate. Instead, we represent the spikes emitted by
a population of N neurons in a single simulation timestep as a
Nbit bitfield where a “1” represents a spike and a “0” the absence
of one. Spiking data over multiple timesteps is then represented
by a circular buffer of these bitfields. While at very low firing
rates, this approach uses more memory than storing the indices
of the neurons which spiked, it still allows the spiking output
of relatively large models, running for many timesteps to be
stored in a small amount of memory. For example, the spiking
output of a model with 100× 103 neurons running for 10× 103

simulation timesteps, required <120MB—a small fraction of the
memory on a modern GPU. While efficiently handling spikes
stored in a bitfield is a little trickier than working with a list of
neuron indices, GeNN provides an efficient C++ helper function
for saving the spikes stored in a bitfield to a text file and a
numpy-based method for decoding them in PyGeNN.

2.5. Cortical Microcircuit Model
Potjans and Diesmann (2014) developed the cortical microcircuit
model of 1mm2 of early-sensory cortex illustrated in Figure 1.
The model consists of 77,169 LIF neurons, divided into
separate populations representing the excitatory and inhibitory

Frontiers in Neuroinformatics | www.frontiersin.org 4 April 2021 | Volume 15 | Article 659005

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Knight et al. PyGeNN

FIGURE 1 | Illustration of the microcircuit model. Blue triangles represent excitatory populations, red circles represent inhibitory populations, and the number beneath

each symbol shows the number of neurons in each population. Connection probabilities are shown in small bold numbers at the appropriate point in the connection

matrix. All excitatory synaptic weights are normally distributed with a mean of 0.0878 nA (unless otherwise indicated in green) and a standard deviation of 0.0878 nA.

All inhibitory synaptic weights are normally distributed with a mean of 0.3512 nA and a standard deviation of 0.03512 nA.

population in each of four cortical layers (2/3, 4, 5, and 6). The
membrane voltage Vi of each neuron i is modeled as:

τm
dVi

dt
=(Vrest − Vi)+ Rm(Isyni + Iexti), (1)

where τm = 10ms and Rm = 40M� represent the time constant
and resistance of the neuron’s cell membrane, Vrest = −65mV
defines the resting potential, Isyni represents the synaptic input
current and Iexti represents an external input current. When the
membrane voltage crosses a threshold Vth = −50mV a spike is
emitted, the membrane voltage is reset to Vrest and updating of V
is suspended for a refractory period τref = 2ms. Neurons in each
population are connected randomly with numbers of synapses
derived from an extensive review of the anatomical literature.
These synapses are current-based, i.e., presynaptic spikes lead to
exponentially-decaying input currents Isyni

τsyn

dIsyni
dt

=− Isyni +

n
∑

j=0

wij

∑

tj

δ(t − tj), (2)

where τsyn = 0.5ms represents the synaptic time constant,
wij represents the synaptic weight and tj are the arrival times

of incoming spikes from n presynaptic neurons. Within each
synaptic projection, all synaptic strengths and transmission
delays are normally distributed using the parameters presented in
Potjans and Diesmann (2014, Table 5) and, in total, the model has
approximately 0.3× 109 synapses. As well as receiving synaptic
input, each neuron in the network also receives an independent
Poisson input current, representing input from neighboring not
explicitlymodeled cortical regions. The Poisson input is delivered
to each neuron via Iexti with

τsyn
dIexti
dt

=− Iexti + wextPoisson(νext1t), (3)

where νext represents the mean input rate and wext represents the
weight. The ordinary differential Equations (1), (2), and (3) are
solved with an exponential Euler algorithm. For a full description
of the model parameters, please refer to Potjans and Diesmann
(2014, Tables 4, 5) and for a description of the strategies used by
GeNN to parallelize the initialization and subsequent simulation
of this network, please refer to Knight and Nowotny (2018,
section 2.3). This model requires simulation using a relatively
small timestep of 0.1ms, making the overheads of copying spikes
from the GPU every timestep particularly problematic.

Frontiers in Neuroinformatics | www.frontiersin.org 5 April 2021 | Volume 15 | Article 659005

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Knight et al. PyGeNN

2.6. Pavlovian Conditioning Model
The cortical microcircuit model described in the previous section
is ideal for exploring the performance of short simulations of
relatively large models. However, the performance of longer
simulations of smaller models is equally vital. Suchmodels can be
particularly troublesome for GPU simulation as, not only might
they not offer enough parallelism to fully occupy the device but,
each timestep can be simulated so quickly that the overheads
of launching kernels etc can dominate. Additional overheads
can be incurred when models require injecting external stimuli
throughout the simulation. Longer simulations are particularly
useful when exploring synaptic plasticity so, to explore the
performance of PyGeNN in this scenario, we simulate a model
of Pavlovian conditioning using a three-factor Spike-Timing-
Dependent Plasticity (STDP) learning rule (Izhikevich, 2007).

2.6.1. Neuron Model
The model illustrated in Figure 2 consists of an 800 neuron
excitatory population and a 200 neuron inhibitory population,
within which, each neuron i is modeled using the Izhikevich
model (Izhikevich, 2003) whose dimensionless membrane
voltage Vi and adaption variables Ui evolve such that:

dVi

dt
=0.04V2

i + 5Vi + 140− Ui + Isyni + Iexti (4)

dUi

dt
=a(bVi − Ui) (5)

When the membrane voltage rises above 30, a spike is emitted
and Vi is reset to c and d is added to Ui. Excitatory neurons
use the regular-spiking parameters (Izhikevich, 2003) where
a = 0.02, b = 0.2, c = −65.0, d = 8.0 and inhibitory
neurons use the fast-spiking parameters (Izhikevich, 2003) where
a = 0.1, b = 0.2, c = −65.0, d = 2.0. Again, Isyni
represents the synaptic input current and Iexti represents an
external input current. While there are numerous ways to
solve Equations (4) and (5) (Humphries and Gurney, 2007;
Hopkins and Furber, 2015; Pauli et al., 2018), we chose to use
the idiosyncratic forward Euler integration scheme employed
by Izhikevich (2003) in the original work (Izhikevich, 2007).

FIGURE 2 | Illustration of the balanced random network model. The blue

triangle represents the excitatory population, the red circle represents the

inhibitory population, and the numbers beneath each symbol show the

number of neurons in each population. Connection probabilities are shown in

small bold numbers at the appropriate point in the connection matrix. All

excitatory synaptic weights are plastic and initialized to 1 and all inhibitory

synaptic weights are initialized to −1.

Under this scheme, Equation (4) is first integrated for two
0.5ms timesteps and then, based on the updated value of Vi,
Equation (5) is integrated for a single 1ms timestep.

2.6.2. Synapse Models
The excitatory and inhibitory neural populations are connected
recurrently, as shown in Figure 1, with instantaneous current-
based synapses:

Isyni (t) =

n
∑

j=0

wij

∑

tj

δ(t − tj), (6)

where tj are the arrival times of incoming spikes from n
presynaptic neurons. Inhibitory synapses are static with wij =

−1.0 and excitatory synapses are plastic. Each plastic synapse
has an eligibility trace Cij as well as a synaptic weight wij

and these evolve according to a three-factor STDP learning
rule (Izhikevich, 2007):

dCij

dt
=−

Cij

τc
+ STDP(1t)δ(t − tpre/post) (7)

dwij

dt
=− CijDj (8)

where τc = 1, 000ms represents the decay time constant of
the eligibility trace and STDP(1t) describes the magnitude of
changes made to the eligibility trace in response to the relative
timing of a pair of pre and postsynaptic spikes with temporal
difference 1t = tpost − tpre. These changes are only applied to the
trace at the times of pre and postsynaptic spikes as indicated by
the Dirac delta function δ(t−tpre/post). Here, a double exponential
STDP kernel is employed such that:

STDP(1t) =

A+ exp
(

−
1t
τ+

)

if 1t > 0

A− exp
(

1t
τ−

)

if 1t < 0

0 otherwise

(9)

where the time constants of the STDP window τ+ = τ− =

20ms and the strength of potentiation and depression are
A+ = 0.1 and A− = 0.15, respectively. Finally, each excitatory
neuron has an additional variableDj which describes extracellular
dopamine concentration:

Dj

t
=−

Dj

τd
+ DA(t) (10)

where τd = 200ms represents the time constant of dopamine
uptake and DA(t) the dopamine input over time.

2.6.3. PyGeNN Implementation of Three-Factor STDP
The first step in implementing this learning rule in PyGeNN is
to implement the STDP updates and decay of Cij using GeNN’s
event-driven plasticity system, the implementation of which was
described in our previous work (Knight and Nowotny, 2018).
Using a similar syntax to that described in section 2.3, we first
create a new “weight update model” with the learning rule
parameters and the wij and Cij state variables:

Frontiers in Neuroinformatics | www.frontiersin.org 6 April 2021 | Volume 15 | Article 659005

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Knight et al. PyGeNN

stdp_model = create_custom_weight_update_class(
"izhikevich_stdp",

param_names=["tauPlus", "tauMinus",
"tauC", "aPlus", "aMinus"],

var_name_types=[("w", "scalar"),
("c", "scalar")],

We then instruct GeNN to record the times of current and
previous pre and postsynaptic spikes. The current spike time will
equal the current time if a spike of this sort is being processed in
the current timestep whereas the previous spike time only tracks
spikes which have occurred before the current timestep:

is_pre_spike_time_required=True,
is_post_spike_time_required=True,

is_prev_pre_spike_time_required=True,
is_prev_post_spike_time_required=True,

Next we define the “sim code” which is called whenever
presynaptic spikes arrive at the synapse. This code first
implements Equation (6)—adding the synaptic weight (wij)
to the postsynaptic neuron’s input (Isyni) using the
$(addToInSyn,x) function.

sim_code=
"""
$(addToInSyn, $(w));

Within the sim code we also need to calculate the time that
has elapsed since the last update of Cij using the spike times
we previously requested that GeNN record. Within a timestep,
GeNN processes presynaptic spikes before postsynaptic spikes so
the time of the last update to Cij will be the latest time either type
of spike was processed in previous timesteps:

const scalar tc = fmax($(prev_sT_pre),
$(prev_sT_post));

Using this time, we can now calculate how much to decay Cij

using the closed-form solution to Equation (7):

const scalar tagDecay =
exp(-($(t) - tc) / $(tauC));

scalar newTag = $(c) * tagDecay;

To complete the sim code we calculate the depression case of
Equation (9) (here we use the current postsynaptic spike time
as, if a postsynaptic and presynaptic spike occur in the same
timestep, there should be no update).

const scalar dt = $(t) - $(sT_post);
if (dt > 0) {

newTag -=
($(aMinus) * exp(-dt / $(tauMinus)));

}
$(c) = newTag;
""",

Finally, we define the “learn post code” which is called
whenever a postsynaptic spike arrives at the synapse. Other than
implementing the potentiation case of Equation (9) and using the
current presynaptic spike time when calculating the time since
the last update of Cij—in order to correctly handle presynaptic
updates made in the same timestep—this code is very similar to
the sim code:

learn_post_code=
"""
const scalar tc = fmax($(sT_pre),

$(prev_sT_post));

const scalar tagDecay =
exp(-($(t) - tc) / $(tauC));

scalar newTag = $(c) * tagDecay;

const scalar dt = $(t) - $(sT_pre);
if (dt > 0) {

newTag +=
($(aPlus) * exp(-dt / $(tauPlus)));

}
$(c) = newTag;
""")

Adding the synaptic weight wij update described by Equation (8)
requires two further additions to the model. As well as the
pre and postsynaptic spikes, the weight update model needs to
receive events whenever dopamine is injected via DA. GeNN
supports such events via the “spike-like event” system which
allows events to be triggered based on an expression evaluated
on the presynaptic neuron. In this case, this expression simply
tests an injectDopamine flag which gets set by the dopamine
injection logic in our presynaptic neuron model:

event_threshold_condition_code="injectDopamine",

In order to extend our event-driven update of Cij to include
spike-like events we need to instruct GeNN to record the times
at which they occur:

is_pre_spike_event_time_required=True,
is_prev_pre_spike_event_time_required=True,

The spike-like events can now be handled using a final “event
code” string:

event_code=
"""
const scalar tc =

fmax($(sT_pre), fmax($(prev_sT_post),
$(prev_seT_pre)));

const scalar tagDecay = exp(-($(t) - tc) / $(tauC));
$(c) *= tagDecay;
""",

After updating the previously defined calculations of tc in the
sim code and learn post code in the same way to also include
the times of spike-like events, all that remains is to update
wij. Mikaitis et al. (2018) showed how Equation (8) could be
solved algebraically, allowingwij to be updated in an event-driven
manner with:

1wij =
C(tlastc)D(tlast

d
)

−

(

1
τc
+

1
τd

)

(

e−
t−tlastc

τc e
−

t−tlast
d

τd − e−
tlastw −tlastc

τc e
−

tlastw −tlast
d

τd

)

(11)

where tlastc , tlastw , and tlast
d

represent the last times at which Cij,
Wij, and Dj, respectively were updated. Because we will always
update wij and Cij together when presynaptic, postsynaptic and

spike-like events occur, tlastc = tlastw and Equation (11) can be
simplified to:

1wij =
C(tlastc)D(tlast

d
)

−

(

1
τc
+

1
τd

)

(

e−
t−tlastc

τc e
−

t−tlast
d

τd − e
−

tlastc −tlast
d

τd

)

(12)

and this update can now be added to each of our three event
handling code strings to complete the implementation of the
learning rule.

Frontiers in Neuroinformatics | www.frontiersin.org 7 April 2021 | Volume 15 | Article 659005

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Knight et al. PyGeNN

2.6.4. PyGeNN Implementation of Pavlovian

Conditioning Experiment
To perform the Pavlovian conditioning experiment described
by Izhikevich (2007) using this model, we chose 100 random
groups of 50 neurons (each representing stimuli S1...S100) from
amongst the two neural populations. Stimuli are presented to
the network in a random order, separated by intervals sampled
from U(100, 300)ms. The neurons associated with an active
stimulus are stimulated for a single 1ms simulation timestep
with a current of 40.0 nA, in addition to the random background
current of U(−6.5, 6.5)nA, delivered to each neuron via Iexti
throughout the simulation. S1 is arbitrarily chosen as the
Conditioned Stimuli (CS) and, whenever this stimuli is presented,
a reward in the form of an increase in dopamine is delivered by
setting DA(t) = 0.5 after a delay sampled from U(0, 1000)ms.
This delay period is large enough to allow a few irrelevant stimuli
to be presented which act as distractors. The simplest way to
implement this stimulation regime is to add a current source to
the excitatory and inhibitory neuron populations which adds the
uniformly-distributed input current to an externally-controllable
per-neuron current. In PyGeNN, the following model can be
defined to do just that:

stim_model = create_custom_current_source_class(
"stim_noise",
param_names=["n"],
var_name_types=[("iExt", "scalar",

VarAccess_READ_ONLY)],
injection_code=

"""
const scalar u = $(gennrand_uniform) * $(n);
$(injectCurrent, $(iExt) + u * 2.0 - $(n));
""")

where the n parameter sets the magnitude of the background
noise, the $(injectCurrent, I) function injects a current
of InA into the neuron and $(gennrand_uniform) samples
from U(0, 1) using the “XORWOW” pseudo-random number
generator provided by cuRAND (NVIDIA Corporation, 2019).
Once a current source population using this model has been
instantiated and a memory view to iExt obtained in the manner
described in section 2.3, in timesteps when stimulus injection
is required, current can be injected into the list of neurons
contained in stimuli_input_set with:

curr_ext_view[stimuli_input_set] = 40.0
curr_pop.push_var_to_device("iExt")

The same approach can then be used to zero the
current afterwards.

3. RESULTS

In the following subsections we will analyse the performance of
the models introduced in sections 2.5 and 2.6 on a representative
selection of NVIDIA GPU hardware:

• Jetson Xavier NX—a low-power embedded systemwith a GPU
based on the Volta architecture with 8GB of shared memory.

• GeForce GTX 1050Ti—a low-end desktop GPU based on the
Pascal architecture with 4GB of dedicated memory.

• GeForce GTX 1650—a low-end desktop GPU based on the
Turing architecture with 4GB of dedicated memory.

• Titan RTX—a high-end workstation GPU based on the Turing
architecture with 24GB of dedicated memory.

All of these systems run Ubuntu 18 apart from the system with
the GeForce 1050 Ti which runs Windows 10.

3.1. Cortical Microcircuit Model
Performance
Figure 3 shows the simulation times for the full-scale
microcircuit model. We measured the total simulation time
by querying the std::chrono::high_resolution_clock

in C++ and the time.perf_counter in Python before and
after the simulation loop; and used CUDA’s own event timing
system (NVIDIA Corporation, 2021, Section 3.2.6.7) to record
the time taken by the neuron and synapse kernels. As one might
predict, the Jetson Xavier NX is slower than the three desktop
GPUs but, considering that it only consumes a maximum of
15W compared to 75 or 320W for the GeForce cards and
Titan RTX, respectively, it still performs impressively. The time
taken to actually simulate the models (“Neuron simulation”
and “Synapse simulation”) are the same when using PyGeNN
and GeNN as all optimisation options are exposed to PyGeNN.
Interestingly, when simulating this model, the larger L1 cache
and architectural improvements present in the Turing-based
GTX 1650 do not result in significantly improved performance
over the Pascal-based GTX 1050Ti. Instead, the slightly improved
performance of the GTX 1650 can probably be explained by its
additional 128 CUDA cores.

FIGURE 3 | Simulation times of the microcircuit model running on various

GPU hardware for 1 s of biological time. “Overhead” refers to time spent in

simulation loop but not within CUDA kernels. The dashed horizontal line

indicates realtime performance.

Frontiers in Neuroinformatics | www.frontiersin.org 8 April 2021 | Volume 15 | Article 659005

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Knight et al. PyGeNN

Without the recording system described in section 2.4, the
CPU and GPU need to be synchronized after every timestep to
allow spike data to be copied off the GPU and stored in a suitable
data structure. The “overheads” shown in Figure 3 indicate
the time taken by these processes as well as the unavoidable
overheads of launching CUDA kernels etc. Because Python is
an interpreted language, updating the spike data structures is
somewhat slower and this is particularly noticeable on devices
with a slower CPU such as the Jetson Xavier NX. However,
unlike the desktop GPUs, the Jetson Xavier NX’s 8GB of
memory is shared between the GPU and the CPU meaning
that data does not need to be copied between their memories
and can instead by accessed by both. While, using this shared
memory for recording spikes reduces the overhead of copying
data off the device, because the GPU and CPU caches are
not coherent, caching must be disabled on this memory which
reduces the performance of the neuron kernel. Although the
Windows machine has a relatively powerful CPU, the overheads
measured in both the PyGeNN and GeNN simulations run on
this system are extremely large due to additional queuing between
the application and the GPU driver caused by the Windows
Display Driver Model (WDDM). When small—in this case
0.1ms—simulation timesteps are used, this makes per-timestep
synchronization disproportionately expensive.

However, when the spike recording system described in
section 2.4 is used, spike data is kept in GPU memory until the
end of the simulation and overheads are reduced by up to 10×.
Because synchronization with the CPU is no longer required
every timestep, simulations run approximately twice as fast on
the Windows machine. Furthermore, on the high-end desktop
GPU, the simulation now runs faster than real-time in both
PyGeNN and GeNN versions—significantly faster than other
recently published GPU simulators (Golosio et al., 2021) and
even specialized neuromorphic systems (Rhodes et al., 2020).

3.2. Pavlovian Conditioning Performance
Figure 4 shows the results of an example simulation of the
Pavlovian conditioning model. At the beginning of each
simulation (Figure 4A), the neurons representing every stimulus
respond equally. However, after 1 h of simulation, the response
to the CS becomes much stronger (Figure 4B)—showing that
these neurons have been selectively associated with the stimulus
even in the presence of the distractors and the delayed reward. In
Figure 5, we show the runtime performance of simulations of the
Pavlovian conditioning model, running on the GPUs described
above using PyGeNN with and without the recording system
described in section 2.4.These PyGeNN results are compared to a
GeNN simulation which also uses the recording system. Because
each simulation timestep only takes a few µs, the overhead of
using CUDA timing events significantly alters the performance
so, for this model, we onlymeasure the duration of the simulation
loop using the approaches described in the previous section.
Although we only record the spiking activity during the first and
last 50 s, using the recording system still significantly improves
the overall performance on all devices—especially on the Jetson
Xavier NX with its slower CPU. Interestingly the Titan RTX and
GTX 1650 perform identically in this benchmark with speedups

FIGURE 4 | Results of Pavlovian conditioning experiment. Raster plot and

spike density function (SDF) (Szücs, 1998) showing the activity centered

around the first delivery of the Conditioned Stimulus (CS) during initial (A) and

final (B) 50 s of simulation. Downward green arrows indicate times at which the

CS is delivered and downward black arrows indicate times when other,

un-rewarded stimuli are delivered. Vertical dashed lines indicate times at which

dopamine is delivered. The population SDF was calculated by convolving the

spikes with a Gaussian kernel of σ = 10ms width.

ranging from 62× to 72× real-time. This is because, as discussed
previously, this model is simply not large enough to fill the 4,608
CUDA cores present on the Titan RTX. Therefore, as the two
GPUs share the same Turing architecture and have very similar
clock speeds (1,350–1,770 MHz for the Titan RTX and 1,485–
1,665 MHz for the GTX 1650), the two GPUs perform very
similarly. As for the simulations of the microcircuit model, the
Jetson Xavier NX performs rather slower than the desktop GPUs
but still achieves speedups of up to 31×.

Interestingly, unlike in the simulations of the microcircuit
model, here the GTX 1050 Ti performs rather differently.
Although the clock speed of this device is approximately the same
as the other GPUs (1,290–1,392MHz) and it has a similar number
of CUDA cores to the GTX 1650, its performance is significantly
worse. The difference in performance across all configurations
is likely to be due to architectural differences between the older
Pascal; and newer Volta and Turing architectures. Specifically,
Pascal GPUs have one type of Arithmetic Logic Unit (ALU)which
handles both integer and floating point arithmetic, whereas the

Frontiers in Neuroinformatics | www.frontiersin.org 9 April 2021 | Volume 15 | Article 659005

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Knight et al. PyGeNN

FIGURE 5 | Simulation times of the Pavlovian Conditioning model running on

various GPU hardware for 1 h of biological time. “GPU recording” indicates

simulations where the new recording system is employed. Times are taken

from averages calculated over 5 runs of each model.

newer Volta and Turing architectures have equal numbers of
dedicated integer and floating point ALUs as well as significantly
larger L1 caches. As discussed in our previous work (Knight
and Nowotny, 2018), these architectural features are particularly
beneficial for SNN simulations with STDP where a large amount
of floating point computation is required to update the synaptic
state and additional integer arithmetic is required to calculate the
indices into the sparse matrix data structures.

The difference between the speeds of the PyGeNN
and GeNN simulations of the Pavlovian conditioning
model (Figure 5) appear much larger than those of the
microcircuit model (Figure 3). However, as Figure 6 illustrates,
for individual timesteps the excess time due to overheads is
approximately the same for both models and consistent with the
cost of a small number of Python to C++ function calls (Apache
Crail, 2019). Depending on the size and complexity of the model
as well as the hardware used, this overhead may or may not
be important. For example, when simulating the microcircuit
model for 1 s on the Titan RTX, the overhead of using PyGeNN
is <0.2% but, when simulating the Pavlovian conditioning
model on the same device, the overhead of using PyGeNN is
almost 31%.

4. DISCUSSION

In this paper we have introduced PyGeNN, a Python interface to
the C++ based GeNN library for GPU accelerated spiking neural
network simulations.

FIGURE 6 | Comparison of the duration of individual timestep in PyGeNN and

GeNN simulations of the microcircuit and Pavlovian conditioning experiments.

Times are taken from averages calculated over 5 runs using the GPU

recording system.

Uniquely, the new interface provides access to all the features
of GeNN, without leaving the comparative simplicity of Python
and with, as we have shown, typically negligible overheads from
the Python bindings. PyGeNN also allows bespoke neuron and
synapse models to be defined from within Python, making
PyGeNN much more flexible and broadly applicable than, for
instance, the Python interface to NEST (Eppler et al., 2009) or
the PyNN model description language used to expose CARLsim
to Python (Balaji et al., 2020).

In many ways, the new interface resembles elements of the
Python-based Brian 2 simulator (Stimberg et al., 2019) (and
it’s Brian2GeNN backend; Stimberg et al., 2020) with two key
differences. Unlike in Brian 2, bespoke models in PyGeNN are
defined with “C-like” code snippets. This has the advantage of
unparalleled flexibility for the expert user, but comes at the cost
of more complexity as the code for a timestep update needs to
include a suitable solver and not merely differential equations.
The second difference lies in how data structures are handled.
Whereas simulations run using the C++ or Brian2GeNN Brian 2
backends use files to exchange data with Python, the underlying
GeNN data structures are directly accessible from PyGeNN
meaning that no disk access is involved.

As we have demonstrated, the PyGeNN wrapper, exactly
like native GeNN, can be used on a variety of hardware from
data center scale down to mobile devices such as the NVIDIA
Jetson. This allows for the same codes to be used in large-scale
brain simulations and embedded and embodied spiking neural
network research. Supporting the popular Python language in
this interface makes this ecosystem available to a wider audience

Frontiers in Neuroinformatics | www.frontiersin.org 10 April 2021 | Volume 15 | Article 659005

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Knight et al. PyGeNN

of researchers in both Computational Neuroscience, bio-mimetic
machine learning and autonomous robotics.

The new interface also opens up opportunities to support
researchers that work with other Python based systems. In
the Computational Neuroscience and Neuromorphic computing
communities, we can now build a PyNN (Davison et al., 2008)
interface on top of PyGeNN and, in fact, a prototype of such
an interface is in development. Furthermore, for the burgeoning
spike-based machine learning community, we can use PyGeNN
as the basis for a spike-based machine learning framework akin
to TensorFlow or PyTorch for rate-based models. A prototype
interface of this sort called mlGeNN is in development and close
to release.

In this work we have introduced a new spike recording system
for GeNN and have shown that, using this system, we can now
simulate the Potjans microcircuit model (Potjans and Diesmann,
2014) faster than real-time and, to the best of our knowledge,
faster than any other system. Finally, the excellent performance
we have demonstrated using low-end Turing architecture GPUs
is very exciting in terms of increasing the accessibility of GPU
accelerated Computational Neuroscience and SNN machine
learning research.

DATA AVAILABILITY STATEMENT

All models, data and analysis scripts used for this study can be
found in https://github.com/BrainsOnBoard/pygenn_paper. All
experiments were carried out using the GeNN 4.4.0 which is fully

open source and available from https://doi.org/10.5281/zenodo.
4419159.

AUTHOR CONTRIBUTIONS

JK and TN wrote the paper. TN was the original developer of
GeNN. AK is the original developer of PyGeNN. JK is currently
the primary developer of both GeNN and PyGeNN, responsible
for implementing the spike recording system, and performed the
experiments and the analysis of the results that are presented in
this work. All authors contributed to the article and approved the
submitted version.

FUNDING

This work was funded by the EPSRC (Brains on Board project,
grant number EP/P006094/1 and ActiveAI project, grant number
EP/S030964/1), the European Union’s Horizon 2020 research
and innovation program under Grant Agreement 945539 (HBP
SGA3) and a Google Summer of Code grant to AK.

ACKNOWLEDGMENTS

Wewould like to thankMalin Sandström and everyone else at the
International Neuroinformatics Coordinating Facility (INCF) for
their hard work running the Google Summer of Code mentoring
organization every year. Without them, this and many other
exciting Neuroinformatics projects would not be possible.

REFERENCES

Akar, N. A., Cumming, B., Karakasis, V., Kusters, A., Klijn, W., Peyser, A., et al.

(2019). “Arbor–A morphologically-detailed neural network simulation library

for contemporary high-performance computing architectures,” in 2019 27th

Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP) (Pavia), 274–282. doi: 10.1109/EMPDP.2019.8671560

Apache Crail (2019). Crail Python API: Python -> C/C++ Call Overhead.

Balaji, A., Adiraju, P., Kashyap, H. J., Das, A., Krichmar, J. L., Dutt,

N. D., et al. (2020). PyCARL: a PyNN interface for hardware-

software co-simulation of spiking neural network. arXiv:2003.09696.

doi: 10.1109/IJCNN48605.2020.9207142

Bautembach, D., Oikonomidis, I., and Argyros, A. (2021). Multi-GPU SNN

simulation with perfect static load balancing. arXiv:2102.04681.

Beazley, D. M. (1996). “Using SWIG to control, prototype, and debug C programs

with Python,” in Proc. 4th Int. Python Conf (Livermore, CA).

Buzsáki, G., and Mizuseki, K. (2014). The log-dynamic brain: how skewed

distributions affect network operations. Nat. Rev. Neurosci. 15, 264–278.

doi: 10.1038/nrn3687

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge:

Cambridge University Press. doi: 10.1017/CBO9780511541612

Chou, T.-s., Kashyap, H. J., Xing, J., Listopad, S., Rounds, E. L., Beyeler, M., et al.

(2018). “CARLsim 4: An open source library for large scale, biologically detailed

spiking neural network simulation using heterogeneous clusters,” in 2018

International Joint Conference on Neural Networks (IJCNN) (Rio de Janeiro),

1–8. doi: 10.1109/IJCNN.2018.8489326

Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al.

(2008). PyNN: A common interface for neuronal network simulators. Front.

Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Eisenstat, S. C., Gursky, M., Schultz, M. H., and Sherman, A. H. (1977). Yale Sparse

Matrix Package. I. The Symmetric Codes. Technical report, Yale University;

Department of Computer Science. New Haven, CT. doi: 10.21236/ADA047725

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M. O. (2009).

PyNEST: A convenient interface to the NEST simulator. Front. Neuroinform.

2:2008. doi: 10.3389/neuro.11.012.2008

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Givon, L. E., and Lazar, A. A. (2016). Neurokernel: An open source

platform for emulating the fruit fly brain. PLoS ONE 11:e146581.

doi: 10.1371/journal.pone.0146581

Golosio, B., Tiddia, G., De Luca, C., Pastorelli, E., Simula, F., and Paolucci, P.

S. (2021). Fast simulations of highly-connected spiking cortical models using

GPUs. Front. Comput. Neurosci. 15:627620. doi: 10.3389/fncom.2021.627620

Hines, M. L., Davison, A. P., and Muller, E. (2009). NEURON and python. Front.

Neuroinform. 3:2009. doi: 10.3389/neuro.11.001.2009

Hopkins,M., and Furber, S. B. (2015). Accuracy and efficiency in fixed-point neural

ODE solvers. Neural Comput. 27, 2148–2182. doi: 10.1162/NECO_a_00772

Humphries, M. D., and Gurney, K. (2007). Solution methods for a new

class of simple model neurons M. Neural Comput. 19, 3216–3225.

doi: 10.1162/neco.2007.19.12.3216

Hunter, J. D. (2007). Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9,

90–95. doi: 10.1109/MCSE.2007.55

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural

netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Izhikevich, E. M. (2007). Solving the distal reward problem through

linkage of STDP and Dopamine signaling. Cereb. Cortex 17, 2443–2452.

doi: 10.1093/cercor/bhl152

Knight, J. C., and Nowotny, T. (2018). GPUs outperform current HPC

and neuromorphic solutions in terms of speed and energy when

Frontiers in Neuroinformatics | www.frontiersin.org 11 April 2021 | Volume 15 | Article 659005

https://github.com/BrainsOnBoard/pygenn_paper
https://doi.org/10.5281/zenodo.4419159
https://doi.org/10.5281/zenodo.4419159
https://doi.org/10.1109/EMPDP.2019.8671560
https://doi.org/10.1109/IJCNN48605.2020.9207142
https://doi.org/10.1038/nrn3687
https://doi.org/10.1017/CBO9780511541612
https://doi.org/10.1109/IJCNN.2018.8489326
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.21236/ADA047725
https://doi.org/10.3389/neuro.11.012.2008
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1371/journal.pone.0146581
https://doi.org/10.3389/fncom.2021.627620
https://doi.org/10.3389/neuro.11.001.2009
https://doi.org/10.1162/NECO_a_00772
https://doi.org/10.1162/neco.2007.19.12.3216
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1093/cercor/bhl152
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Knight et al. PyGeNN

simulating a highly-connected cortical model. Front. Neurosci. 12:941.

doi: 10.3389/fnins.2018.00941

Knight, J. C., and Nowotny, T. (2020). Larger GPU-accelerated brain

simulations with procedural connectivity. bioRxiv. 1:136–142.

doi: 10.1101/2020.04.27.063693

Mikaitis, M., Pineda García, G., Knight, J. C., and Furber, S. B. (2018).

Neuromodulated synaptic plasticity on the SpiNNaker neuromorphic system.

Front. Neurosci. 12:105. doi: 10.3389/fnins.2018.00105

Millman, K. J., and Aivazis, M. (2011). Python for scientists and engineers.

Comput. Sci. Eng. 13, 9–12. doi: 10.1109/MCSE.2011.36

NVIDIA Corporation (2019). cuRAND Library. Available online at: https://docs.

nvidia.com/cuda/pdf/CURAND_Library.pdf

NVIDIA Corporation (2021). CUDA C Programming Guide. Available online at:

https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

NVIDIA, Vingelmann, P., and Fitzek, F. H. (2020). CUDA, Developer. Available

online at: https://nvidia.com/cuda-toolkit

Pauli, R., Weidel, P., Kunkel, S., and Morrison, A. (2018). Reproducing

polychronization: a guide to maximizing the reproducibility of spiking network

models. Front. Neuroinform. 12:46. doi: 10.3389/fninf.2018.00046

Plotnikov, D., Blundell, I., Ippen, T., Eppler, J. M., Rumpe, B., and Morrison, A.

(2016). “NESTML: a modeling language for spiking neurons,” in Lecture Notes

in Informatics (LNI),Vol. P-254, Modellierung 2016 (Karlsruhe: Gesellschaft für

Informatik e.V.), 93–108.

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical

microcircuit: relating structure and activity in a full-scale spiking network

model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Rhodes, O., Peres, L., Rowley, A. G. D., Gait, A., Plana, L. A., Brenninkmeijer, C.,

et al. (2020). Real-time cortical simulation on neuromorphic hardware. Philos.

Trans. R. Soc. AMath. Phys. Eng. Sci. 378:20190160. doi: 10.1098/rsta.2019.0160

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and

efficient neural simulator. eLife 8, 1–41. doi: 10.7554/eLife.47314

Stimberg, M., Goodman, D. F., and Nowotny, T. (2020). Brian2GeNN: accelerating

spiking neural network simulations with graphics hardware. Sci. Rep. 10, 1–12.

doi: 10.1038/s41598-019-54957-7

Szücs, A. (1998). Applications of the spike density function in analysis

of neuronal firing patterns. J. Neurosci. Methods 81, 159–167.

doi: 10.1016/S0165-0270(98)00033-8

Van Der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The NumPy array:

a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30.

doi: 10.1109/MCSE.2011.37

Vitay, J., Dinkelbach, H., and Hamker, F. (2015). ANNarchy: a code generation

approach to neural simulations on parallel hardware. Front. Neuroinform. 9:19.

doi: 10.3389/fninf.2015.00019

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework

for accelerated brain simulations. Sci. Rep. 6:18854. doi: 10.1038/srep

18854

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Knight, Komissarov and Nowotny. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 12 April 2021 | Volume 15 | Article 659005

https://doi.org/10.3389/fnins.2018.00941
https://doi.org/10.1101/2020.04.27.063693
https://doi.org/10.3389/fnins.2018.00105
https://doi.org/10.1109/MCSE.2011.36
https://docs.nvidia.com/cuda/pdf/CURAND_Library.pdf
https://docs.nvidia.com/cuda/pdf/CURAND_Library.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://nvidia.com/cuda-toolkit
https://doi.org/10.3389/fninf.2018.00046
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1098/rsta.2019.0160
https://doi.org/10.7554/eLife.47314
https://doi.org/10.1038/s41598-019-54957-7
https://doi.org/10.1016/S0165-0270(98)00033-8
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.3389/fninf.2015.00019
https://doi.org/10.1038/srep18854
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	PyGeNN: A Python Library for GPU-Enhanced Neural Networks
	1. Introduction
	2. Materials and Methods
	2.1. GeNN
	2.2. SWIG
	2.3. PyGeNN
	2.4. Spike Recording System
	2.5. Cortical Microcircuit Model
	2.6. Pavlovian Conditioning Model
	2.6.1. Neuron Model
	2.6.2. Synapse Models
	2.6.3. PyGeNN Implementation of Three-Factor STDP
	2.6.4. PyGeNN Implementation of Pavlovian Conditioning Experiment

	3. Results
	3.1. Cortical Microcircuit Model Performance
	3.2. Pavlovian Conditioning Performance

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

