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Abstract

Background: Activation of microglia and astrocytes, a prominent hallmark of both aging and Alzheimer's disease
(AD), has been suggested to contribute to aging and AD progression, but the underlying cellular and molecular
mechanisms are largely unknown.

Methods: We performed RNA-seq analyses on microglia and astrocytes freshly isolated from wild-type and APP-PST
(AD) mouse brains at five time points to elucidate their age-related gene-expression profiles.

Results: Our results showed that from 4 months onward, a set of age-related genes in microglia and astrocytes

exhibited consistent upregulation or downregulation (termed “age-up’/‘age-down” genes) relative to their
expression at the young-adult stage (2 months). And most age-up genes were more highly expressed in AD mice
at the same time points. Bioinformatic analyses revealed that the age-up genes in microglia were associated with
the inflammatory response, whereas these genes in astrocytes included widely recognized AD risk genes, genes

associated with synaptic transmission or elimination, and peptidase-inhibitor genes.

Conclusions: Overall, our RNA-seq data provide a valuable resource for future investigations into the roles of
microglia and astrocytes in aging- and amyloid-f3-induced AD pathologies.
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Background

Aging and Alzheimer’s disease (AD) produce widespread
effects on the central nervous system (CNS) that are
characterized by cognitive decline, vulnerability to phys-
ical illnesses, elevated oxidative stress, and chronic brain
inflammation [1]. These biological and pathological pro-
cesses are also associated with diminished blood-brain
barrier (BBB) integrity, which leads to the accumulation
in the brain of blood-derived proteins [2, 3] and the
infiltration of peripheral cells [4-9], and multiple lines
of evidence indicate that the innate-immune functions
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of microglia and astrocytes are involved in these
processes.

Microglia, the resident macrophages in the CNS, are
originally derived from primitive myeloid progenitors
that are seeded in the brain during fetal development
and expand drastically after birth to account for 5-12%
of all the cells in the brain [10-13]. In the CNS, micro-
glia play crucial roles in the maintenance of brain
homeostasis by regulating synaptic plasticity, remodeling
neuronal circuits, defending against infectious pathogens
[13-15], and promoting tip-cell fusion to participate in
angiogenesis [16]. In aging and in mice with AD, micro-
glial activation in the brain acts a double-edged sword:
Although activated microglia facilitate the phagocytosis
and clearance of infectious agents or amyloid-p (Ap) de-
posits, constant exposure to proinflammatory cytokines
exerts detrimental effects on the brain [17, 18]. As com-
pared to microglia, astrocytes, which constitute another
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type of glial cells in the CNS, have been less studied in
aging and AD pathogenesis. Historically, astrocytes have
been considered as supportive cells that either provide
nitrites or serve as physical scaffolds for neurons. The
perivascular endfeet of astrocytes ensheath 98% of brain
parenchymal capillaries and thus contribute to BBB
integrity and maintain osmotic homeostasis and gliovas-
cular signaling [19, 20]. Astrocytes have to date been
documented to play essential roles in neurophysiology,
such as in release of gliotransmitters (glucose, ATP, and
glutamate), communication with neurons, and modula-
tion of synaptic structure [21].

Over the few past decades, considerable research effort
has been devoted toward elucidating the functions of
microglia and astrocytes in the brain under both physio-
logical and pathological conditions. Moreover, in previous
studies, RNA-sequencing (RNA-seq) analysis of microglia
and astrocytes has been performed in geriatric and young
mice to identify the transcriptomic alterations that occur
during aging [22, 23]; however, in these studies, the sequen-
cing samples were collected either at limited time points or
over large time intervals, and thus the genes that were
identified to be altered in aged mice could have been
affected by unknown/unexpected insults that are not re-
lated to aging or specific diseases. Therefore, to clarify the
effects of factors associated with late-age disorders of the
CNS, we investigated aging-related genes in microglia and
astrocytes isolated from the mouse brain at 5 time points.
Here, we identify 2 age-related gene clusters whose expres-
sion increased with age as compared with the expression in
mature-adult mice. Differential gene-expression analysis re-
vealed that inflammatory-response genes constituted the
most prominent class of consistently upregulated genes in
microglia upon aging, whereas in astrocytes, synaptic-
transmission/elimination- and peptidase-inhibitor-related
genes were most markedly increased. Furthermore, most of
the aging-related genes also showed notable differences in
AD mice relative to their expression in wild-type (WT)
mice. Our results thus provide a novel transcriptomic data-
set for microglia and astrocytes throughout aging that could
offer new insights into the body’s early intrinsic mecha-
nisms involved in sensing CNS damage and protecting the
brain against neurodegeneration.

Material and methods

Mice

APPswe/PS1AE9 double-transgenic mice, obtained from
the Model Animal Research Center of Nanjing Univer-
sity (Nanjing, China), were originated from B6.Cg-Tg
(APPswe/PS1AE9) 85Dbo/Mmjax mice (JAX#034832) of
the Jackson Laboratory. C57BL/6] WT littermates were
used as WT controls. Mice (n = 3/group) were bred
under SPF conditions in IVC cages at 23 °C and 50-60%
humidity and with circadian-rhythm illumination. Pups
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aged 21-28 days old were removed from their parental
cages and genotyped using ear-biopsy samples; the DNA
extracted from the biopsy samples was PCR-amplified
using primers specific for APP and PS1 sequences. All
procedures were approved by the Animal Use and Care
Committee of Shenzhen Peking University - The Hong
Kong University of Science and Technology Medical
Center (SPHMC) (protocol number 2011-004). All mice
used in the study were males. Efforts were made to
minimize suffering and the number of animals used.

Brain dissociation

Microglia and astrocytes were isolated from WT and
AD mice belonging to 5 age groups: 2-, 4-, 6-, 9-, and
12-month old (2-12 months). Mice were transcardially
perfused under deep anesthesia with 1 x PBS, and then
the brain was removed, dissected, and rinsed in HBSS.
Next, after removing the meninges, the brain was cut
into small pieces by using a sterile scalpel, and the sam-
ples were centrifuged at 300xg for 2min at room
temperature and the supernatant was aspirated carefully.
Samples from a single brain were pooled as a single
experimental group. Enzymatic cell dissociation was per-
formed using an Adult Brain Dissociation Kit (130-107-
677, Miltenyi Biotec), according to the manufacturer’s
instructions. Briefly, tissue pieces (up to 500 mg of tissue
per sample) were transferred into the C Tube containing
1950 pL of enzyme mix 1 (enzyme P and buffer Z), and
then 30 uL of enzyme mix 2 (enzyme A and buffer Y)
was added into the C Tube. The C Tube was tightly
closed and attached upside down onto the sleeve of the
gentleMACS Octo Dissociator with Heaters (130-096-
427, Miltenyi Biotec), and the appropriate gentleMACS
program was run. After brief centrifugation to collect
samples at the tube bottom, the samples were filtered
through a 70-um strainer (130-098-462, Miltenyi Biotec),
washed with D-PBS, and then centrifuged again.

Percoll density gradient and myelin removal

Singe cells were resuspended in 40% Percoll and centri-
fuged at 800xg for 20 min at 15°C. After discarding the
myelin-containing supernatant, the pellet was resus-
pended in cold MACS buffer (containing 1-volume dilu-
tion of PBS, 2mM EDTA, and 0.5% BSA, pH7.2), and
then myelin-removal beads (Myelin Removal Beads II,
130-96-733, Miltenyi Biotec) were used according to the
manufacturer’s protocol to prepare cells for staining with
fluorescence activated cell sorting (FACS) antibodies.
Briefly, single-cell suspensions were incubated with the
beads at 4 °C for 15 min, and then the cells were washed
onto the LS column on the autoMACS Separator; the
column was washed thrice with PB buffer, and the cells
in the flow-through were used for antibody staining.
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FACS sorting of microglia and astrocytes

After isolation, cell pellets were resuspended in FC
receptor blocking solution (553141, BD Biosciences), in-
cubated on ice for 10 min, and costained for 30 min on
ice in the dark with PE-Cy7-labeled CD45 (103114,
BioLegend), PE-labeled CD11b (101208, BioLegend), and
APC-labeled ACSA2 (130-117-386, Miltenyi Biotec).
The cells were then rinsed in PBS, centrifuged, resus-
pended in FACS buffer (1% FBS + 2mM EDTA, 25 mM
HEPES, 1:500 RNA inhibitor in PBS), and incubated in
7AAD (420403, BioLegend) for 10 min before sorting.
Data were analyzed using the BD FACS Diva v8.0.1 soft-
ware. Sorted cells were centrifuged at 400xg for 10 min
and pellets were lysed in RLT-buffer (74004, Qiagen) for
RNA extraction.

RNA extraction, quantification, and qualification

RNA was isolated from flow-cytometry-sorted cell popula-
tions by using an RNeasy Micro Kit (74004, Qiagen) ac-
cording to the manufacturer’s instructions, which
included a step involving incubation with DNase. For
whole-brain RNA purification, we generated 1 brain/pool
samples. Purified RNA was quantified using a NanoDrop
2000 (Thermo Scientific) and Agilent Technologies Bioa-
nalyzer 2100 RNA Pico chips (5067-1513, Agilent Tech-
nologies), according to manufacturer instructions; the
RNA integrity number (RIN) in all cases was > 9.

Preparation of smart-seq2 RNA-seq libraries and
sequencing

For RNA sample preparations, 10 ng of RNA per sample
was used as the input material. Libraries were generated
using a SMART-Seq v4 Ultra Low Input RNA Kit
(634892, Takara Bio USA, Mountain View, CA, USA),
following the manufacturer’s recommendations, and
index codes were added to attribute sequences to each
sample. Briefly, first-strand cDNA synthesis from total
RNA was primed using 3° SMART-Seq CDS Primer II
A, and SMART-Seq v4 Oligonucleotide was used for
template switching at the 5" end of the transcript. PCR
Primer II A was used to amplify cDNA, for 8cycles,
from the SMART sequences introduced by 3" SMART-
Seq CDS Primer II A and the SMART-Seq v4 Oligo-
nucleotide. LD-PCR-amplified c¢DNA was purified
through immobilization on AMPure XP beads and then
quantified using the Agilent Bioanalyzer 2100 system.
To prepare cDNA libraries suitable for Illumina sequen-
cing, ~ 200 pg of the cDNA was used with a Nextera XT
DNA Library Preparation Kit (Illumina, Cat. Nos. FC-
131-1024 and FC-131-1096, San Diego, CA, USA).
Tagmented fragments were amplified for 12 cycles and
dual indexes were added to each well to uniquely label
each library. Concentrations were assessed using a
KAPA Library Quantification Kit (KK4844, KAPA,
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Biosystems, USA), and samples were diluted to ~ 2 nm
and pooled. Pooled libraries were sequenced on an Illu-
mina NovaSeq platform and 150-bp paired-end reads
were generated.

RNAscope and image quantification

Mice were deeply anesthetized using pentobarbital, trans-
cardially perfused with ice-cold PBS until the irrigation
fluid was completely clear, and then perfused with ice-
cold 4% paraformaldehyde (PFA) for 10 min. Brains were
removed, fixed in 4% PFA in 4°C refrigerator for 12h,
dehydrated using an ethanol dilution series, embedded in
molds containing Tissue-Tek OCT, and frozen in dry ice.
The OCT-embedded brain samples were cut into 16-um
coronary sections that were placed onto Fisherbrand
Superfrost Plus microscope slides (Thermo Fisher Scien-
tific; 12-550-15). RN Ascope experiments were performed
using a Manual Fluorescent Multiplex kit v2 (323100,
ACDbio), following the manufacturer’s recommendations.
Briefly, slices were incubated with hydrogen peroxide and
then target retrieval was performed in a boiling bath bea-
ker. Next, protease digestion was performed for 20 min at
room temperature by using Protease III for fixed frozen
tissues, provided in the kit, after which probe
hybridization was conducted for 2h at 40°C. A dual-
probe set containing Mm-Itgam-c3 (311491) and Mm-
Slcla3-c3 (430781) served as the common probe in each
set, and the companion probes were Mm-Cxcl10-cl
(408921) and Mm-Ptbp1-c1 (588721). Nuclei were visual-
ized using 4’,6-Diamidino-2-phenylindole (DAPI).

For each mouse, 3 images per region (technical repli-
cates) were used for the quantification, and 100, 50, and 50
cells were counted in the cortex, hippocampus, and
cerebellum, respectively. Images were captured as Z-stacks
by using a 20 x objective (NA 0.8) and then maximum-
intensity projections were obtained. Lipofuscin autofluores-
cence was imaged in the blank channel (488 nm) and sub-
tracted from the red channel (594 nm) and far-red channel
(647 nm) images. Microglia and astrocytes were identified
as RNAscope puncta generated from the Itgam and Slcla3
probes. Lastly, a blind counting was performed to analyze
the number of double-positive cells and the target-
probe dots per cell, with each data point representing the
mean + SD of 3 brain slices for each probe set. Then H-
score was calculated as follows: H-score = Y ) °(score
x percentage of microglia or astrocytes) . The weighting
formula used for the scores is shown in Additional file 1.
All parameters were maintained constant between images
to allow unbiased detection.

Quantitative RT-PCR validation of selected genes
Flow-cytometry-sorted microglia and astrocytes were
used for RNA extraction (see preceding sections on
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FACS and RNA extraction). Quantitative RT-PCR was
performed in triplicate in 96-well plates by using a qPCR
machine (LC480, Roche) and SYBR Green I Master mix-
ture (4887352001, Roche) for detection of amplification
products. The following thermocycling protocol was
used: initial denaturation at 95°C for 10 min, followed
by 40 amplification cycles of 95 °C for 15s and 60 °C for
1 min, and a final cycle at 25 °C for 15s. Relative quanti-
fication of mRNA expression was performed using the
comparative cycle method to obtain the following ratio:
gene of interest/Gapdh. Relative quantification of gene-
expression levels was performed using the 244
method. All primers were designed using NCBI Primer-
BLAST; we designed primers to be ~ 200-bp long. All
primers are listed in Additional file 2.

STEM (Short Time-series Expression Miner) analyses

The Short Time-series Expression Miner (STEM) is a
Java program for clustering, comparing, and visualizing
short time series gene expression data from microarray
experiments (~ 8 time points or fewer). STEM allows re-
searchers to identify significant temporal expression pro-
files and the genes associated with these profiles and to
compare the behavior of these genes across multiple
conditions. The output gene expression value is normal-
ized according to the first time point, usually by sub-
tracting the gene expression value at the first time point,
allowing different genes to be visualized at the same
starting point. STEM is available for download for free
to academic and non-profit users at http://www.cs.cmu.
edu/~jernst/stem.

Graphs and statistical analyses

All statistical analyses were performed using the Graph-
Pad Prism 8.00 software (GraphPad Software, La Jolla,
CA, USA). Most data were analyzed using one-way
ANOVA followed by Dunnett post hoc test for compari-
sons of > 3 samples, and two-sample unpaired ¢ tests
were used for comparing 2 samples; p < 0.05 was consid-
ered statistically significant.

Sequencing data quantification and data analysis

Quality control

Raw data (raw reads) in fastq format were first processed
using in-house perl scripts. In this step, clean data (clean
reads) were obtained by removing reads containing
adapter sequences, poly-N-containing reads, and low-
quality reads from the raw data. Concurrently, Q20,
Q30, and GC content of the clean data were calculated.
All the downstream analyses were based on the high-
quality clean data.
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Read mapping to reference genome

Reference genome and gene-model annotation files were
downloaded from the genome website directly. An index
of the reference genome was built and paired-end clean
reads were aligned to the reference genome by using
Hisat2 v2.0.5. We selected Hisat2 as the mapping tool
because Hisat2 can generate a database of splice junc-
tions based on the gene-model annotation file, and thus
can yield superior mapping results as compared to other
non-splice mapping tools.

Quantification of gene-expression level

Feature Counts v1.5.0-p3 was used to determine the
number of reads mapped to each gene, after which each
gene’s FPKM (the expected number of fragments per
kilobase of transcript sequence per million base pairs se-
quenced) was calculated based on the length of the gene
and the number of reads mapped to the gene. FPKM
calculation concurrently considers the effect of sequen-
cing depth and the gene length for the read counts, and
is currently the most commonly used method for esti-
mating gene-expression levels.

Differential expression analysis

Differential expression analysis involving 50 conditions/
groups (3 biological replicates per condition) was per-
formed using DESeq2 R package (1.16.1). DESeq2 pro-
vides statistical routines for determining differential
expression in digital gene-expression data by using a
model based on negative binomial distribution. The
resulting p values were adjusted using the Benjamini and
Hochberg approach to control for the false-discovery
rate. Genes identified using DESeq2 that featured an ad-
justed p value of < 0.05 were regarded as differentially
expressed genes (DEGS).

Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses of DEGs

GO enrichment analysis of DEGs was implemented
using clusterProfiler R package, in which gene-length
bias was corrected; GO terms featuring a corrected p
value of < 0.05 were considered significantly enriched.
KEGG is a database resource for understanding high-
level functions and utilities of biological systems, such
as of the «cell, organism, or ecosystem, from
molecular-level information, particularly large-scale
molecular datasets generated using genome sequen-
cing and other high-throughput experimental tech-
nologies  (http://www.genome.jp/kegg/). We used
clusterProfiler R package to test the statistical enrich-
ment of DEGs in KEGG pathways.
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Results

Purification of microglia and astrocytes and RNA-seq
profiling

To investigate whether microglial and astrocyte genes in
mice are altered throughout aging, we performed RNA-
seq at 5 time points encompassing the mature-adult
stage (2 months), when developmental changes in gene
expression have ceased, and the middle-age stage (4
months, 6 months, 9 months, 12 months), during which
age-dependent pathology develops (Fig. la). Microglia
were sorted based on CD45MW-to-Intermediate; 0y ] oy
pression and astrocytes were sorted based on ACSA2
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expression after exclusion of doublets and Live/Dead
analysis by using BDArialll. Single staining and isotype-
control antibodies were included as controls (Additional
file 3 A-B). The percentage of microglia and astrocytes
at different time points was shown in Additional file 4.
No significant difference was found for the percentage of
the microglia and astrocytes overtime, indicating that
that aging or AD has less effect on the cell composition.
We used RNA-seq to assess mRNA purity and quan-
tity. For each time point, microglia and astrocytes were
isolated from whole-brain samples, with 3 replicates be-
ing included. Furthermore, we sequenced WT/AD
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Fig. 1 Isolation and purification of microglia and astrocytes. a Schematic showing experimental strategy for isolation and sorting of microglia and
astrocytes. b and ¢ RNA-seq analysis of expression of classic cell-specific markers of microglia, astrocytes, neurons, endothelial cells (Endo),
oligodendrocyte precursor cells (OPC), and oligodendrocytes (Oligo) in purified microglia (b) and astrocytes (c), as compared with input (total
mRNA). Three biological replicates of each time point (microglia and astrocytes) and 2 biological replicates of input are shown
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whole-brain input samples (2 mice each) to verify the
enrichment of microglia and astrocytes, and we devel-
oped a transcriptome list of well-known cell-type-
specific genes for microglia (e.g., Cx3crl, P2ryl2,
Tmem1l119, Aifl, Olfml3, Ccl3, Itgam), astrocytes (e.g.,
Aldhlll, Atplb2, Aqp4, Sox9, Slc4a4, Micl), neurons
(e.g., Stmn2, Rbfox3, Sytl, Synl), endothelial cells (Endo)
(e.g., Pecaml, Tiel), oligodendrocyte precursor cells
(OPCQ) (e.g., Pdgfra, Cspg4), and oligodendrocytes (Oligo)
(e.g., Nfasc, Kndcl). Markers specific for microglia were
expressed at high levels only in microglia and were un-
detectable or expressed at extremely low levels in the
remaining cell types (Fig. 1b). Despite the high degree of
enrichment of astrocyte-specific genes in the majority of
samples, we found a small increase in certain neuronal,
endothelial, and oligodendrocyte gene contaminants in
our astrocyte RNA-seq samples (Fig. 1c). As reported
previously, oligodendrocyte markers were detectable as
low-level contaminants in adult ACSA2+ astrocytes.
These results highlight the importance of validation.

Next, we performed DESeq2 analysis on microglia and
astrocytes, which revealed that both cell types showed a
gradual increase in the number of age-associated DEGs
(40 and 59 genes in 2-month AD microglia and astro-
cytes as compared to 2-month WT) (Additional file 5A-
B). Therefore, we used 2-month WT mice as our
mature-adult control for the follow-up analysis, in which
DESeq2 R package was used to analysis polyA-selected
mRNAs from microglia and astrocytes isolated from
whole-brain samples, and we mapped > 85% of the reads
in the case of all samples. The reproducibility between
replicates was high (Additional file 6A), and the results
of principal component analysis (PCA) showed a clear
separation of expression between the different time
points (Additional file 6B).

Microglia genes changed upon aging include cytokine-
pathway genes

We first determined the number of DEGs (adjusted p <
0.05, |log, fold-change| > 0.5) in the aging groups
relative to 2-month control. We identified numerous
DEGs in aging WT mice in comparison with 2-month
WT controls: 1109 genes in 12-month mice, 819 genes
in 9-month mice, 5709 genes in 6-month mice, and 681
genes in 4-month mice (Fig. 2). Compare to 2-month
WT controls, the top 15 upregulated genes exclusively
in 4, 6, 9, and 12 months microglia are shown in Fig. 2
b. To annotate these genes in different biological
pathways, we performed GO and KEGG analysis. As
compared with the expression in 2-month microglia, we
detected altered genes involved in “blood vessel morpho-
genesis” and “cell-matrix adhesion” in 4-month micro-
glia (Fig. 3a); “oxidative phosphorylation” and “ATP
metabolic process” in 6-month microglia (Fig. 3b);
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“response to cytokine” and “innate immune response” in
9-month microglia (Fig. 3c); and “positive regulation of
cellular component movement” and “chemotaxis” in 12-
month microglia (Fig. 3d). Additional file 7 shows the
complete datasets.

In this study, we hypothesized that age-dependent
pathogenic or protective genes could be expressed at
consistently higher or lower levels throughout the dif-
ferent time points of mice as compared with the
expression in the 2-month control. Therefore, we con-
structed a Venn diagram of the genes consistently up-
regulated in aging microglia (4 months, 6 months, 9
months, and 12 months, relative to 2-month control),
and from this we identified 48 genes (termed “age-up”
microglial genes) (Additional file 8 shows the gene list
with fold change and p values), which included a
cassette of genes involved in the cytokine pathway.
Cxcl10 was upregulated 3-, 1.9-, 3.5-, and 3-fold in 4-
month, 6-month, 9-month, and 12-month microglia
relative to the expression in 2-month microglia. This
result was further confirmed using RNAscope in situ
hybridization. Other age-up microglial genes involved
in immunoregulatory and inflammatory processes in-
cluded Ccl2/Ccl12, Egr2, Nrid2, 116, Zfp36 (anti-inflam-
matory signaling), Nfkbia (negative regulation of NFeB
transcription factor activity), H2-QI (MHC I protein-
complex member), and Ccrl12.

We next applied the aforementioned filtering criteria
to identify genes that are downregulated in microglia.
Fewer genes were downregulated than those upregulated
in microglia, and considerably more genes were differen-
tially expressed in 6-month microglia (3381 genes) than
those in 4-month, 9-month, and 12-month microglia
(271, 320, and 582 genes, respectively) (Fig. 2c). Com-
pare to 2-month WT controls, the top 15 downregulated
genes exclusively in 4-, 6-, 9-, and 12-month microglia
are shown in Fig. 2d. We identified 41 “age-down”
microglial genes (Additional file 9 shows the gene list
with fold change and p values), including well-known
genes such as Man2b2, which encodes lysosomal acid a-
D-mannosidase [24]; CYFIP1, which encodes a protein
that functions in cytoskeletal remodeling to ensure
proper dendritic-spine formation [25, 26]; Wasf2, an-
other cytoskeleton regulator [27]; the inflammation-
driven cancer gene Ptbpl [28]; and toll-like receptor
genes (TIr5, Tir9). We also used STEM (Short Time-
series Expression Miner) analysis [29] to cluster gene
sets that showed dynamic changes over time (Fig. 2e, f
and Additional file 10). The gene alterations included
the upregulation of Fos [30] and cd22 [31] and the
downregulation of CsfIr (colony-stimulating factor 1 re-
ceptor gene) [32] and Cx3crl (C-X3-C motif chemokine
receptor 1 gene) [33-35]. Previous studies showed that
microglia age-related genes do not differ among brain
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regions [36], so the significant changed microglia genes
might not be brain region specific.

Astrocyte genes showing age-dependent upregulation
include synaptic-transmission-regulating genes and
peptidase-inhibitor genes

We next compared gene expression between astrocytes
from young mice (2 months) and aging mice (4 months,
6 months, 9 months, 12 months), which revealed age-
dependent variations in the expression levels (Fig. 4a, c).
Compare to 2-month WT controls, the top 15 upregu-
lated and downregulate genes exclusively in 4-, 6-, 9-,
and 12-month astrocytes are shown in Fig. 4b,and d. As
compared with the expression in 2-month astrocytes,
the representative GO results showed that DEGs in-
volved in “ribonucleotide metabolic process” in 4-month
astrocytes (Fig. 5a); “blood vessel morphogenesis” and
“blood vessel morphogenesis” in 6-month astrocytes
(Fig. 5b); “epithelial cell migration” in 9-month astro-
cytes (Fig. 5¢ ); and “adherens junction” and “enzyme
activator activity” in 12-month astrocytes (Fig. 5d)

(Additional file 11 shows the complete GO and KEGG
datasets).

The reactive-astrocyte markers Serpina3n and Osmr
were expressed at higher levels in 12-month astrocytes
than in 2-month astrocytes, whereas /33 expression
showed significant differences in all comparisons. Specif-
ically, 193 genes were upregulated (“age-up” astrocyte
genes) (Additional file 12 shows the gene list with fold
change and p values), including a well-known AD risk
gene (Apoe) and a gene encoding a component of the
complement cascade (C4b). Moreover, Snuca (synuclein-
a) and Sncg (synuclein-y) were also upregulated
throughout aging.

We also found that age-up genes included several
peptidase-inhibitor genes. Two of these genes, Spock3
and Timp4, were upregulated 1.5-3.8-fold throughout
aging. Cst3, an endogenous cysteine-protease inhibitor
[37-40], was upregulated in the early stages of aging; the
expression was increased 2.2-, 3.7-, 1.6-, and 1.9-fold in
4-month, 6-month, 9-month, and 12-month astrocytes
relative to that in 2-month astrocytes. Among the age-
up astrocyte genes, we also noted significant
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Fig. 4 Differential gene expression between adult and aging astrocytes. a-d Upregulated and downregulated genes, determined using DESeq?2
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upregulation of the gene encoding Pcskln. We identified
192 genes that are downregulated in astrocytes (“age-
down” astrocyte genes) were also identified in this study
(Additional file 13), which included some of the genes
involved in negative regulation of axon extension, such
as Tnr, Nrpl, Ptprs, Slitl, and Semadf. In addition, it
also included a matrix metallopeptidase (Mmp16). The
STEM analysis results are shown in Fig. 4e and f and
Additional file 10.

To estimate whether the changed genes in astrocytes
are brain region specific, we compared our age-altered
astrocytes gene dataset to the genes which are uniquely
up/downregulated in astrocytes in different brain regions
published before [22]. We found that astrocyte genes
shifted their regional expression patterns upon aging.

The age-up genes were upregulated in different brain re-
gions, including 37 genes in cerebellum, 6 in visual cor-
tex, 16 in hypothalamus, and 2 in all brain regions
(Additional file 14 A-B). Interestingly, age-down genes
were also downregulated in brain regions, such as 69 in
cerebellum, 13 in motor cortex, 16 in visual cortex, and
102 in hypothalamus (Additional file 14 C-D). Import-
antly, we also found that the human [36] and mouse
astrocyte genes affected by aging shared 17 orthologous
genes (Additional file 14 E). Cross-sectional genes were
shown in Additional file 15.

Most DEGs were altered exclusively in either microglia
or astrocytes. However, 4 genes were included among
both age-up microglial genes and age-up astrocyte genes:
Cxcl10, Ccl2, Scoc, which regulate amino acid-
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starvation-induced autophagy [41], and Mril, which is
involved in the methionine salvage pathway. Conversely,
7 genes were downregulated in both microglia and astro-
cytes: Man2b2, Ptbpl, Prrc2a, which control oligo-
dendroglial specification and myelination by functioning
as a newly identified m®A reader [42]; Midn, which regu-
lates glucokinase enzyme activity [43]; Fscnl, which is
required for filopodial formation in neural crest cells
[44]; Clcn6, which is related to voltage-gated chloride
channel activity; and Pik3r4, which is involved in the for-
mation of autophagosomes [45].

—

Interaction of microglia and astrocytes during aging and
AD

Previous study by Liddelow et al. [46] showed that activated
microglia induced Al astrocytes by secreting Il-1a, TNF,
and Clq, also happening in normal aging [47]. In the pro-
gression of WT and AD, we also found that inflammatory
inducer cytokines secreted by microglia appeared earlier
than the upregulation of neuroinflammatory genes in Al-
like reactive astrocytes (Additional file 16), indicating that
microglia might induced Al astrocytes in aging and AD
progression.

Validation of RNA-seq profiles by using gPCR and
RNAscope

We validated our RNA-seq data through qPCR per-
formed using a new cohort of animals. For age-altered
genes, we selected 15 genes from microglia and astro-
cytes respectively (5 age-up genes, 5 genes expressed no
difference in age, 5 age-down genes). For each time
point of WT/AD mice, we selected 9 genes from micro-
glia and astrocytes (3 showing elevated expression in 2-
month WT mice, 3 equally expressed, and 3 showing in-
creased expression in 2-month AD mice; genes for 4
months, 6 months, 9 months, and 12 months were se-
lected in a similar manner). Data were expressed as
242t by using the Gapdh transcript as an internal ref-
erence standard. The expression analyses performed on
the selected genes yielded results that were superimpos-
able with the results obtained using RNA-seq (Fig. 6 and
Additional file 17).

To confirm mRNA changes in the case of age-up
genes from microglia and astrocytes, we performed dual
RNAscope in situ hybridization on samples from WT
mice belonging to the 5 age groups. We used Itgam
(CD11b) as a universal microglial marker and Slcla3 as
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a universal astrocyte marker, and we examined an age-
up gene (Cxcl10) and an age-down gene (Ptbpl) from
the RNA-seq analysis (Fig. 7e, f). We determined the
total dual-positive cell numbers for Itgam” microglia or
Slc1a3" astrocytes that also expressed Cxcll0 or Ptbpl
in the hippocampus, cortex, and cerebellum, as well as
the number of target-probe dots per cell. We found a
similar fold-change in FPKM as in the RNA-seq data
(Fig. 7a—d, g—f): Cxcl10 and Ptbpl were significantly up-
regulated and downregulated, respectively, with age in
both microglia and astrocytes.

Association of age-altered genes in AD transcriptomes

AD is a heterogeneous disease in which multiple detri-
mental factors contribute to cognitive loss and disease
escalation [14]. To determine the aging transcriptomes
in AD, we analyzed the expression of age-altered genes
at 5 different time points in WT and AD mice. We
found that most age-up genes were highly expressed in
AD mice as compared to WT mice at the same time
points. In contrast, age-down genes were highly
expressed in WT mice (Fig. 8). Then we compared the
expression of age-altered genes in microglia or astrocytes
isolated from 12-month WT vs. 12-month AD mice. We
found that among the 28 age-up genes in microglia from
12-month AD mice, 13 showed a significant increase
(adjusted p < 0.05, |log, fold-change| > 0.5) relative to
the age-matched control (Fig. 8a), whereas 4 of the 28

genes were downregulated. Among the age-down micro-
glial genes, 7 genes were significantly downregulated in
AD mice (Fig. 8b). We also analyzed age-related astro-
cyte genes in AD progression, and we found that 33 age-
up genes were strongly upregulated and 53 age-down
genes were markedly downregulated in 12-month AD
mice (Fig. 8c, d). As shown in Additional file 18, we
identified several cross-changed genes between the
DEGs (genes are altered in both aging and Alzheimer’s
disease) and the DEGs (genes are altered in different AD
groups compared with 2-month AD controls).

Nonmonotonically changed age-related genes
We used STEM analysis to cluster gene sets that showed
similar trends in a certain category at 5 time points be-
tween 2 and 12 months. As shown in Fig. 9a, the expres-
sion of genes was upregulated sharply from 4 months,
peaked at 6 months, downregulated again, and stabilized
at 9 months. The GO analysis showed that DEGs mainly
involved in “mitochondrion organization” and “cellular
respiration”. The DEGs were downregulated from 2 to 6
months and then upregulated are shown in Fig. 9i. These
differentially expressed genes were involved in histone
modification pathway. Other trends in microglial genes
with the same pattern are shown in Fig. 9.

Similarly, we also found that a cassette of genes in
astrocytes at different time points showing a same vari-
ation tendency. We performed GO analysis on these
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fixed trend genes and the results were shown in Fig. 10. and h) and other pathways were involved in different
“Transcription cofactor activity” (Fig. 10d, e), “mitochon-  patterns of DEGs, indicating that they may play different
drial protein complex/membrane/matrix” (Fig. 10a, b, ¢,  roles at different stages.
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Discussion

The results of this study indicate that microglia exhibit
an increase in responsiveness to inflammation stimuli
with age, which is reflected by the consistently elevated
expression of inflammatory-response genes, whereas
astrocytes appear to function as “preservers” of inflam-
mation, which is reflected by the upregulation of

peptidase-inhibitor genes upon aging. In this study, we
tried our best to reduce the artificial effect of the dissoci-
ation process. Although there are three biological repli-
cates at each time point, individual differences still
cannot be ignored. In this study, we have not found a
significant difference of the percentage of microglia and
astrocytes overtime.
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Transcriptome differences between microglia and as-
trocytes during aging have been addressed in a few pre-
vious studies. Aged astrocytes (2 years old) were shown
to upregulate genes involved in synapse elimination but
to minimally alter the expression of homeostasis-related
genes [22], and 2-year-old astrocytes were also reported
to adopt the reactive phenotype of neuroinflammatory
Al-like reactive astrocytes [47]. Our astrocyte gene-

expression dataset agrees with the findings of the previ-
ous studies, because we also detected a significant
decrease in Thbsl, an increase in Thbs2, C4b, Cxcl10,
and reactive-astrocyte genes (Osmr, Serpina3n), and no
change in homeostasis genes (Aldh1l1, Agp4) in our 12-
month astrocyte samples relative to the expression in 2-
month astrocytes. Similarly, the DEGs identified between
our 12- and 2-month microglial samples broadly agreed
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with previous RNA-seq profiles of microglia from the
aged brain (24 months). Age-up genes in astrocytes,
C4b, involved in synapse elimination [48]; Snca and
Sncg, 2 genes related to Parkinson’s disease pathogenesis
[49] that also play several roles in synaptic activity, such
as regulation of synaptic-vesicle trafficking and
subsequent neurotransmitter release [50, 51], suggesting
that astrocytes play a critical role in synapse elimination
and synaptic transmission. Spock3 and Timp4, encode
proteins that participate in inhibiting matrix metallopro-
teinases (MMPs) involved in the degradation of the
extracellular matrix [52], and the other genes encode
proteins that inhibit lipoteichoic acid-induced NF-kB,
MAP kinase, and Akt activities [53] and decrease the in-
vasion and metastasis of tumor cells in the brain [54].
Pcskln, an inhibitor of prohormone convertase 1 that
regulates the proteolytic cleavage of neuroendocrine
peptide precursors [55]. Cst3, can function as a protect-
ive factor in the AD brain, and its mechanisms of action
include inhibition of cysteine proteases, induction of au-
tophagy, induction of cell division, and inhibition of Ap
oligomerization and amyloid-fibril formation [56-—59].
Cst3 is known to be enriched in adult astrocytes
throughout the brain [60], but the role of Cst3 in astro-
cytes during aging has remained obscure. Inhibition of
proteolysis has been shown to protect neurons against
ischemia [61, 62], which suggests that astrocytes might
protect neurons by commonly upregulating the expres-
sion of the aforementioned glial-cell-derived endogenous
protease inhibitor. Previous studies [63] have reported
that when the blood-brain barrier is destroyed, periph-
eral leukocytes are able to transit the astrocytic T] bar-
rier in inflammatory lesions and enter the CNS, secrete
serine proteases and MMPs to cleave astrocytic CLDN4.
Our results suggest that in normal aging, increased pro-
duction of serine proteases inhibiter/MMPs inhibiter
and decreased production of MMPs might control neu-
roinflammation and prevent the invasion of peripheral
pathogens.

Although we minimize ex vivo activation during the
isolation procedure, there may still be some unknown
activation when sorting cells from the brain. Evidence
has been presented supporting the notion that the in-
flammatory responses of both astrocytes and microglia
peak during the beginning of symptomatology [64].
Therefore, we focused here on the genes that start to
change at an early stage and show sustained alteration
throughout aging. Unexpectedly, we found sustained up-
regulated or downregulated expression in microglia
throughout life of several inflammation-related genes.
Ccl2 is a key mediator of spinal microglial activation,
and blocking spinal Ccl2 alleviates heat hyperalgesia and
augments glutamatergic transmission in substantia gela-
tinosa neurons [65], reduces immunosuppression, and
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augments vaccine immunotherapy [66]. Ccl12 also plays
a pivotal role during the early stages of allergic lung in-
flammation [67, 68]. These findings suggest that some of
the predisposing or inflammatory factors associated with
diseases might be related to the consistently elevated ex-
pression of Ccl2/Ccl12 in microglia, and blocking this
might alleviate and minimize disease progression. Egr2,
which has been proposed as a newly identified M2
(alternatively activated) marker for macrophages, is asso-
ciated with the ability of these cells to respond to inflam-
matory stimuli [69, 70], was included among the age-up
microglial genes. Intriguingly, we found an increase in
Nr1d2 (also known as REV-ERB), which acts as a nodal
output of the circadian clock and thus links cellular cir-
cadian timers with innate-immune responses and
thereby modulates the production and release of the
proinflammatory cytokines Ccl2 and IL-6 [71-74].
Nrld2 was increased 1.6—2-fold and 1l6 was increased
2.2-3-fold among age-up microglial genes, which
suggests that Nr1d2 upregulation might stabilize the di-
urnal variation in Ccl2 and IL-6 levels and immune
function caused by aging. Other age-up microglial genes
involved in immunoregulatory and inflammatory pro-
cesses included Zfp36 (anti-inflammatory signaling),
Nfkbia (negative regulation of NFeB transcription factor
activity), H2-QI (MHC I protein-complex member), and
Ccrli2. Taken together, these data support an active role
for microglia in inflammation response throughout
aging. We further found that neuropsin (KIk8), an extra-
cellular matrix serine protease that induces neurite out-
growth and regulates Schaffer-collateral long-term
potentiation (LTP) [75, 76], was also significantly in-
creased throughout aging, which suggests that microglia
could play a notable role in the establishment of LTP
and synaptic plasticity. Over time, altered genes involve-
ment in angiogenesis to subsequent innate immune in-
flammatory responses, indicates roles of microglia in
neuroinflammatory responses during aging.

We compared aging microglia heterogeneity be-
tween mice and humans by performing comparisons
of our mouse age-related microglial datasets with two
previous human microglial aging profile s[77, 78].
Limited overlap was observed in microglial genes reg-
ulated during aging between mice and humans, indi-
cating that human and mouse microglia age
differently. In addition to doing the analysis relative
to the earliest time point (2 months), we also used
STEM analysis to cluster gene sets that showed simi-
lar trends in a certain pattern. The GO analysis
showed that different pathways were involved in dif-
ferent categories such as mitochondrion organization,
cellular respiration, or mRNA metabolic process, indi-
cating that different genes and signaling pathways
may play certain roles at different stages.
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At the early stage (2 months), the number of differen-
tially expressed genes between WT and AD was negli-
gible, and showed a gradual increase with age. When we
compared the age-up related genes in WT/AD at the
same time points, we found that most age-up genes were
highly expressed in AD mice as compared to WT mice.
This suggests that age genetic changes in the AD process
occur earlier than aging. And the change may also in-
volve in the development of AD. In the later stages of
aging, the internal environment of the CNS shows in-
creased complexity, and this might involve the actions of
peripheral factors together with BBB dysfunction. Im-
aging analyses have revealed that the BBB is localized at
the level of tight junctions between brain endothelial
cells [79]. Aging and AD are both associated with dimin-
ished BBB integrity and an opening for T cell transen-
dothelial migration into the CNS [80-82]. In the
parenchyma, bidirectional crosstalk occurs between the
infiltrating cells and the resident glial cells; activated
microglia impair BBB function by releasing several
inflammatory modulators and thus lead to hyperperme-
ability; and the resulting T cell infiltration, in turn,
favors increased microglial activation by secreting proin-
flammatory cytokines or acting in a protective manner
toward senescent microglia [3, 17, 20, 83, 84]. Notably,
transient early depletion of regulatory T cells was shown
to reduce the recruitment of microglia toward amyloid
deposits and alter the disease-related gene-expression
profile in the brain [85].

Conclusions

In summary, our study on microglia and astrocytes
throughout aging provides new insights into the gene-
expression profiles of these 2 types of glial cells and into
the age-related changes in the transcriptome in relation
to normal aging. Some of the genes identified here to be
altered might represent targets for the treatment of the
cognitive decline that occurs in diseases associated with

aging.
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