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Abstract: Agelasines, asmarines and related compounds are natural products with a hybrid 
terpene-purine structure isolated from numerous genera of sponges (Agela sp., Raspailia 
sp.). Some agelasine analogs and related structures have displayed high general toxicity 
towards protozoa, and have exhibited broad-spectrum antimicrobial activity against a 
variety of species, including Mycobacterium tuberculosis, and also an important cytotoxic 
activity against several cancer cell lines, including multidrug-resistant ones. Of particular 
interest in this context are the asmarines (tetrahydro[1,4]diazepino[1,2,3-g,h]purines), 
which have shown potent antiproliferative activity against several types of human cancer 
cell lines. This review summarizes the sources of isolation, chemistry and bioactivity of 
marine alkylpurines and their bioactive derivatives. 
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1. Introduction  
 

Natural products have been a rich source of agents valued in medicine and are the most productive 
source of developmental drugs [1–12]. It is widely accepted that more than 80% of drug substances are 
natural products or have been inspired by a natural compound. Over 100 new products are under 
clinical development, in particular as anticancer and anti-infective agents [13–15]. 

Many research groups are dedicated to the isolation and identification of new natural products and 
other research groups use natural compounds as a models or starting materials for the preparation of 
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derivatives that display some type of beneficial activity for human beings, mainly in the health  
field [16–20]. 

The sea is an important source of new natural compounds [21–23]. Some of them have biological, 
pharmacological or cytotoxic activities [24–27]. Recent research focused on marine natural products 
has uncovered a useful way to obtain a potentially rich source of drug candidates [28–33], where 
alkaloids have been found to be more effective in several therapeutic fields. The drug leads based on 
marine natural products have, however, created unique challenges in scaleable production and 
structural optimization to evaluate toxicity and enhance biological activity. 

Agelasines, asmarines and related compounds are characteristic marine metabolites frequently 
isolated from sponge genera. Such compounds have attracted the attention of researchers because of 
their potent biological activities, which have been reported to include antimicrobial [34,35], 
antiproliferative [36], antileukemic [37], cytotoxic [34,38], antiprotozoal [39,40] and antituberculosis 
properties [41] and inhibitory effects on the enzymatic reactions of Na+,K+-ATPase [42]. Another 
reason that led to the evaluation of genera of sponges is that a significant number of sponge 
metabolites show promising activities in antifouling assays [43]. 

This review presents a comprehensive review of the literature published about several aspects of 
alkylpurine metabolites from marine sponges, including the structure, isolation, biological activity and 
chemistry of marine metabolites with a terpene-purine structure, as well as their ability to act as 
antifouling agents. Emphasis is placed on their biological activity and chemistry.  

 
2. Alkylpurine Structures 

 
The terpene class of natural products shows wide-ranging biological activity and structural 

diversity. Some purine derivatives are also pharmacologically active [44–46]. Terpenylpurines are 
hybrid substances in which a terpene moiety (usually a diterpene moiety) is generally found as a 
substituent of position 7 of a 9-methyladeninium ion. 

The agelasines (Figure 1) are mono- or bi- cyclic diterpenoids having a 9-methyladeninium 
chromophore; they are quaternary adenine salts [47]. Ageline B and agelasine G have the general 
agelasine structure with a pyrrole hererocycle at diterpene moiety [37].  

 
Figure 1. Structures of agelasines A–L. 
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Figure 1. Cont. 
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Agelasimine A and agelasimine B are adenine-related bicyclic diterpenoids and not quaternary 

adenine derivatives of a bicyclic diterpene [48,49] (Figure 2). 
 

Figure 2. Structure of agelasimines A and B. 
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Agelasidines are not purine alkaloids. They are diterpene derivatives of hypotaurocyamine and have 

a guanidine unit. They may thus be considered as intermediate metabolites to agelasine F purine 
analogs [50] (Figure 3). 

Asmarines are alkaloids with a unique tetrahydro[1,4]diazepino[1,2,3-g,h]purine (THDAP) 
structure. Asmarines are closest in structure to Agelas 9-methyladeninium-7-diterpenoids. However, 
they have a new heterocycle that includes a secondary hydroxylamine and they are not quaternary salts 
[38,51] (Figure 4). 
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Figure 3. Structure of agelasidines A, B and C (guanidine derivatives, diterpene 
derivatives of hypotaurocyamine). 
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Figure 4. Structures of asmarines. 
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Other alkylpurines are the methyl-, dimethyl- or trimethylpurine derivatives isolated from different 

marine organisms [52–55]. Doridosine, for example, an adenosine analog, is a N-methylpurine riboside 
[56] (Figure 5).  

 
Figure 5. Methylpurines from marine organisms. 
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3. Sources of Agelasines, Asmarines and Related Compounds 
 

Agelasines have been isolated from Pacific Agelas sea sponges species and asmarines have been 
isolated from Raspailia marine sponge species. The genus Agelas (Porifera, Agelasidae) is an 
interesting and enigmatic genus of sponges from both the systematic and biogeographical points of 
view. There are 12 well-established species that are commonly found in tropical and subtropical 
shallow water environments, although their distribution is not homogeneous, as there are more Agelas 
species in the West Indies than in the whole of the Indopacific region combined. The genus Raspailia 
(Demospongiae, Poecilosclerida, Microcionina, Raspailiidae) is mainly distributed in the Red Sea and 
Indian Ocean. Raspailia sp. from the Indian Ocean are quite different from Red Sea species and 
appears zoologically closer to the Kenyan Aulospangus involutos. 

The quaternary 9-methyladenine derivatives of the bicyclic diterpenes agelasine A-D and ageline B, 
and the monocyclic diterpenes agelasine E and F have been isolated from the Okinawan sea sponge 
Agelas nakamurai and from the Pacific sea sponge Agelas sp. [57–62]. Agelasine F was isolated from 
Agelas sp. collected in Baler, Aurora, Philippines [63]. Agelasine G was isolated from Agelas sp. 
collected off Konbu, Okinawa [37]. Epi-agelasine C was isolated from Agelas mauritiana [64]. 
Ageline B, agelasine F and agelasidine A were isolated from Agelas sp collected at Palau, Western 
Caroline Island [35]. Agelasine H and I were isolated from Agelas mauritiana collected at Yap Island 
in the Federated States of Micronesia [65]. Agelasine J, K and L [47] and agelasimine A and B [48,49] 
were isolated from the Solomon Islands orange marine sponge Agelas mauritiana. An agelasine 1 with 
an unusual thelepogane skeleton in the terpene moiety was isolated from the sponge Agelas nakamurai 
Hoshino collected in the Fly Islands, Papua, New Guinea [66]. Another new agelasine derivative has 
recently been isolated from the Caribbean sponge Agelas clathrodes[67], this compound has been 
called agelasidine J, even though it is described as a new 9-methyladeninium derivative. Agelasidine A 
was also isolated from Agelas clathrodes [50]. 

Asmarines A-F were isolated from the marine sponge Raspailia sp. collected near Nakora Island, 
Dahlak Archipielago, Eritrea. [38,51,68]. Asmarines A, F, G and H were isolated from the Kenyan 
sponge Raspailia sp. [69]. Asmarines A, F, I, J and K were isolated from the Nosy Be Islands 
(Madagascar) sponge Raspailia sp. [70]. The wide range of biological activity makes these compounds 
attractive targets for synthesis. The general synthetic route to agelasines is represented in Scheme 1 
(synthesis of agelasines 4 from 2) [71].  

Scheme 1. General synthetic route to agelasines [71].  
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Agelasines A-F have been synthesized. (-)-Agelasine A is also prepared using the enantiomerically 
homogeneous bicyclic iodide as a key intermediate for the total synthesis of the cis-clerodane 
diterpenoids [72]. Trans-clerodane (-)-agelasine B was prepared from an enantiomerically pure 
decalone. The key steps in the syntheses involve the stereoselective alkylation of the nitrile, the 
efficient coupling of the appropriate iodides to produce the clerodane skeleton, and electrochemical 
reduction to provide agelasine B [73]. Another route is adenine alkylation with the alkylbromide, 
obtained from methyl kolavenate by sequential reduction and bromination, to give, after reductive 
demethoxylation and ion-exchange chromatography, agelasine B [74,75]. Agelasine C has been 
prepared from ent-halimic acid [76]. 

The starting material for the terpenoid side chain on agelasine D is the readily available (+)-manool, 
and, at least formally, also the less expensive (-)-sclareol (Scheme 2) [77]. The synthesis was improved 
by Vik et al. [78]. Agelasine E was synthesized for the first time, together with analogs with various 
terpenoid side chains, by treatment of N6-methoxy-9-methyl-9H-purin-6-amine with allylic bromides, 
to give the desired 7,9-dialkylpurinium salts together with minor amounts of the N6-alkylated isomer. 
The N6-methoxy group was finally removed reductively [41,79]. 

 
Scheme 2. Retrosynthetic route to agelasine D [79]. 
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Until 2009, only racemic agelasine F had been synthesized. That year Gundersen et al. reported [80] 

the first synthesis of ent-agelasine F, starting from (R)-pulegone. The synthesis is considerably more 
efficient than a previously reported route to rac-agelasine F (Scheme 3). 

 
Scheme 3. Retrosynthetic analysis of agelasine F [82]. 
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Simplified analogs of agelasines and agelasimines with a β-cyclocitral derived substituent have 
been prepared by Proszenyak et al. [81]. An illustrative summary of the synthesis strategies used to 
prepare agelasines can be found in reference [82]. The total synthesis of agelasimine A and B has been 
reported from (+)-trans-dihydrocarvone [48,49]. 

The heterotricyclic system of asmarines was prepared from suitably substituted purines  
(Scheme 4). Efficient construction of the clerodane decalin core of asmarines A and B has been 
achieved by an asymmetric Morita-Baylis-Hillman reaction/Lewis acid-promoted annulation strategy 
[86]. The tetrahydrodiazepinopurine ring skeleton 5 was prepared employing the ring-closing 
metathesis reaction on Boc-protected 6-allylamino-7-(propen-1-yl)purine 6 as the key step for the 
construction of the seven-membered ring. 7-(Propen-1-yl)purines were formed by a novel 
rearrangement of 7-allylpurines under basic conditions. Boc-protected N6,7-diallylpurine also 
participated in ring-closing metathesis reaction to give the eight-membered ring analog of the 
diazepinopurine [83]. Alternatively, tetrahydrodiazepinopurine ring skeleton 5 can be constructed by 
formation of bond “a” from compound 7 [84] and by formation of bond “b” from compound 8 [36,85]. 
Another methodology for the preparation of asmarine analogs was developed by Pappo et al. Three 
cyclization methods were applied to prepare the 9,9-disubstituted 10-hydroxy-tetrahydrodiazepino 
system: namely, aminomercurization, iodocyclization, and acid-catalyzed cyclization. The O-(3,4-
dimethoxybenzyl group of the NOH functionality and cyanoethyl group of the N-9 atom were found to 
be the most suitable protecting groups [36]. 

 
Scheme 4. Synthetic routes to asmarines [83]. 
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In order to access a key component to complete the synthesis of asmarine B, Rodgen et al. [87] 
developed a methodology involving the allylboration of imines followed by subsequent oxidation to 
form the desired hydroxylamine. Nevertheless, the total synthesis of asmarine B has still not been 
published, although other synthetic strategies towards key asmarine intermediates have [88,89]. 
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4. Biological Activity of Marine Terpenyl-Purine Alkaloids 
 
4.1. Antifouling activity 

 
There is an increasing interest in exploring the antifouling potential of natural products because 

there is a clear need to develop new non-toxic or environmentally benign antifouling alternatives that 
will be efficient against the most severe fouling organisms such as barnacles, blue mussels, bryozoans 
and algae. Many sponges have been shown to synthesize toxic metabolites to prevent predation, and 
hence other organisms frequently attach sponges to themselves for their protection [90]. 

Agelasine D, together with two of its analogs, displays a strong inhibitory effect on the settlement 
of Balanus improvisus cypris larvae (EC50 0.11–0.30 μM). None of these three compounds affected 
larval mortality. When after 24 h exposure to the compounds the cyprids were transferred to fresh 
seawater, the settlement frequency was completely recovered in comparison with the controls. These 
properties make agelasine D and analogs highly attractive candidates as antifouling agents in future 
marine coatings [43]. The antifouling activity of epi-agelasine C against Ulva spores is not as high as 
that of CuSO4 (positive control); however, epi-agelasine C shows lethal activity against Ulva fronds at 
50 ppm. Antimicroalgal activity against Oscillatoria amphibian (Cyanophyceae), Skeletonema 
costatum (Diatomophyceae), Brachiomonas submaria (Chlorophyceae) and Prorocentrum micans 
(Dinophyceae) has been observed at 1.0–2.5 ppm, so this compound seems to be useful as a measure to 
counter red tide [64].  

 
4.2. Antituberculosis activity 

 
Tuberculosis is still a major health problem worldwide. Although the treatment regimens currently 

available can cure almost all tuberculosis drug-susceptible cases, problems such as the length of 
treatment, the need for multidrug therapy, the emergence of drug resistance, HIV co-infection, and 
persistent Mycobacterium tuberculosis bacilli, highlight the need for new anti-tuberculosis drugs. New 
anti-tubercular drug regimens are clearly needed to reduce the time required for a lasting cure and to 
treat the expanding problem of drug- and multidrug-resistant (MDR) Mycobacterium tuberculosis 
strains [91,92]. The strategies to search for new antituberculosis drugs involve screening libraries of 
small molecules and natural products or the previous identification of targets crucial to the 
microorganism, followed by the subsequent design of new molecules. Antituberculosis compounds 
from natural sources have enormous potential for the development of new drugs that have shown not 
only antimicrobial activity per se but also inhibition of the mechanism of resistance (e.g., efflux 
pumps) or modulation of the immune response (e.g., macrophage stimulation) [93,94]. 

In vitro, agelasine F inhibits some drug-resistant strains of Mycobacterium tuberculosis and inhibits 
the growth of tuberculosis H37Rv at concentrations as low as 3.13 μg/mL. The metabolite is also 
equally potent against a range of single drug-resistant strains including, isoniazid, rifampicin, 
ethambutol and ethionamid. Activity against M. tuberculosis residing within macrophages requires 
concentrations of 13–22 μg/mL, which are below the IC50 for Vero cells (34 μg/mL) [63,82]. The 
weak bactericidal activity of agelasine F, indicated by a higher value for EC99, together with the 
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moderate toxicity to Vero cells, disqualifies agelasine F as a drug per se. However, it might serve as an 
interesting lead for the design and synthesis of a more active molecule [63]. 

Only modest antimycobacterial activity has been found for agelasine E [34] and agelasine analogs 
with free NH2 in the position 6 of the purine, but several agelasine analogs still carrying the  
MeO-directing group at N-6 are highly potent inhibitors against M. tuberculosis. A relatively long  
N-7 side chain is required for significant activity. M. tuberculosis has an extremely thick and waxy cell 
wall, which is an effective barrier for many chemicals. Accordingly, effective drugs should have a 
reasonable degree of lipophilicity in order to penetrate that wall. This may explain why more polar 
compounds are generally less efficient than less polar ones. However, in some N-6-alkylated agelasine 
isomers, formed as by-products in the alkylating step, significant activities have been found when the 
terpenoids side chain is relatively large. Furthermore, while the N-6-methoxy-9-methyladenine is 
essentially inactive, the simple 9-methyladenine exhibits an MIC against M. tuberculosis at  
6.25 μg/mL of 94% (positive control, rifampicin) [41]. Reasonable antimycobacterial activity has also 
been reported for some simple 9-benzyladenines [95]. 7-Alkyl, 7-benzyl and 7-geranyl purinamine 
derivatives are more or less inactive against the bacteria examined. In contrast, (2E,6E)-farnesyl and 
isomeric (2E,6Z)-farnesyl derivatives exhibit a strong inhibitory activity against Mycobacterium 
tuberculosis [34]. 

 
4.3. Antimicrobial activity 

 
Infectious diseases caused by bacteria, fungi, viruses and parasites are still a major threat to public 

health despite the tremendous progress in human medicine. Natural products, either as pure 
compounds or as standardized extracts, provide unlimited opportunities for new anti-infective drug 
leads because of the unmatched availability of their chemical diversity [96]. 

Some agelasine analogs show antibacterial activities. Agelasine D and close analogs display a broad 
spectrum of antibacterial activities, including effects on M. tuberculosis, Gram-positive and  
Gram-negative bacteria (both aerobes and anaerobes). (2E,6E)-farnesyl and isomeric (2E,6Z)-farnesyl 
derivatives, on the other hand, exhibit a profound inhibitory activity against Staphylococcus aureus. 
These compounds are also active against Bacteroides fragilis and Bacteroides thetaiotaomicron 
(anaerobe). The geometry of the terpenoid side chain appears to have no significant influence on 
antibacterial activity. Geranylgeranyl purine is also active against Streptococus pyrogenes and 
Enterobacter facealis, but not against Pseudomonas aeruginosa, in the concentration range examined. 
Reduced inhibitory activity against bacteria has been found for phytyl derivatives, indicating that the 
unsaturation in the side chain is important for the antibacterial activity [34,35]. 

Several samples of Agelas sp. containing agelasine F, agelasidine A and ageline B, show 
antimicrobial activity against Gram-positive bacteria S. aureus and two fungi: Candida albicans and C. 
utilis [63]. Pure samples of ageline B and angelasine F inhibit the growth of S. aureus, B. subtilis and 
C. albicans. Agelasine F and agelasidine A are lethal to goldfish, Carassius auratus  
(ichthyotoxicity) [65].  

Ent-agelasine F exhibits antimicrobial activity: MIC Staphylococcus aureus 2 μg/mL, and MIC 
Escherichia coli 16 μg/mL [80]. Epi-agelasine C does not exhibit antibacterial activity against 
Staphylococcus aureus, Vibrio costicola, Escherichia coli or Bacillus subtilis [64]. 
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Agelasine A and H are inactive against P. aeuroginosa, S. aureus, Aspergillus niger and 
Saccharomuces cerevisiae at concentrations of 200, 100, 10 and 1 μg/mL. Agelasine B and ageline B 
inhibit S. cerevisiae at 10 μg/mL. Agelasine F inhibits A. niger at 100 μg/mL and S. cerevisiae at  
10 μg/mL. Agelasine I 7 inhibits S. cerevisiae at 200 μg/mL[65]. Agelasimine analogs are strong 
inhibitors of S. aureus and E. coli [34]. 

 
4.4. Antiprotozoal activity 

 
Agelasine D, other agelasine analogs and related structures have been screened for their inhibitory 

activity against Plasmodium falciparum, Leishmania infantum, Trypanosoma brucei and Tripanosoma 
cruzi, as well as for toxicity against MCR-5 fibroblast cells, in order to assess the selectivity of their 
action [40]. A higher activity was found for agelasine D (IC50 0.63 μM) against P. falciparum than 
agelasine J (IC50 6.6 μM), agelasine K (IC50 8.3 μM) and L (IC50 18 μM). The selectivity index of 
agelasine D for antimalarial action [SI: IC50 (MCR-5 fibroblast)/IC50 (Plasmodium falciparum)] was 
23 and it also displays a significant inhibitory action against the other parasites examined. According 
to criteria set up by the WHO Special Programme for Research & Training in Tropical Diseases 
(TDR), in that study two agelasine analogs were identified as hits for leishmaniasis and for Chagas’ 
disease [97]. Agelasine J, K and L display in vitro antimalarial activity against Plasmodium  
falciparum [47]. 

 
4.5. Cytotoxic activity 

 
Some agelasine and agelasimine analogs exert a strong cytotoxic activity against several cancer cell 

lines (MIC 0.1 μM for the most potent compound), including a drug-resistant renal cell line [80]. 
Agelasine G shows cytotoxic activity against lymphoma L1210 cells in vitro, with an IC50 value of 

3.1 μg/mL [37]. The agelasine analog (2´E,6E,10´E)-6-methoxyamino-9-methyl-7-(3,7,11,15-tetra-
methyl-2,6,10,14-hexadecatetraenyl)-7H-purinium, exhibits a powerful activity against cancer cell 
lines. This agelasine analog is also a potent inhibitor of ACHN (renal adenocarcinoma cells) growth 
and is more effective against the primary multidrug-resistant (MDR) cell line ACHN than any of the 
anticancer drugs used as positive control (doxorubicin, cisplatin and paclitaxel) [34]. 

Asmarines A and B have cytotoxic activity against cell cultures of P-388 murine leukemia, HT-29 
human colon carcinoma, and MEL-28 human melanoma cells. Asmarine B (IC50 0.12–0.24 μM) is 
more active than asmarine A (IC50 1.18 μM) and shows higher activity against human lung and human 
colon carcinoma [51]. 

Asmarines A and B and some synthetic analogs have been tested for cytotoxic activity against  
DU-145 prostate, IGROV-ET ovarian, A-549 NSCL, PANC1 pancreas and LOVO colon cancer cell 
lines. Synthetic compounds were all found to be at least one order of magnitude less active than 
asmarine B (GI50 0.04–0.5 μg/mL). The cyclization modes for 9-mono and 9,9-disubstituted  
tetra-hydro[1,4]diazepino[1,2,3-g,h]purine structure can form the basis of SAR studies of asmarine 
analogs, and provide a route for the total synthesis of asmarine A starting from the appropriate 
diterpene and purine [36]. The biological target of asmarine A and B is not known [86]. 
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4.6. Inhibitory effect on the enzymatic reaction of Na+,K+-ATPase 
 

It is well established that Na+,K+-ATPase hydrolyzes ATP to provide the energy for the active 
transport of Na+ and K+ across the cell membrane. This enzyme acts as the electrogenic Na+, K+ pump 
and contributes to the membrane excitability of several cells. Inhibition of Na+,K+-ATPase has 
physiologically important roles, such as the cardiotonic effect [98].  

The Na+,K+-ATPase from brain or kidney and sarcoplasmic reticulum Ca2+-ATPase were potently 
inhibited by agelasidine C and agelasine B and exert a less potent inhibition on heart Na+,K+-ATPase. 
The ionized moiety of agelasidine C and the long nonpolar side chains in agelasine B play important 
roles in their inhibitory action. The inhibition of Na+,K+-ATPase by agelasidine C or agelasine B is 
almost reversed by diluting with inhibitor-free solution [42]. Agelasin B and some analogs show 
inhibitory activity against Na+,K+-ATPase reactions at 10-4 M [99]. 

Other activities of terpenylpurines, such as the inhibition of adenosine transfer into rabbit 
erythrocytes, their Ca2+-channel antagonistic action and an α1 adrenergic blockade, have been  
reported [65]. 

Moreover, the biological properties of some methylpurines are also very interesting. In vivo 
doridosine causes hypotension, a reduction in heart rate, muscle relaxation and anti-inflammatory 
effects through adenosine A1 and A2 receptors [56,100]. The affinity prediction on A1 adenosine 
receptor agonists has been determined by the chemometric approach [101]. 1-Methylherbipoline is a 
serine protease inhibitor [52]. 

 
5. Summary 

 
Some natural products have a profound impact on human health. The biosynthetic engine of Nature 

produces innumerable secondary metabolites with distinct biological properties that make them 
valuable as health products or as structural templates for drug discovery. 

Marine sponges of the genera Agela and Raspailia have been demonstrated to be a rich source of 
bioactive alkaloids. Many terpenylpurine alkaloids isolated from those genera are of considerable 
interest with regard to their biological activities. Furthermore, some of them have exhibited promising 
activities in future marine coatings as antifouling alternatives against the most severe fouling 
organisms, one of the most serious problems of marine technology. 

Agelasines, asmarines and related structures display cytotoxicity and antiprotozoal, antimicrobial, 
antituberculosis activity, among others. Identification of the hits as well as other SAR studies will be 
valuable for the design of more potent and selective potential drugs against several diseases. 
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