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Purpose of review

The purpose of this review is to discuss the mechanisms of central and peripheral tolerance in relation to
T-cell mediated autoimmunity in rheumatoid arthritis (RA).

Recent findings

The well established association between major histocompatibility complex class II and RA has led us to
understand that T cells, and the adaptive immune response, are important in the pathogenesis of disease.
In order for autoimmune disease to develop, there is a breach of tolerance to self antigen and the
mechanisms of both central and peripheral tolerance aim to prevent this. Here, we review evidence from
mouse models indicating that alterations in T-cell receptor signalling thresholds during thymic selection may
be linked to the escape of T cells that mediate autoimmune arthritis. In addition, we summarize the role of
dendritic cells and Foxp3þ regulatory T cells in both peripheral and thymic tolerance, and highlight their
relevance to what we know about the aetiology of RA.

Summary

Mechanisms of central tolerance in the thymus and peripheral tolerance are in place to control autoreactive
T cells and to prevent the development of autoimmune disease. We anticipate that a better understanding of
these mechanisms will lead to the development of better, antigen-specific therapeutics to restore tolerance.
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INTRODUCTION

The immune system is heavily implicated in the
pathogenesis of rheumatoid arthritis (RA) and there
is a generally accepted view that some type of
‘breach of self-tolerance’ underlies this. However,
the exact mechanisms involved, whether these
relate to differences in central versus peripheral
tolerance, and how this relates to the aetiology of
the disease remain unclear. Here, we discuss how
defects in central and peripheral tolerance may be
involved, how they might be linked and how they
relate to what we know about RA. The ultimate goal
for treatment of autoimmune disease would be the
development of therapies that promote and restore
self-tolerance in patients. As a result, understanding
central and peripheral tolerogenic mechanisms that
have gone awry in RA will lead to the development
of improved therapeutics that target the restoration
of tolerance.
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CENTRAL TOLERANCE MECHANISMS IN
RHEUMATOID ARTHRITIS

The antigen receptors of T cells are randomly gener-
ated to provide the potential to recognize a wide
rs Kluwer Health, Inc. All rights rese
array of pathogens. As a consequence, self-reactive T
cells are generated. To avoid autoimmunity, regu-
latory mechanisms must be in place to remove and/
or control these cells. This ‘immunological toler-
ance’ is mediated at several levels and in several cell
types. Here, we will focus on tolerance in T cells in
the context of RA.

Thymic selection

The thymus supports the development of T cells
expressing the ab form of the T-cell receptor.
rved. www.co-rheumatology.com
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KEY POINTS

� In murine models of RA, alterations in ab TCR
signalling thresholds have been linked to the escape of
autoreactive T cells from central tolerance.

� Peripheral tolerance mechanisms sometimes fail to
control autoreactive T cells leading to development of
RA. Targeting peripheral tolerance mechanisms, as
opposed to central tolerance mechanisms, is a feasible
approach to restore tolerance therapeutically.

� Although both Foxp3þ Treg and dendritic cells enter
the thymus from peripheral tissues to influence
intrathymic tolerance mechanisms, whether alterations
in this process are linked to T-cell mediated
autoimmunity is not known.

� There has been a resurgence of interest in the treatment
of RA via restoration of antigen-specific tolerance, thus
a clearer understanding of the underlying mechanisms
is required.

Immunopathogenesis and treatment of autoimmune diseases
Following their entry at the corticomedullary junc-
tion [1], CD4�CD8� lymphoid precursors randomly
rearrange their T-cell receptor (TCR) genes to maxi-
mize variation within the developing T-cell reper-
toire. Following the induction of CD4 and CD8
expression [2], these processes generate a large
cohort of CD4þCD8þ thymocytes that express a
wide range of ab TCR specificities. Owing to the
random nature of TCR gene rearrangement, such
cells undergo selection processes to ensure the thy-
mus is biased toward the generation of self-tolerant
T cells capable of self-major histocompatibility com-
plex (MHC) recognition.

During positive selection, recognition of self-
peptides bound to MHC II or MHC I molecules on
cortical thymic epithelial cells ensures the gener-
ation of single positive CD4þ and CD8þ thymocytes,
respectively [3]. During this process, newly selected
thymocytes undergo Chemokine Receptor 7
(CCR7)-mediated migration to the thymic medulla
(Fig. 1), an important site for tolerance induction
[4]. Here, CD4þ and CD8þ thymocytes are screened
further for their reactivity to self-antigens, including
those expressed intrathymically as a result of the
Autoimmune regulator (AIRE)-mediated trans-
cription of tissue-restricted antigens in medullary
thymic epithelial cells [5,6]. In the medulla,
dendritic cells also play a key role in thymic toler-
ance through both cross-presentation of self-anti-
gens from medullary thymic epithelial cells as well
as migration of self-antigen bearing dendritic cells
from the periphery [7]. Importantly, the outcome of
TCR-MHC interactions within the medulla is highly
dependent upon how strongly the TCR recognizes
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self-antigen. High affinity TCR-mediated inter-
actions result in negative selection through apop-
tosis induction, whereas medium affinity
interactions induce expression of the transcription
factor Foxp3, and the emergence of the natural
T-regulatory (Treg) lineage [8]. Collectively, T-cell
development involves intrathymic selection events
based upon self-antigen interaction, to maximize
the spectrum of antigen recognition by newly
selected T cells and also minimize the risk of gen-
erating autoreactive T cells. As a consequence, fac-
tors with the potential to alter TCR signal strength
in response to self-antigen during intrathymic
development can lead to alterations in thymic tol-
erance and potentially skew the T-cell repertoire,
leading to autoimmune disease.
Rheumatoid arthritis and altered
T-cell selection

As noted above, RA is a common autoimmune dis-
ease with the cause being linked to a combination of
both genetic and environmental factors [9]. Various
murine models have improved our understanding of
the genetic aspects of the disease with a particular
focus on mutations that alter central and peripheral
T-cell tolerance. For instance, under circumstances
where mutations dampen the perception of TCR
affinity strength during selection, high affinity
autoreactive TCRs may escape negative selection.
These instead are allowed to enter into the peri-
pheral T-cell pool, where they have a greater pro-
pensity to react with self and elicit an autoimmune
phenotype [8]. There are a number of models and
clinical examples which illustrate this.
The murine SKG model of autoimmune
arthritis

Mice with a recessive point mutation in the gene
encoding the TCR signalling protein Zeta-chain-
associated protein kinase 70 (ZAP- 70), are known
as SKG mice and are frequently used as a model for
autoimmune arthritis. SKG mice have suppressed
TCR signal perception allowing selection of a more
autoreactive T-cell repertoire in the thymus that
peripherally contributes to the development of
autoimmune arthritis [10]. To illustrate this, auto-
logous mixed lymphocyte reactions were used to
examine the reactivity of peripheral SKG T cells.
These were shown to have high levels of prolifer-
ation and activation to autologous Antigen Present-
ing Cells (APCs) when compared with control
T cells, highlighting their autoreactive nature [11].
In addition, analysis of TCR Variable Beta subunit
usage showed preferential expression of certain
Volume 28 � Number 2 � March 2016
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FIGURE 1. Regulation of central and peripheral tolerance. The organization of the thymus into cortex and medulla ensures
that thymic selection events take place in a stepwise fashion. In the medulla, tolerance-inducing events coordinated by
medullary thymic epithelial cells and dendritic cells help to remove potentially autoreactive specificities from the newly
produced T-cell pool, and also result in the generation of Foxp3þ regulatory T cells. In peripheral tissues, several immune-
regulatory products of Dendritic cells and Treg have been linked to the control of effector T cells that mount responses to self-
antigens. Perhaps significantly, the thymus also acts as a site that supports T-cell and dendritic cell populations that enter from
peripheral tissues, and evidence suggests a role for thymus recirculation in the control of T-cell tolerance. DN: CD4-CD8-, DP:
CD4þCD8þ; SP CD4þ or CD8þ.
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subfamilies with more autoreactive tendencies in
SKG mice than controls [12]. When these TCRs were
isolated, transfected into bone marrow cells and
transferred into Rag2�/� hosts, autoimmune arthri-
tis was induced, reinforcing the idea that SKG mice
have a skewed T-cell repertoire toward specificities
that are more autoreactive [13

&&

]. Collectively, such
observations suggest that alterations in the percep-
tion of TCR signal strength may drive the develop-
ment of arthritis in SKG mice by altering intrathymic
selection of the developing T-cell repertoire. In
addition, intrathymically generated Treg from SKG
mice show a defective suppressive capacity when
transferred along with SKG conventional T cells into
nude hosts [12,14], again suggesting that altering
the strength of TCR signalling during intrathymic
T-cell selection events directly impacts upon the
T-cell repertoire that is selected, and increases
susceptibility to abnormality [15].
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As a consequence of altered thymic selection,
autoreactive peripheral T cells can respond to self-
antigens expressed by dendritic cells, triggering
their activation and differentiation into function-
ally distinct T-cell subsets. In SKG mice, as with
human RA, the main effector cells have been shown
to be Th17 cells driven by APC-derived IL-6, with
IL-6 deficient SKG mice being devoid of IL-17-
producing CD4 T cells [11]. Interestingly, Th17 cells
can be recruited to joints through CCR6 expression,
attracted by the high CCL20 levels found in arthritic
joints where they are thought to mediate innate cell
activation and joint destruction [16].
Rheumatoid arthritis and PTPN22 variants

Protein tyrosine phosphatase, non-receptor type 22
(PTPN22) encodes lymphocyte tyrosine phospha-
tase (Lyp) or the mouse ortholog Pep, and is a critical
rved. www.co-rheumatology.com 191
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negative regulator of TCR signal transduction
upstream of ZAP-70. A single nucleotide polymor-
phism in the protein tyrosine phosphatase N22
producing a PTPN22 variant (R620W) has been
shown to support the progression of autoimmune
disease such as type I diabetes and it was further
suggested to be the second strongest genetic risk
factor for RA, second to HLA variants in humans
[17,18]. Interestingly, this PTPN22 variant (R620W)
has been suggested to be a gain of function
mutation, linked to reduced TCR signalling during
intrathymic T-cell selection and high affinity self-
reactive T cells in the periphery [17,19]. However,
other studies have reported that the consequence of
PTPN22 polymorphisms may be a decrease in phos-
phatase activity and an increase in TCR signalling
[20].

Despite this discrepancy, a variant of Lyp
(Lyp620W) which is encoded by PTPN22 has been
associated with autoimmune disease in humans. Its
effect on disease development can be studied using
mice expressing the Lyp variant homolog Pep619W.
Analysis of these mice carrying OT-II TCR or male
H-Y antigen TCR transgenes showed increased
CD4þ T-cell positive selection, proliferation of the
memory/effector T-cell pool, but no alteration in
negative selection indicating a complex require-
ment for functional Lyp in ensuring appropriate
TCR signalling during T-cell selection [20]. In
addition, a lack of PTPN22 expression was investi-
gated in mice with regard to T-regulatory cells,
which have been shown to express higher levels
of PTPN22 than conventional T cells [21]. Interest-
ingly, when compared with WT mice, Ptpn22-/- mice
showed significant increases in Treg and their pre-
cursor populations [21], suggesting alterations in
TCR signalling are able to affect the balance between
conventional and Treg development, which might
further affect autoimmune status.
PERIPHERAL TOLERANCE MECHANISMS
IN RHEUMATOID ARTHRITIS

Although mutations within the thymus can alter
T-cell selection and skew the T-cell repertoire toward
an autoreactive nature, under normal circumstan-
ces, the selection processes that are in place to
prevent autoreactive T cells escaping from the thy-
mus are still not 100% effective. As a result, there are
always some autoreactive T cells that do escape,
undetected, into the periphery. For this reason,
the mechanisms of peripheral tolerance are vital
to prevent the development of autoimmune disease.
In this section, various mechanisms of peripheral
tolerance will be discussed. These include regulation
via Treg, and tolerogenic dendritic cells as well as
192 www.co-rheumatology.com
their relevance to RA, and how these mechanisms
may fail in RA patients, leading to a breakdown
of tolerance.

T-regulatory cells
Treg are known to be vital for the maintenance of
immunological tolerance (reviewed in [22,23]).
Along with natural CD4þCD25þFoxp3þ Treg
(nTreg), other regulatory populations include indu-
cible CD4þFoxp3þ Treg (iTreg), which develop in
the periphery after induction of Foxp3þ expression,
and CD4þFoxp3þ type 1 regulatory T cells (Tr1).
Foxp3þ has been shown to be vital for the develop-
ment and suppressive function of Treg [24] as in its
absence aggressive autoimmune disease develops as
self-tolerance is broken [25–29]. Treg manifest their
suppressive function through various mechanisms
including direct cell-to-cell contact, or indirectly
through the secretion of anti-inflammatory cyto-
kines (e.g. IL-10, IL-35, or TGF-b) as IL-10 or IL-35
deficient have an impaired suppressive capacity
[30,31]. The secretion of TGF-b can induce the
development of further Treg from CD4þCD25- naı̈ve
T cells [32,33]. Treg can also act by reducing the
functions of APCs by inhibiting CD80 and CD86
expression, via a CTLA-4 dependent mechanism
[34–36].

Murine studies, using collagen-induced arthritis
as a model of RA, have shown that the depletion of
Treg using anti-CD25 resulted in increased disease
severity [37], and reduced disease severity was
observed when Treg were introduced by adoptive
transfer [38]. Treg from RA patients have been
shown to be defective in their ability to suppress
proinflammatory cytokine production by CD4þ T
cells, although they can efficiently suppress their
proliferation; this defect in their suppressive abilities
may be because of a defect in CTLA-4 expression and
function [39–41]. B cells are known to have a key
pathogenic role in the aetiology of RA, as evidenced
by the efficacy of rituximab treatment in RA patients
[42,43]. In relation to this, Treg have been shown to
regulate the pathogenic function of B cells during
inflammation both in murine models and in RA
itself [44,45].

Tr1 cells mediate their suppressive function
through the secretion of IL-10 and TGF-b and are
known to suppress both immune and autoimmune
responses [46]. A population of antigen-specific
IL-10-producing Tr1 cells has been identified in
the blood of RA patients [47] indicating they may
have a role in maintenance of peripheral tolerance
in RA. The transfer of Tr1 cells in murine models of
RA was found to be beneficial, reducing the inci-
dence and severity of arthritis when administered
before and after induction of disease [48]. The Tr1
Volume 28 � Number 2 � March 2016
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cell population could, therefore, be a promising
target for the restoration of tolerance in auto-
immune diseases, including RA.
Role of dendritic cells in the regulation of
peripheral tolerance

Dendritic cells are vital for the induction of the
inflammatory immune response against, for
example, invading pathogens. In addition to this,
dendritic cells are also central to immune regulation
and inducing and maintaining tolerance (Fig. 1), as
demonstrated by the development of fatal spon-
taneous autoimmune disease following dendritic
cell depletion [49].

‘Tolerogenic’ dendritic cells are generated
through the incomplete maturation of dendritic
cells, as occurs during the steady state. These tol-
erogenic dendritic cells present antigen to T cells in
the absence of adequate costimulatory signals and
result in the maintenance of peripheral tolerance
through mechanisms including T-cell deletion,
unresponsiveness or anergy [50], and the induction
of regulatory T cells [51]. These effects are mainly
attributed to the production of anti-inflammatory
cytokines, for example, IL-10 and TGF-b, and the
expression of downregulatory/inhibitory markers,
for example, Programmed death-ligand 1 and 2
(PDL-1, PDL-2) (reviewed in [52,53]).

Restoring tolerance through the use of immuno-
modulatory tolerogenic dendritic cells in RA has
become an exciting line of therapeutic potential.
Studies in murine CIA have shown tolerogenic
dendritic cells to be highly effective. Introducing
in-vitro derived type-II collagen-pulsed tolerogenic
dendritic cells into arthritic CIA mice reduced the
severity of the disease, reduced the inflammatory
environment (lower levels of Th17 cells) and
increased the anti-inflammatory environment
through increased levels of IL-10 producing T cells
[54]. The generation of tolerogenic dendritic cells
from RA patients has been investigated [55] and
their safety and efficacy as a therapy are currently
being determined in clinical trials [56]. Cellular
therapies like tolerogenic dendritic cells or the
manipulation of dendritic cells in vivo to induce a
more tolerogenic population could be a potential
and feasible therapy for RA patients in the future.

In addition to tolerogenic dendritic cells being
able to regulate immune responses, different subsets
of dendritic cells may have different roles in auto-
immune disease. Using a novel breach of self-toler-
ance murine model of arthritis [57], we have shown
that plasmacytoid dendritic cells have an anti-
inflammatory role [58]. By contrast, conventional
dendritic cells have a more proinflammatory role.
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Their depletion resulted in reduced severity of dis-
ease as well as reduced anticollagen responses [59].
Interestingly, peripheral dendritic cell homing to
the thymus provides a source of peripheral antigens
for tolerance induction in the steady state [60,61].
Whether the onset of autoimmune reactions alters
this process, and so impacts on intrathymic toler-
ance mechanisms is not known.
Recirculation of peripheral T cells back to the
thymus

It has been known for some time now that peri-
pheral T cells, including both conventional and
Foxp3þ Treg, can home back to the thymus, which
challenges the view that movement out of the
thymus is unidirectional (Fig. 1). The first evidence
showed labelled lymph node cells transferred into
syngeneic hosts could be found within the thymus
in both adult and neonatal hosts [62]. In the mouse,
mature peripheral T cells that migrate into the thy-
mus resemble activated, or previously activated,
CD44hi T cells which appear to preferentially enter
over naı̈ve T cells [63–65] (reviewed in detail [66]).
The question remains as to what function these
recirculating peripheral lymphocytes have in the
thymus. There is emerging evidence that these cells
are able to alter central tolerance and induce the
deletion of thymic APC populations in an antigen-
specific manner [67]. In addition, very recently it
has been shown that peripheral Treg can also recir-
culate back to the thymus and once there they
suppress the development of new Treg through
the inhibition of IL-2 [68

&&

]. In the same study,
evidence of the reentry of mature T cells and Treg
into the human thymus was also found. In the
setting of autoimmune disease and RA, this could
be an interesting mechanism for silencing auto-
reactive T cells. Moreover, despite having sufficient
numbers of progenitor cells [69–71], RA patients
exhibit impaired thymic function as indicated by
fewer recent thymic emigrants. Whether this is
linked to changes in peripheral T-cell recirculation
back to the thymus caused by ageing and/or RA is
not clear.
CONCLUSION

The thymus represents a key site for the generation
of abT cells that play an essential role in immune
responses. However, the removal of autoreactive T
cells from the developing TCR repertoire via intra-
thymic selection mechanisms is incomplete, which
is a significant factor in relation to the onset of
T-cell mediated autoimmune diseases. To combat
this, peripheral tolerance mechanisms involving
rved. www.co-rheumatology.com 193
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modulation of dendritic cell function and Foxp3þ

Treg are in place. In RA, evidence suggests that a
breakdown in T-cell tolerance takes place. However,
whether this maps to altered T-cell responses in
either the thymus or within peripheral tissues is
not clear. Perhaps significantly, both sites are linked
not only by the conventional T cells, Foxp3þ Treg
and dendritic cell subsets they contain, but also by
trafficking of these cell types between each site. How
such processes impact on the maintenance of toler-
ance, and its breakdown, is not understood. We
propose that adopting an overarching approach to
studying tolerance regulation at sites of T-cell pro-
duction and effector function will provide new
opportunities to better understand tolerance main-
tenance and breakdown, and inform future strat-
egies for immune intervention.
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