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ABSTRACT Bacteria play a key role in freshwater biogeochemical cycling, but long-
term trends in freshwater bacterial community composition and dynamics are not
yet well characterized. We used a multiyear time series of 16S rRNA gene amplicon
sequencing data from eight bog lakes to census the freshwater bacterial community
and observe annual and seasonal trends in abundance. The sites that we studied en-
compassed a range of water column mixing frequencies, which we hypothesized
would be associated with trends in alpha and beta diversity. Each lake and layer
contained a distinct bacterial community, with distinct levels of richness and indica-
tor taxa that likely reflected the environmental conditions of each lake type sam-
pled, including Actinobacteria in polymictic lakes (i.e., lakes with multiple mixing
events per year), Methylophilales in dimictic lakes (lakes with two mixing events per
year, usually in spring and fall), and “Candidatus Omnitrophica” in meromictic lakes
(lakes with no recorded mixing events). The community present during each year at
each site was also surprisingly unique. Despite unexpected interannual variability in
community composition, we detected a core community of taxa found in all lakes
and layers, including Actinobacteria tribe acI-B2 and Betaprotobacteria lineage PnecC.
Although trends in abundance did not repeat annually, each freshwater lineage
within the communities had a consistent lifestyle, defined by persistence, abun-
dance, and variability. The results of our analysis emphasize the importance of long-
term multisite observations, as analyzing only a single year of data or one lake
would not have allowed us to describe the dynamics and composition of these
freshwater bacterial communities to the extent presented here.

IMPORTANCE Lakes are excellent systems for investigating bacterial community dy-
namics because they have clear boundaries and strong environmental gradients. The
results of our research demonstrate that bacterial community composition varies by
year, a finding which likely applies to other ecosystems and has implications for
study design and interpretation. Understanding the drivers and controls of bacterial
communities on long time scales would improve both our knowledge of fundamen-
tal properties of bacterial communities and our ability to predict community states.
In this specific ecosystem, bog lakes play a disproportionately large role in global
carbon cycling, and the information presented here may ultimately help refine car-
bon budgets for these lakes. Finally, all data and code in this study are publicly
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available. We hope that this will serve as a resource for anyone seeking to answer
their own microbial ecology questions using a multiyear time series.

KEYWORDS 16S rRNA, freshwater, microbial communities, microbial ecology, time
series

One of the major goals of microbial ecology is to predict bacterial community
composition. However, we have only a superficial knowledge of the factors that

would allow us to predict bacterial community dynamics. To characterize the diversity
and dynamics of an ecosystem’s bacterial community, sampling the same site multiple
times is just as necessary as sampling replicate ecosystems. Additionally, the sampling
frequency must match the rate of change of the process being studied. We must first
understand the scales on which bacterial communities change before we can design
experiments that capture a full range of natural variation.

Bacterial communities have the potential to change more quickly than communities
of macroorganisms due to their high rate of reproduction. A meta-analysis of a time
series spanning 1 to 3 years found positive species-time relationships, indicating that
more taxa were observed as the duration of sampling increased, due to incomplete
sampling, extinction and immigration, or speciation (1). Bacterial time series display
time decay, meaning that the community continues to become more dissimilar from
that present at the initial sampling event as the time from that event increases (2). In
one freshwater lake, the amount of change in the bacterial community over a single
day was equivalent to the dissimilarity between the communities collected at sampling
points 10 m apart (3). Conversely, bacterial communities can also change gradually over
extremely long time scales, as they are sensitive to changes in environmental param-
eters such as nutrient availability and temperature. Wetland ecosystems and their
carbon emissions are expected to change on scales of greater than 300 years (4); as
these emissions are the result of bacterial processes, we expect that the bacterial
community will change on the same time scale as its ecosystem. Changes in marine
phytoplankton regimes have been observed to have occurred over the past millen-
nium, correlating with shifts in climate (5). With such a large range of potential time
scales for change, we now recognize the need to more rigorously consider the duration
and frequency of sampling in microbial ecology.

Multiyear studies of bacterial communities are less common due to their logistical
difficulties and the need for stable funding, but results from the United States National
Science Foundation-funded Microbial Observatory and Long Term Ecological Research
(LTER) projects are exemplary. As a few examples among many, the San Pedro North
Pacific Microbial Observatory contributed to our understanding of heterogeneity of
bacterial communities across space and time (6), while research at the Sapelo Island
Microbial Observatory has led the field in linking genomic data to metadata (7). While
there are several well-established long-term time series in marine systems, studies at
this scale in freshwater are rare. In our own North Temperate Lakes Microbial Obser-
vatory, based in Wisconsin in the United States, a multiyear time series of metagenomic
data was used to study sweeps in diversity at the genome level (8), adding to our
knowledge of how genetic mutation influences bacterial communities. Long-term
microbial ecology studies have a time-tested role in the quest to forecast bacterial
communities.

Samples for our North Temperate Lakes Microbial Observatory time series were
collected from eight bog lakes near Minocqua in the boreal region of northern
Wisconsin in the United States. Bog lakes contain high levels of dissolved organic
carbon in the form of humic and fulvic acids, resulting in dark, “tea-colored” water. Due
to their dark color, bog lakes absorb heat from sunlight, resulting in strong stratification
during the summer. The top layer in a stratified lake, called the “epilimnion,” is oxygen
rich and warm. At the lake bottom, a cold layer called the “hypolimnion” is formed,
becoming anoxic almost immediately in darkly stained bog lakes. The transitions
between mixing of these two layers and stratification occur rapidly in these systems
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and at different frequencies (called mixing regimes) depending on the depth, surface
area, and wind exposure of the lake. Changes in bacterial community composition
along the vertical gradients established during stratification are well documented (9,
10). Mixing has been shown to represent a disturbance to the bacterial communities in
bog lakes (11). The bacterial communities in bog lakes are still being characterized but
contain both ubiquitous freshwater organisms (12, 13) and members of the candidate
phylum radiation (14). Seasonality in freshwater lakes is thought to be the norm rather
than the exception (15, 16); however, multiple years of sampling are needed to confirm
these prior findings.

Our data set was comprised of 1,387 16S rRNA gene amplicon sequencing samples,
collected from eight lakes and two thermal layers over 5 years. Our primary goals for
this data set were to census members of the bog lake bacterial community and to
identify taxa that are core to the bacterial community of bog lake ecosystems. We
hypothesized that the mixing regime structures the bacterial community, leading to an
association between mixing frequency and alpha and beta diversity in bog lakes.
Finally, we investigated seasonality at the community level, clade level (roughly equiv-
alent to the genus level), and operational taxonomic unit (OTU) level to identify annual
trends. This extensive, long-term sampling effort establishes a time series that allows us
to assess variability, responses to mixing frequency, and recurring trends in freshwater
bacterial communities.

RESULTS
Overview of community composition. We used a time series of 16S rRNA gene

amplicon data to investigate bacterial community composition over time and across
lakes. Sampling occurred at approximately weekly intervals and primarily during the
summer stratified period (May to August) (see Fig. S1 in the supplemental material).
Sites were not sampled continuously over the entire time series, and metadata are
available for only a subset of samples. A total of 8,795 OTUs were detected in 1,387
samples. As is typical for most freshwater ecosystems, Proteobacteria, Actinobacteria,
Bacteroidetes, and Verrucomicrobia were the most abundant phyla (Fig. S2). Within
these phyla, levels of OTU abundance were highly uneven. Much of the abundance of
Proteobacteria could be attributed to OTUs belonging to the well-known freshwater
groups Polynucleobacter and Limnohabitans, and the freshwater lineage acI contributed
disproportionately to the observed abundance of Actinobacteria. As is seen with many
microbial communities, unevenness was a recurring theme in this data set, which had
a long tail of rare OTUs and trends driven largely by the most abundant OTUs (17, 18).
These results show that the composition of our data set is consistent with results from
other bog lakes (10, 14).

Community richness. We hypothesized that water column mixing frequency was
associated with alpha diversity. Observed richness was calculated for every sample at
the OTU level, and samples were aggregated by lake and layer. Hypolimnia generally
showed more richness than epilimnia (Fig. 1; see also Table S1 in the supplemental
material). Significant differences in richness between lakes were detected using the
Wilcoxon signed-rank test with a Bonferroni correction for multiple pairwise compari-
sons (Table S2). For both layers, polymictic lakes (i.e., lakes with multiple mixing events
per year) had the fewest taxa, dimictic lakes (lakes with two mixing events per year,
usually in spring and fall) had intermediate numbers of taxa, and meromictic lakes
(lakes with no recorded mixing events) had the most taxa. This data set includes data
from two fall mixing events (Trout Bog 2007 and North Sparkling Bog 2008), as well as
from the artificial mixing event in North Sparkling Bog in 2008 (11). Richness decreased
sharply in mixed samples compared to those taken during the summer stratified period
(Fig. S3). The observed association between mixing frequency and richness suggests
that water column mixing (or one or more covarying environmental parameters)
structures the bacterial community.

Clusters of community composition. To determine if mixing frequency is associ-
ated with community composition, we measured beta diversity between sites, based
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on the relative number of reads assigned to each OTU. When differences in community
composition were quantified using weighted UniFrac distance and visualized using
principal-coordinate analysis (PCoA), several trends emerged. The large number of
samples precluded much interpretation using a single PCoA, but sample clustering by
layer, mixing regime, and lake was evident. Thus, we also performed PCoA for single
lakes (both layers). Communities from the epilimnion and hypolimnion layers were
significantly distinct from each other at P � �0.05 in all lakes except for the polymictic
Forestry Bog (FB) (P � 0.10) (Fig. S4A to H).

Within layers, mixing regime also explained differences in community composition
(Fig. 2; Table S2). Clustering by mixing regime was significant by permutational
multivariate analysis of variance (PERMANOVA) in both epilimnion and hypolimnion
samples (r2 � 0.20 and r2 � 0.22, respectively; P � 0.001 in both groups). Site was a
strong factor explaining community composition, with significant clustering in epilim-
nia (P � 0.001, r2 � 0.34) and hypolimnia (P � 0.001, r2 � 0.49) (Table S2). Date and
mean water temperature did not describe the observed clustering as well as lake or
mixing regime (Fig. S5A to F). Because principal-coordinate analysis can be susceptible
to artifacts, we also performed an analysis of beta diversity between sites using a
Bray-Curtis dissimilarity distance matrix without ordination; the same results were
obtained (Fig. S5G to H). These findings demonstrate that thermal layer, lake, and
mixing frequency are associated with changes in bacterial community composition.

Variability and dispersion. While OTU-based community compositions were dis-
tinct by layer, lake, and mixing regime, there was still variability over time. We used
weighted UniFrac distance to quantify variability in beta diversity between samples
within the same site and year. Each year in each lake corresponded to a significantly
different community composition, indicating interannual variability in the community
composition (Fig. 3A to C; see also Fig. S4I to K and Table S2). As multiple environmental
variables changed in each year of sampling, it is not clear which (if any) could explain
the observed annual shifts in community composition. We found no evidence of
repeating seasonal trends during the stratified summer months in these lakes in time
decay plots using weighted UniFrac distance. Likewise, we examined trends in the most
abundant individual OTUs and did not observe repeatable annual trends, even when
abundances in each year were normalized using z scores (Fig. S6).
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Variability can also be assessed by measuring the beta diversity within a single site.
We measured pairwise weighted UniFrac distances between samples in each lake layer
(Fig. 3D). This analysis showed that the layers had significantly different levels of
pairwise beta diversity within a single site for all lakes except Forestry Bog, as deter-
mined using a Wilcoxon signed-rank test with a Bonferroni correction for multiple
pairwise comparisons. The mean pairwise UniFrac distance value was lower in the
epilimnion than in the hypolimnion in the West and North Sparkling Bogs but was
higher in the other significant sites. Performing the same analysis on a single year of
data with approximately even numbers of samples from each site showed the same
trends. This shows that the amounts of variability in the bacterial community differ by
site as well as by year.

The core community of bog lakes. Two of the goals of this study were to
determine the core bacterial community of bog lakes in general and to determine if the
mixing regime affects core community membership. Our previous analyses showed
that the community compositions were distinct in each layer and lake (Fig. 2), while
marked variability was observed within the same lake and layer (Fig. 3). This prompted
us to ask whether we had performed adequate sampling through time and space to
fully census the lakes. Still, the rarefaction curves generated for the entire data set and
for each layer begin to level off, suggesting that we had indeed sampled the majority
of taxa found in our study sites. To identify the taxa that comprise the bog lake core
community, we defined the “core” taxa as those present in at least 90% of a group of
samples, regardless of abundance in the fully curated data set. Core taxa are reported
using OTU number and taxonomic classification in our freshwater-specific database
(19). Four OTUs met these criteria for all samples in the full data set: OTU0076 (bacI-A1),
OTU0097 (PnecC), OTU0813 (acI-B2), and OTU0678 (LD28). These taxa were therefore
also core to both epilimnia and hypolimnia. Additional taxa core to epilimnia included
OTU0004 (betI), OTU0184 (acI-B3), OTU0472 (Lhab-A4), and OTU0522 (alfI-A1), while
additional hypolimnia core taxa included OTU0042 (Rhodo), OTU0053 (unclassified
Verrucomicrobia), and OTU0189 (acI-B2).
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We performed the same core analysis after combining OTUs assigned to the same
tribe (previously defined as sharing �97% nucleotide identity in the nearly full-length
16S rRNA gene and according to phylogenetic branch structure [19]) into new groups.
This revealed that certain tribes were core to the entire data set or thermal layer even
though their member OTUs were specific to certain sites. Notably, some OTUs were
endemic in specific lakes, even though the members of their corresponding tribe were
found in multiple lakes/layers. OTUs not classified at the tribe level were not included.
Results were similar to those observed at the OTU level but yielded more core taxa.
Tribes core to all samples included bacI-A1, PnecC, acI-B2, and LD28 but also betIII-A1
and acI-B4. The core tribes in epilimnia were bacI-A1, PnecC, betIII-A1, acI-B3, acI-B2,
Lhab-A4, alfI-A1, LD28, and acI-B4, while those in hypolimnia were Rhodo, bacI-A1,
PnecC, betIII-A1, acI-B2, and acI-B4. These results show that despite lake-to-lake differ-
ences and interannual variability, there are bacterial taxa that are consistently present
in bog lakes. We note that tribes correspond very roughly to species-level designations
as explained previously (19).

Principal-coordinate analysis suggested that samples clustered also by mixing re-
gime (Fig. 2). We thus evaluated Venn diagrams of OTUs shared by, and unique to, each
mixing regime to better visualize the overlap in community composition (Fig. 4). In
both epilimnia and hypolimnia, meromictic lakes had the highest numbers of unique
OTUs whereas polymictic lakes had the lowest, consistent with the differences in
richness between lakes (Fig. 1). Shared-community memberships, i.e., the numbers of
OTUs present at any abundance in both communities, differed between mixing re-
gimes. Epilimnia (Fig. 4A) and hypolimnia (Fig. 4B) showed similar trends in shared
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membership: meromictic and dimictic lakes shared the most OTUs, while meromictic
and polymictic lakes shared the least.

We next used indicator analysis to identify the taxa unique to each mixing regime.
Indicator analysis is a statistical method used to determine if taxa are found significantly
more frequently in certain predetermined groups of samples than in others. In this case,
the groups were defined by mixing regime, and normalization was applied to account
for different numbers of samples in each group. OTUs were grouped at every taxo-
nomic level, and all taxonomic levels were run at once in the indicator analysis to
account for differences in the abilities of these levels to serve as indicators (for example,
the presence of members of the order Actinomycetales is a stronger indicator of
polymictic lakes than the presence of members of the phylum Actinobacteria). An
abundance threshold of 500 reads was imposed on each taxonomic group. The full
table of results from the indicator analysis is available as Data Set S1 in the supple-
mental material, while a few indicator taxa of interest are highlighted here.

Lineage acI is a ubiquitous freshwater group, with specific clades and tribes showing
a preference for bog lakes in previous studies (20, 21). Our data set shows a further
distinction by mixing regime of acI in epilimnia; acI-A tribes were found predominantly
in meromictic lakes, with exception of Phila, which is an indicator of polymictic lakes.
Tribes of acI-B, particularly OTUs belonging to acI-B2, were indicators of dimictic lakes.
Methylophilales, a putative methylotroph, was also an indicator of dimictic lakes, as was
the putative sulfate reducing family Desulfobulbaceae. The phyla Planctomyces, “Can-
didatus Omnitrophica” (formerly OP3), OP8, and Verrucomicrobia were found more
often in meromictic lakes, as were putative sulfate-reducing taxa belonging to Syntro-
phobacterales and Desulfobacteraceae. Indicators of polymictic lakes include ubiquitous
freshwater groups such as Limnohabitans, Polynucleobacter (PnecC), betI-A, and verI-A.
Thus, despite the observed variability of and differences between lakes, layers, and
years, we detected a core community composed of ubiquitous freshwater bacterial
groups. Additionally, we identified indicator taxa endemic to groups of sites defined by
mixing frequency.

Lifestyles of freshwater lineages. Because of the observed variability in bacterial
community dynamics, we next asked if individual OTUs showed consistent levels of
abundance, persistence, and variability. We defined these metrics as mean abundance
(when present), the proportion of samples containing the group of interest, and the
coefficient of variation for lineages classified using the freshwater taxonomy, respec-
tively. These metrics have been previously used to categorize OTUs (22, 23). Using only
well-defined freshwater groups allowed better taxonomic resolution as we summed the
abundances of OTUs by their lineage classification. We note that lineage is very roughly
analogous to family in our provisional freshwater taxonomy (19). Lifestyle traits of
lineages were consistent both across lakes and across years. Low persistence was
associated with high variability, and low variability was associated with high abundance
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(Fig. 5; see also Fig. S7). We rarely observed “bloomers,” situations where a clade had
both high abundance and low persistence; one potential reason for this could be that
true “bloomers” drop below the detection limit of our sequencing methods when not
abundant. Most freshwater lineages were highly persistent at low abundances with low
variability. Lineage gamIII of the gammaproteobacteria, with low persistence, low
abundance, and high variability, was an exception. Lineages gamI and verI-A occasion-
ally also exhibited this profile. Lineages betII and acI were highly abundant and
persistent with low variability, consistent with their suggested lifestyles as ubiquitous
freshwater generalists (12, 21). Even though OTUs did not show the same abundance
dynamics each year, they did exhibit patterns that are consistent between years and
lakes.

DISCUSSION

The North Temperate Lakes Microbial Observatory bog data set represents a com-
prehensive 16S rRNA gene amplicon survey spanning 4 years, eight lakes, and two
thermal layers. We hypothesized that alpha and beta diversity would be associated with
mixing frequency in bog lakes. Richness and membership in these communities were
structured by layer, mixing regime, and lake. However, we found that multiple years of
sampling were necessary to census the community of bog lake ecosystems. We
identified specific bacterial taxa core to bog lakes, as well as taxa endemic to certain
depths or mixing regimes. High levels of variability were detected in this data set; the
community composition observed for each lake and each year of sampling was unique.
However, freshwater lineages still showed consistent lifestyles, defined by abundance,
persistence, and variability, across lakes and years, even though the abundance trends
of individual OTUs differed each year. Our results emphasize the importance of the use
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FIG 5 Traits of freshwater lineages. These well-defined freshwater groups showed similar levels of persistence, variance, and
abundance in every lake, including Crystal Bog (A), Trout Bog (B), South Sparkling Bog (C), and Mary Lake (D), despite differing
abundance patterns. Data from epilimnia with at least 2 years of undisturbed sampling are shown here. Mean abundance values
represent the average percentages of reads attributed to each lineage when that lineage was present. Variability was measured as the
coefficient of variation (CV). Persistence (shaded color) was defined as the proportion of samples containing each lineage. Additional
plots calculated by year can be found in Fig. S7.
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of multiple sampling events to assess full bacterial community membership and
variability in an ecosystem.

The bog lakes in this study have been model systems for freshwater microbial
ecology for many years. Early studies used automated ribosomal intergenic spacer
analysis (ARISA), a fingerprinting technique for identifying unique bacterial taxa in
environmental samples (24). Our research built upon these studies and added infor-
mation about the taxonomic identities of bacterial groups. For example, persistent and
unique bacterial groups were detected in the bog lakes using ARISA (25); we also found
persistent groups by the use of 16S rRNA gene amplicon sequencing and could identify
them as the ubiquitous freshwater bacteria LD28, acI-B2, PnecC, and bacI-A1. Differ-
ences between Crystal Bog, Trout Bog, and Mary Lake (three sites representative of the
three mixing regime categories corresponding to polymictic, dimictic, and meromictic
conditions) in richness and community membership within 1 year were previously
detected (25). Our data supported these results and suggest that these trends are
indeed linked with mixing regime, as we included multiple lakes of each type sampled
over multiple years in this study.

Our results support previous research on the characteristics of bacterial communi-
ties in the epilimnion and hypolimnion and the association of lake mixing frequency
with community composition. We confirmed that epilimnion communities tended to
be more dispersed than hypolimnion communities, potentially due to increased expo-
sure to climatic events (25). Mixing was disruptive to both epilimnion and hypolimnion
communities, selecting for only a few taxa that persist during this disturbance but
quickly recovering diversity once stratification was reestablished (11, 26). Our initial
inspiration for the collection of this data set was the intermediate-disturbance hypoth-
esis. We hypothesized that water column mixing is a disturbance to bog lake bacterial
communities and that lakes with intermediate mixing frequency would have the
highest levels of biodiversity. Results of comparisons of levels of richness between lakes
with different mixing regimes did not support the intermediate-disturbance hypothesis;
rather, the least frequently mixing lakes had the most diverse communities. Richness
also correlated positively with lake volume, potentially the result of a positive taxon-
area relationship, but analyses of more lakes of similar volumes and of various depths
are needed to prove this relationship in our study system (27, 28). As many variables,
including mixing frequency and concentrations of nitrogen and dissolved carbon,
covary with volume, we cannot determine which of these factors led to the observed
differences in diversity between sites based on our data set.

We were not able to detect repeatable annual trends in bog lakes in our multiple
years of sampling. While seasonality in marine and river systems has been well
established by our colleagues, previous research on seasonality in freshwater lakes has
produced inconsistent results (29–32). Distinct, seasonally repeatable community types
were identified in alpine lakes, but stratified summer communities were distinct each
year (33). Seasonal trends were detected in a time series from Lake Mendota (34) that
were similar to those detected in this study, but the summer samples in Lake Mendota
were more variable then those collected in other seasons. In the previous ARISA-based
research on the bog lakes in our data set, community properties such as richness and
rate of change were consistent each year, and the phytoplankton communities were
hypothesized to drive seasonal trends in the bacterial communities based on correla-
tion studies (35–37). Synchrony in seasonal trends was observed (36); however, these
findings were not reproduced in a second year of sampling for seasonal trends in
Crystal Bog and Trout Bog (38). Successional trends were studied in Crystal Bog and
Lake Mendota with a relatively small number of samples collected over 2 years, and
“dramatic changes” in community composition associated with drops in biodiversity
during the summer months were described, while spring, winter, and fall had more
stable community composition (35). Because our data set was sparsely represented by
seasons other than summer, higher summer variability may explain why we see a
different community each year and a lack of seasonal trends in community composi-
tion. However, we cannot disprove the influence of seasonality on bacterial community
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dynamics in temperate freshwater lakes as a general feature. Our results may indeed
point to a feature that is unique to darkly stained acidic bog lakes. Even in marine
systems, trends in seasonality differ by site and OTU definition, and continued long-
term time series sampling is suggested as an approach needed to elucidate these
trends and link seasonality in bacterial community composition to biogeochemical
cycling (39).

One of the biggest benefits of 16S rRNA gene amplicon sequencing over ARISA is
the ability to assign taxonomic classifications to sequences. Tracking bacterial taxa
through multiple sites and over multiple years allowed us to detect consistent lifestyle
trends, despite a lack of predictability in seasonal trends. Some groups, such as acI
(Actinobacteria) and betII (Betaproteobacteria), were persistent, abundant, and not
variable, much like Pelagibacter ubique (SAR11) in marine systems. Other freshwater
taxa such as gamI and gamIII (both gammaproteobacteria) exhibited a pattern of low
persistence, low abundance, and high variability. Unlike in the oceans, where members
of taxa such as Alteromonas exhibit “bloom and bust” (40), no members of taxa
classified within the freshwater taxonomy with high abundance and low persistence or
high variability were observed. This suggested either that bog lakes are not conducive
to the large blooms of a single population as observed in other freshwater lakes or that
taxa with this lifestyle dropped below our detection limit when not blooming.

In addition to a core of persistent taxa found in nearly every sample collected, we
also identified taxa endemic to either the epilimnion or hypolimnion and to specific
mixing regimes. These endemic taxa likely reflect the physical and/or biogeochemical
differences driven by mixing regime. Dimictic and meromictic hypolimnia, which are
consistently anoxic, harbor putative sulfur cycling groups not present in polymictic
hypolimnia, which are more frequently oxygenated. Members of the acI lineage parti-
tion by mixing regime in epilimnia, and the functional traits driving this filtering effect
are the subject of active study (20). Interestingly, the meromictic Mary Lake hypolim-
nion contains several taxa classified into the candidate phylum radiation (41) and a
larger proportion of completely unclassified reads than other hypolimnia. This is
consistent with the findings of other 16S rRNA gene amplicon sequencing and met-
agenomics studies of meromictic lakes (42, 43) and suggests that the highly reduced
and consistently anoxic conditions in meromictic hypolimnia represent excellent study
systems for research on members of the candidate phylum radiation and “microbial
dark matter.”

Perhaps the biggest implication of this study is the importance of repeated sam-
pling of microbial ecosystems. A similar data set spanning only a single year would not
have captured the full extent of variability observed and therefore would not have
detected as many of the taxa belonging to the bog lake community; even our 4 years
of weekly sampling during the summer stratified period did not result in level rarefac-
tion curves (see Fig. S7 in the supplemental material). While we found no evidence for
seasonal trends or repeated annual trends, it is possible that there are cycles or
variables acting on scales longer than the 5 years covered in this data set or that
interannual differences are driven by environmental factors that do not occur every
year. Unmeasured biotic interactions between bacterial taxa may also contribute to the
observed variability. Understanding the factors that contribute to variability in lake
communities will lead to improved predictive modeling in freshwater systems, allowing
forecasting of bloom events and guiding better management strategies. Additionally,
these systems may be ideal for addressing some of the core questions in microbial
ecology, such as how community assembly occurs, how interactions between taxa
shape community composition, and how resource partitioning drives the lifestyles of
bacterial taxa.

To address these issues and more, we continue to collect and sequence samples for
the North Temperate Lakes Microbial Observatory, and we are expanding our sequenc-
ing repertoire beyond 16S rRNA gene amplicon sequencing. All data we have currently
generated can be found in the R package “OTUtable,” which is available on CRAN for
installation via the R command line or on our GitHub page. This data set has already
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been used in a meta-analysis of microbial time series (1). We hope that this data set and
its future expansion will be used as a resource for researchers investigating their own
questions about how bacterial communities behave on long time scales.

MATERIALS AND METHODS
Sample collection. Water was collected from eight bog lakes during the summers of 2005, 2007,

2008, and 2009, as previously described (25). Briefly, the epilimnion and hypolimnion layers were
collected separately using an integrated water column sampler. Dissolved-oxygen levels and tempera-
ture were measured at the time of collection using a handheld model 550A meter (YSI, Inc., Yellow
Springs, OH). After transport to the laboratory, two biological replicates were taken by filtering approx-
imately 150 ml from each well-mixed sample through 0.22-�l-pore-size polyethersulfone filters (Supor
200; Pall, Port Washington, NY). Filters were stored at �80°C until DNA extraction was performed using
a FastDNA Spin Kit for Soil (MP Biomedicals, Santa Ana, CA), with minor modifications (44). The sampling
sites are located near Boulder Junction, WI, and were chosen to include lakes that represent the three
mixing regimes corresponding to polymictic (multiple mixing events per year), dimictic (two mixing
events per year, usually in spring and fall), and meromictic (no recorded mixing events) conditions
(Table 1). Trout Bog and Crystal Bog are also primary study sites for the North Temperate Lakes Long
Term Ecological Research Program (NTL-LTER), which measures a suite of chemical limnology parameters
fortnightly during the open-water season. The NTL-LTER also maintains autonomous sensing buoys on
Trout Bog and Crystal Bog, allowing more-refined mixing event detection based on thermistor chain
measurements.

Sequencing. A total of 1,510 DNA samples, including 547 biological replicates, were sequenced by
the Earth Microbiome Project according to their standard protocols in 2010, using the original V4 primers
(FWD, GTGCCAGCMGCCGCGGTAA; REV, GGACTACHVGGGTWTCTAAT) (45). Briefly, the V4 region was
amplified and sequenced using Illumina HiSeq, resulting in a total of 77,517,398 sequences with an
average length of 150 bp. To reduce the number of erroneous sequences, QIIME’s “deblurring” algorithm
for reducing sequence error in Illumina data was applied (46). Based on the sequencing error profile, this
algorithm removes reads that are likely to be sequencing errors if those reads are both low in abundance

TABLE 1 Locations and characteristics of study sitesa

Characteristic

Result(s)

Forestry
Bog

Crystal
Bog

North
Sparkling
Bog

West
Sparkling
Bog

Trout
Bog

South
Sparkling
Bog

Hell’s
Kitchen

Mary
Lake

ID FB CB NS WS TB SS HK MA
Depth (m) 2 2.5 4.5 4.6 7 8 19.3 21.5
Surface area (m2) 1,300 5,600 4,700 11,900 10,100 4,400 30,000 12,000
Approx vol (m3) 867 4,667 7,050 18,247 23,567 11,733 193,000 86,000
Mixing regime Polymictic Polymictic Dimictic Polymictic Dimictic Dimictic Meromictic Meromictic
GPS coordinates 46.04777,

�89.651248
46.007639,

�89.606341
46.004819,

�89.705214
46.004633,

�89.709082
46.041140,

�89.686352
46.041140,

�89.709082
46.186674,

�89.702510
46.250764,

�89.900419
Yr(s) sampled 2007 2007, 2009 2007, 2008,

2009
2007 2005, 2007,

2008, 2009
2007, 2008,

2009
2007 2005, 2007,

2008, 2009
pH 4.97, 4.85 4.49, 4.41 4.69, 4.80 5.22, 5.14 4.60, 4.78 4.46, 4.94 5.81, 5.72
Dissolved inorganic

carbon (ppm)
0.94, 1.46 0.69, 1.72 1.12, 2.31 0.76, 1.56 1.73, 4.47 1.97, 6.42 2.91, 9.70 5.54, 12.38

SD 0.28, 1.17 0.15, 0.50 0.23, 0.72 0.17, 0.36 0.66, 54 0.24, 1.56 0.35, 1.03 5.66, 7.69
Dissolved organic

carbon (ppm)
10.22, 8.96 15.47, 13.6 10.05, 10.40 7.26, 7.27 19.87, 20.58 12.40, 21.92 7.26, 7.33 20.63, 67.10

SD 0.59, 0.10 4.12, 0.82 1.16, 0.96 0.43, 0.73 2.76, 1.17 0.38, 4.76 1.03, 0.12 1.91, 72.67
Total nitrogen

(ppb)
620.57, 846.00 629.09, 809.45 737.71,

1,121.00
813.88, 1,498 1,332.57,

3,652.38
Total phosphorus

(ppb)
30.00, 38.86 78.00, 135.45 50.57, 53.25 48.63, 69.14 78.00, 303.50

Total dissolved
nitrogen (ppb)

1,290.19,
490.13

442.39, 586.56 582.5, 820.21 451.63,
1,179.21

1,024.5,
3,220.14

Total dissolved
phosphorus
(ppb)

84.25, 14.88 70.22, 22.67 34.5, 31.57 16.25, 18.29 71.13, 228

aThe lakes included in this time series are small, humic bog lakes in the boreal region near Minocqua, WI. They range in depth from 2 to 21.5 m and encompass a
range of water column mixing frequencies (termed regimes). Dimictic lakes mix twice per year, typically in fall and spring, while polymictic lakes can mix more than
twice throughout the spring, summer, and fall. Meromictic lakes have no recorded mixing events. pH was measured in 2007, while nutrient data were determined in
2008 (with the exceptions of FB, WS, and HK, measured in 2007); the two measurements were taken concurrently with the bacterial biomass collection from the
same water sample. Where two values are present in a single cell, the first represents the epilimnion value and the second represents the hypolimnion value. GPS,
Global Positioning System.
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and highly similar to a high-abundance read. Reads occurring fewer than 25 times in the entire data set
were removed after deblurring, leaving 9,856 unique sequences. These sequences are considered to
represent operational taxonomic units (OTUs).

A total of 570 sequences with long homopolymer runs, ambiguous base calls, or incorrect sequence
lengths were found and removed via mothur v1.34.3 (47). Thirty-three chimeras and 340 chloroplast
sequences (based on preclustering and classification performed with the Greengenes 16S rRNA gene
database, May 2013) (48) were removed. Samples were rarefied to 2,500 reads; samples with fewer than
2,500 reads were omitted, resulting in 1,387 remaining samples. The rarefaction cutoff used was
determined based on the results of simulation; a value of 2,500 reads was chosen to maximize the
number of samples retained while maintaining sufficient quality for downstream analysis of diversity
metrics.

Representative sequences for each OTU were classified in either our curated freshwater database (19)
or the Greengenes database based on the output of NCBI-BLAST (blast� 2.2.3.1) (49). Representative
sequences were randomly chosen from each OTU. The program blastn was used to compare represen-
tative sequences to full-length sequences in the freshwater database. OTUs matching the freshwater
database with a percentage of identity of greater than 98% were classified in that database, and the
remaining sequences were classified in the Greengenes database. Both classification steps were per-
formed in mothur using the Wang method (50), and classifications with less than 70% confidence were
not included. A detailed workflow for quality control and classification of our sequences is available at
https://github.com/McMahonLab/16STaxAss (unpublished data).

Statistics. Statistical analysis was performed in R v3.3.2 (51). Significant differences in richness
between lakes were tested using a pairwise Wilcoxon signed-rank test with a Bonferroni adjustment in
the R package “exactRankTests” (52). Similarities between samples were determined using weighted
UniFrac distance, implemented in “phyloseq” (53, 54). Weighted UniFrac distance was chosen because it
explained the greatest amount of variation in the first two axes of a principal-coordinate analysis,
performed in “vegan” (55). Other metrics tested included unweighted UniFrac distance, Bray-Curtis
dissimilarity, and Jaccard similarity; the outputs of all metrics were correlated. Significant clustering by
year in PCoA and in dispersion between lakes was tested using PERMANOVA with the function Adonis()
in “vegan.” Trimming of rare taxa did not impact the clustering observed in ordinations, such as those
present in Fig. 2, even when taxa observed fewer than 1,000 times were removed.

Indicator species analysis was performed using “indicspecies” (56). Only taxa with abundances of at
least 500 reads in the entire data set were used for this analysis. The group-normalized coefficient of
correlation was chosen for this analysis because it measures both positive and negative habitat
preferences and accounts for differences in the numbers of samples from the sites. All taxonomic levels
were included in this analysis to determine which level of resolution was the best indicator for each
taxonomic group.

Plots were generated using “ggplot2” (57) and “cowplot” (58). “reshape2” (59) was used for data
formatting.

Data availability. Data and code from this study can be downloaded from the R package “OTUtable”
available through the Comprehensive R Archive Network (cran.r-project.org), which can be accessed via
the R command line using install.packages(“OTUtable”), and from the McMahon Lab GitHub repository
“North_Temperate_Lakes-Microbial_Observatory” (github.com/McMahonLab/North_Temperate_Lakes-
Microbial_Observatory). Raw sequence data are available through QIITA (http://qiita.microbio.me) and
the European Bioinformatics Institute at accession number ERP016854.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSphere.00169-17.
FIG S1, EPS file, 2.3 MB.
FIG S2, EPS file, 1.5 MB.
FIG S3, EPS file, 2.6 MB.
FIG S4, PDF file, 1.4 MB.
FIG S5, PDF file, 0.2 MB.
FIG S6, EPS file, 1.6 MB.
FIG S7, EPS file, 1.6 MB.
TABLE S1, DOCX file, 0.01 MB.
TABLE S2, DOCX file, 0.01 MB.
DATA SET S1, XLSX file, 0.03 MB.

ACKNOWLEDGMENTS
We thank the North Temperate Lakes Microbial Observatory 2005, 2007, 2008, and

2009 field crews, UW-Trout Lake Station, the UW Center for Limnology, and the Global
Lakes Ecological Observatory Network for field and logistical support. Special thanks to
Sara Paver and Sara Yeo for coordinating field crews in 2009. We thank Greg Caporaso
for contributions during early stages of data analysis and Amnon Amir for early access

Linz et al.

May/June 2017 Volume 2 Issue 3 e00169-17 msphere.asm.org 12

https://github.com/McMahonLab/16STaxAss
http://cran.r-project.org
https://github.com/McMahonLab/North_Temperate_Lakes-Microbial_Observatory
https://github.com/McMahonLab/North_Temperate_Lakes-Microbial_Observatory
http://qiita.microbio.me
http://www.ebi.ac.uk/ena/data/view/PRJEB15148
https://doi.org/10.1128/mSphere.00169-17
https://doi.org/10.1128/mSphere.00169-17
msphere.asm.org


to the deblurring algorithm. We thank McMahon laboratory members Robin Rohwer
and Joshua Hamilton for early access to a workflow used to assign taxonomies to OTUs
using a custom 16S rRNA gene amplicon training set. We acknowledge efforts by many
McMahon laboratory undergraduate students and technicians whose work has been
related to sample collection and DNA extraction, particularly Georgia Wolfe. Finally, we
personally thank the individual program directors and leadership at the National
Science Foundation for their commitment to continued support of long-term ecological
research.

This study was made possible through generous support by the Earth Microbiome
Project, which is funded in part through awards by the W. M. Keck and Templeton
Foundations. A.M.L. is supported by the National Science Foundation Graduate
Research Fellowship Program under grant no. DGE-1256259. K.D.M. acknowledges
funding from the United States National Science Foundation Microbial Observatories
program (MCB-0702395), the Long Term Ecological Research Program (NTL-LTER DEB-
1440297), and an INSPIRE award (DEB-1344254). This work was supported in part by the
U.S. Department of Energy under contract DE-AC02-06CH11357.

REFERENCES
1. Shade A, Caporaso JG, Handelsman J, Knight R, Fierer N. 2013. A meta-

analysis of changes in bacterial and archaeal communities with time.
ISME J 7:1493–1506. https://doi.org/10.1038/ismej.2013.54.

2. Faust K, Lahti L, Gonze D, de Vos WM, Raes J. 2015. Metagenomics meets
time series analysis: unraveling microbial community dynamics. Curr
Opin Microbiol 25:56 – 66. https://doi.org/10.1016/j.mib.2015.04.004.

3. Jones SE, Cadkin TA, Newton RJ, McMahon KD. 2012. Spatial and tem-
poral scales of aquatic bacterial beta diversity. Front Microbiol 3:318.
https://doi.org/10.3389/fmicb.2012.00318.

4. Mitsch WJ, Bernal B, Nahlik AM, Mander Ü, Zhang L, Anderson CJ,
Jørgensen SE, Brix H. 2013. Wetlands, carbon, and climate change.
Landscape Ecol 28:583–597. https://doi.org/10.1007/s10980-012-9758-8.

5. McMahon KW, McCarthy MD, Sherwood OA, Larsen T, Guilderson TP.
2015. Millennial-scale plankton regime shifts in the subtropical North
Pacific Ocean. Science 350:1530 –1533. https://doi.org/10.1126/science
.aaa9942.

6. Hewson I, Steele JA, Capone DG, Fuhrman JA. 2006. Remarkable heter-
ogeneity in meso- and bathypelagic bacterioplankton assemblage com-
position. Limnol Oceanogr 51:1274 –1283. https://doi.org/10.4319/lo
.2006.51.3.1274.

7. Gifford SM, Sharma S, Moran MA. 2014. Linking activity and function to
ecosystem dynamics in a coastal bacterioplankton community. Front
Microbiol 5:1–12. https://doi.org/10.3389/fmicb.2014.00185.

8. Bendall ML, Stevens SLR, Chan LK, Malfatti S, Schwientek P, Tremblay J,
Schackwitz W, Martin J, Pati A, Bushnell B, Froula J, Kang D, Tringe SG,
Bertilsson S, Moran MA, Shade A, Newton RJ, McMahon KD, Malmstrom
RR. 2016. Genome-wide selective sweeps and gene-specific sweeps in
natural bacterial populations. ISME J 10:1589 –1601. https://doi.org/10
.1038/ismej.2015.241.

9. Taipale S, Jones R, Tiirola M. 2009. Vertical diversity of bacteria in an
oxygen-stratified humic lake, evaluated using DNA and phospholipid
analyses. Aquat Microb Ecol 55:1–16. https://doi.org/10.3354/ame01277.

10. Garcia SL, Salka I, Grossart HP, Warnecke F. 2013. Depth-discrete profiles
of bacterial communities reveal pronounced spatio-temporal dynamics
related to lake stratification. Environ Microbiol Rep 5:549 –555. https://
doi.org/10.1111/1758-2229.12044.

11. Shade A, Read JS, Youngblut ND, Fierer N, Knight R, Kratz TK, Lottig NR,
Roden EE, Stanley EH, Stombaugh J, Whitaker RJ, Wu CH, McMahon KD.
2012. Lake microbial communities are resilient after a whole-ecosystem
disturbance. ISME J 6:2153–2167. https://doi.org/10.1038/ismej.2012.56.

12. Hahn MW, Scheuerl T, Jezberová J, Koll U, Jezbera J, Šimek K, Vannini C,
Petroni G, Wu QL. 2012. The passive yet successful way of planktonic life:
genomic and experimental analysis of the ecology of a free-living Poly-
nucleobacter population. PLoS One 7:e32772. https://doi.org/10.1371/
journal.pone.0032772.

13. Garcia SL, McMahon KD, Grossart HP, Warnecke F. 2013. Successful
enrichment of the ubiquitous freshwater acI Actinobacteria. Environ
Microbiol Rep 6:21–27. https://doi.org/10.1111/1758-2229.12104.

14. Peura S, Eiler A, Bertilsson S, Nykänen H, Tiirola M, Jones RI. 2012. Distinct

and diverse anaerobic bacterial communities in boreal lakes dominated
by candidate division OD1. ISME J 6:1640 –1652. https://doi.org/10.1038/
ismej.2012.21.

15. Eiler A, Heinrich F, Bertilsson S. 2012. Coherent dynamics and association
networks among lake bacterioplankton taxa. ISME J 6:330 –342. https://
doi.org/10.1038/ismej.2011.113.

16. Graham JM, Kent AD, Lauster GH, Yannarell AC, Graham LE, Triplett EW.
2004. Seasonal dynamics of phytoplankton and planktonic protozoan
communities in a northern temperate humic lake: diversity in a dinofla-
gellate dominated system. Microb Ecol 48:528 –540. https://doi.org/10
.1007/s00248-004-0223-3.

17. Mariadassou M, Pichon S, Ebert D. 2015. Microbial ecosystems are
dominated by specialist taxa. Ecol Lett 18:974 –982. https://doi.org/10
.1111/ele.12478.

18. Newton RJ, Shade A. 2016. Lifestyles of rarity: understanding hetero-
trophic strategies to inform the ecology of the microbial rare biosphere.
Aquat Microb Ecol 78:51– 63. https://doi.org/10.3354/ame01801.

19. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. 2011. A guide to
the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev
75:14 – 49. https://doi.org/10.1128/MMBR.00028-10.

20. Garcia SL, Buck M, McMahon KD, Grossart HP, Eiler A, Warnecke F. 2015.
Auxotrophy and intra-population complementary in the ‘interactome’ of
a cultivated freshwater model community. Mol Ecol 24:4449 – 4459.
https://doi.org/10.1111/mec.13319.

21. Ghylin TW, Garcia SL, Moya F, Oyserman BO, Schwientek P, Forest KT,
Mutschler J, Dwulit-Smith J, Chan LK, Martinez-Garcia M, Sczyrba A,
Stepanauskas R, Grossart HP, Woyke T, Warnecke F, Malmstrom R,
Bertilsson S, McMahon KD. 2014. Comparative single-cell genomics re-
veals potential ecological niches for the freshwater acI Actinobacteria
lineage. ISME J 8:2503–2516. https://doi.org/10.1038/ismej.2014.135.

22. Herren CM, Webert KC, McMahon KD. 2016. Environmental disturbances
decrease the variability of microbial populations within periphyton.
mSystems 1:e00013-16. https://doi.org/10.1128/mSystems.00013-16.

23. Shade AL, Gilbert JA. 2015. Temporal patterns of rarity provide a more
complete view of microbial diversity. Trends Microbiol 23:335–340.
https://doi.org/10.1016/j.tim.2015.01.007.

24. Fisher MM, Triplett EW. 1999. Automated approach for ribosomal inter-
genic spacer analysis of microbial diversity and its application to fresh-
water bacterial communities. Appl Environ Microbiol 65:4630 – 4636.

25. Shade A, Jones SE, McMahon KD. 2008. The influence of habitat heter-
ogeneity on freshwater bacterial community composition and dynamics.
Environ Microbiol 10:1057–1067. https://doi.org/10.1111/j.1462-2920
.2007.01527.x.

26. Shade A, Read JS, Welkie DG, Kratz TK, Wu CH, McMahon KD. 2011.
Resistance, resilience and recovery: aquatic bacterial dynamics after
water column disturbance. Environ Microbiol 13:2752–2767. https://doi
.org/10.1111/j.1462-2920.2011.02546.x.

27. Prosser JI, Bohannan BJM, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP,
Green JL, Green LE, Killham K, Lennon JJ, Osborn AM, Solan M, Van Der

Bacterial Communities Spanning 5 Years in Bog Lakes

May/June 2017 Volume 2 Issue 3 e00169-17 msphere.asm.org 13

https://doi.org/10.1038/ismej.2013.54
https://doi.org/10.1016/j.mib.2015.04.004
https://doi.org/10.3389/fmicb.2012.00318
https://doi.org/10.1007/s10980-012-9758-8
https://doi.org/10.1126/science.aaa9942
https://doi.org/10.1126/science.aaa9942
https://doi.org/10.4319/lo.2006.51.3.1274
https://doi.org/10.4319/lo.2006.51.3.1274
https://doi.org/10.3389/fmicb.2014.00185
https://doi.org/10.1038/ismej.2015.241
https://doi.org/10.1038/ismej.2015.241
https://doi.org/10.3354/ame01277
https://doi.org/10.1111/1758-2229.12044
https://doi.org/10.1111/1758-2229.12044
https://doi.org/10.1038/ismej.2012.56
https://doi.org/10.1371/journal.pone.0032772
https://doi.org/10.1371/journal.pone.0032772
https://doi.org/10.1111/1758-2229.12104
https://doi.org/10.1038/ismej.2012.21
https://doi.org/10.1038/ismej.2012.21
https://doi.org/10.1038/ismej.2011.113
https://doi.org/10.1038/ismej.2011.113
https://doi.org/10.1007/s00248-004-0223-3
https://doi.org/10.1007/s00248-004-0223-3
https://doi.org/10.1111/ele.12478
https://doi.org/10.1111/ele.12478
https://doi.org/10.3354/ame01801
https://doi.org/10.1128/MMBR.00028-10
https://doi.org/10.1111/mec.13319
https://doi.org/10.1038/ismej.2014.135
https://doi.org/10.1128/mSystems.00013-16
https://doi.org/10.1016/j.tim.2015.01.007
https://doi.org/10.1111/j.1462-2920.2007.01527.x
https://doi.org/10.1111/j.1462-2920.2007.01527.x
https://doi.org/10.1111/j.1462-2920.2011.02546.x
https://doi.org/10.1111/j.1462-2920.2011.02546.x
msphere.asm.org


Gast CJ, Young JPW. 2007. The role of ecological theory in microbial
ecology. Nat Rev Microbiol 5:384 –392. https://doi.org/10.1038/
nrmicro1643.

28. Martiny JB, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL,
Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S,
Ovreås L, Reysenbach AL, Smith VH, Staley JT. 2006. Microbial
biogeography: putting microorganisms on the map. Nat Rev Microbiol
4:102–112. https://doi.org/10.1038/nrmicro1341.

29. Crump BC, Hobbie JE. 2005. Synchrony and seasonality in bacterioplank-
ton communities of two temperate rivers. Limnol Oceanogr 50:
1718 –1729. https://doi.org/10.4319/lo.2005.50.6.1718.

30. Gilbert JA, Steele JA, Caporaso JG, Steinbrück L, Reeder J, Temperton B,
Huse S, McHardy AC, Knight R, Joint I, Somerfield P, Fuhrman JA, Field D.
2012. Defining seasonal marine microbial community dynamics. ISME J
6:298 –308. https://doi.org/10.1038/ismej.2011.107.

31. Fuhrman JA, Hewson I, Schwalbach MS, Steele JA, Brown MV, Naeem S.
2006. Annually reoccurring bacterial communities are predictable from
ocean conditions. Proc Natl Acad Sci U S A 103:13104 –13109. https://
doi.org/10.1073/pnas.0602399103.

32. Cram JA, Chow CE, Sachdeva R, Needham DM, Parada AE, Steele JA,
Fuhrman JA. 2015. Seasonal and interannual variability of the marine
bacterioplankton community throughout the water column over ten
years. ISME J 9:563–580. https://doi.org/10.1038/ismej.2014.153.

33. Nelson CE. 2009. Phenology of high-elevation pelagic bacteria: the roles
of meteorologic variability, catchment inputs and thermal stratification
in structuring communities. ISME J 3:13–30. https://doi.org/10.1038/
ismej.2008.81.

34. Kara EL, Hanson PC, Hu YH, Winslow L, McMahon KD. 2013. A decade of
seasonal dynamics and co-occurrences within freshwater bacterioplank-
ton communities from eutrophic Lake Mendota, WI, USA. ISME J
7:680 – 684. https://doi.org/10.1038/ismej.2012.118.

35. Yannarell AC, Kent AD, Lauster GH, Kratz TK, Triplett EW. 2003. Temporal
patterns in bacterial communities in three temperate lakes of different
trophic status. Microb Ecol 46:391– 405. https://doi.org/10.1007/s00248
-003-1008-9.

36. Kent AD, Yannarell AC, Rusak JA, Triplett EW, McMahon KD. 2007.
Synchrony in aquatic microbial community dynamics. ISME J 1:38 – 47.
https://doi.org/10.1038/ismej.2007.6.

37. Kent AD, Jones SE, Lauster GH, Graham JM, Newton RJ, McMahon KD.
2006. Experimental manipulations of microbial food web interactions in
a humic lake: shifting biological drivers of bacterial community struc-
ture. Environ Microbiol 8:1448 –1459. https://doi.org/10.1111/j.1462
-2920.2006.01039.x.

38. Rusak JA, Jones SE, Kent AD, Shade A, McMahon TD. 2009. Spatial
synchrony in microbial community dynamics: testing among-year and
lake patterns. Verh Int Verein Limnol 30:936 –940. http://www3.nd.edu/
~sjones20/ewExternalFiles/Rusaketal2009_SIL.pdf.

39. Giovannoni SJ, Vergin KL. 2012. Seasonality in ocean microbial commu-
nities. Science 335:671– 676. https://doi.org/10.1126/science.1198078.

40. Ivars-Martinez E, Martin-Cuadrado AB, D’Auria G, Mira A, Ferriera S,
Johnson J, Friedman R, Rodriguez-Valera F. 2008. Comparative genomics
of two ecotypes of the marine planktonic copiotroph Alteromonas
macleodii suggests alternative lifestyles associated with different kinds
of particulate organic matter. ISME J 2:1194 –1212. https://doi.org/10
.1038/ismej.2008.74.

41. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ,
Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y, Dudek N, Relman
DA, Finstad KM, Amundson R, Thomas BC, Banfield JF. 2016. A new view
of the tree of life. Nat Microbiol 1:16048. https://doi.org/10.1038/
nmicrobiol.2016.48.

42. Gies EA, Konwar KM, Beatty JT, Hallam SJ. 2014. Illuminating microbial
dark matter in meromictic Sakinaw Lake. Appl Environ Microbiol 80:
6807– 6818. https://doi.org/10.1128/AEM.01774-14.

43. Borrel G, Lehours AC, Bardot C, Bailly X, Fonty G. 2010. Members of
candidate divisions OP11, OD1 and SR1 are widespread along the water
column of the meromictic Lake Pavin (France). Arch Microbiol 192:
559 –567. https://doi.org/10.1007/s00203-010-0578-4.

44. Shade A, Kent AD, Jones SE, Newton RJ, Triplett EW, McMahon KD. 2007.
Interannual dynamics and phenology of bacterial communities in a
eutrophic lake. Limnol Oceanogr 52:487– 494. https://doi.org/10.4319/lo
.2007.52.2.0487.

45. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N,
Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G,
Knight R. 2012. Ultra-high-throughput microbial community analysis on
the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://
doi.org/10.1038/ismej.2012.8.

46. Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu
Z, Kightley EP, Thompson LR, Hyde ER, Gonzalez A, Knight R. 2017.
Deblur rapidly resolves single-nucleotide community sequence patterns.
mSystems 2:e00191-16. https://doi.org/10.1128/mSystems.00191-16.

47. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB,
Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B,
Thallinger GG, Van Horn DJ, Weber CF. 2009. Introducing Mothur: open-
source, platform-independent, community-supported software for de-
scribing and comparing microbial communities. Appl Environ Microbiol
75:7537–7541. https://doi.org/10.1128/AEM.01541-09.

48. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber
T, Dalevi D, Hu P, Andersen GL. 2006. Greengenes, a chimera-checked
16S rRNA gene database and workbench compatible with ARB. Appl
Environ Microbiol 72:5069 –5072. https://doi.org/10.1128/AEM.03006-05.

49. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K,
Madden TL. 2009. BLAST�: architecture and applications. BMC Bioinfor-
matics 10:421. https://doi.org/10.1186/1471-2105-10-421.

50. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier
for rapid assignment of rRNA sequences into the new bacterial taxon-
omy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM
.00062-07.

51. R Development Core Team. 2008. R: a language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna,
Austria. http://www.R-project.org.

52. Hothorn T, Hornik K. 2015. exactRankTests: exact distributions for rank and
permutation tests. https://CRAN.R-project.org/package�exactRankTests.

53. Lozupone C, Knight R. 2005. UniFrac: a new phylogenetic method for
comparing microbial communities. Appl Environ Microbiol 71:
8228 – 8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005.

54. McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible
interactive analysis and graphics of microbiome census data. PLoS One
8:e61217. https://doi.org/10.1371/journal.pone.0061217.

55. Oksanen J. 2016. vegan: Community Ecology Package. https://CRAN.R
-project.org/package�vegan.

56. De Cáceres M, Legendre P. 2009. Associations between species and
groups of sites: indices and statistical inference. Ecology 90:3566 –3574.
https://doi.org/10.1890/08-1823.1.

57. Wickham H. 2009. ggplot2: elegant graphics for data analysis. Springer-
Verlag, New York, NY.

58. Wilke C. 2016. cowplot: streamlined plot themes and plot annotations
for ’ggplot2’. https://CRAN.R-project.org/package�cowplot.

59. Wickham H. 2007. Reshaping data with the reshape package. J Stat
Softw 21(12):1–20. http://www.jstatsoft.org/v21/i12/.

Linz et al.

May/June 2017 Volume 2 Issue 3 e00169-17 msphere.asm.org 14

https://doi.org/10.1038/nrmicro1643
https://doi.org/10.1038/nrmicro1643
https://doi.org/10.1038/nrmicro1341
https://doi.org/10.4319/lo.2005.50.6.1718
https://doi.org/10.1038/ismej.2011.107
https://doi.org/10.1073/pnas.0602399103
https://doi.org/10.1073/pnas.0602399103
https://doi.org/10.1038/ismej.2014.153
https://doi.org/10.1038/ismej.2008.81
https://doi.org/10.1038/ismej.2008.81
https://doi.org/10.1038/ismej.2012.118
https://doi.org/10.1007/s00248-003-1008-9
https://doi.org/10.1007/s00248-003-1008-9
https://doi.org/10.1038/ismej.2007.6
https://doi.org/10.1111/j.1462-2920.2006.01039.x
https://doi.org/10.1111/j.1462-2920.2006.01039.x
http://www3.nd.edu/%7Esjones20/ewExternalFiles/Rusaketal2009_SIL.pdf
http://www3.nd.edu/%7Esjones20/ewExternalFiles/Rusaketal2009_SIL.pdf
https://doi.org/10.1126/science.1198078
https://doi.org/10.1038/ismej.2008.74
https://doi.org/10.1038/ismej.2008.74
https://doi.org/10.1038/nmicrobiol.2016.48
https://doi.org/10.1038/nmicrobiol.2016.48
https://doi.org/10.1128/AEM.01774-14
https://doi.org/10.1007/s00203-010-0578-4
https://doi.org/10.4319/lo.2007.52.2.0487
https://doi.org/10.4319/lo.2007.52.2.0487
https://doi.org/10.1038/ismej.2012.8
https://doi.org/10.1038/ismej.2012.8
https://doi.org/10.1128/mSystems.00191-16
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1128/AEM.00062-07
http://www.R-project.org
https://CRAN.R-project.org/package=exactRankTests
https://doi.org/10.1128/AEM.71.12.8228-8235.2005
https://doi.org/10.1371/journal.pone.0061217
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan
https://doi.org/10.1890/08-1823.1
https://CRAN.R-project.org/package=cowplot
http://www.jstatsoft.org/v21/i12/
msphere.asm.org

	RESULTS
	Overview of community composition. 
	Community richness. 
	Clusters of community composition. 
	Variability and dispersion. 
	The core community of bog lakes. 
	Lifestyles of freshwater lineages. 

	DISCUSSION
	MATERIALS AND METHODS
	Sample collection. 
	Sequencing. 
	Statistics. 
	Data availability. 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

