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The Many Faces of JAKs and STATs
Within the COVID-19 Storm
Alice H. Grant, Armando Estrada III, Yoshira M. Ayala-Marin, America Y. Alvidrez-Camacho,
Georgialina Rodriguez, Elisa Robles-Escajeda, Denisse A. Cadena-Medina,
Alejandro C. Rodriguez and Robert A. Kirken*

Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, United States

The positive-sense single stranded RNA virus, Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2), resulted in a global pandemic with horrendous health
and economic consequences not seen in a century. At a finer scale, immunologically,
many of these devastating effects by SARS-CoV-2 can be traced to a “cytokine storm”

resulting in the simultaneous activation of Janus Kinases (JAKs) and Signal Transducers
and Activators of Transcription (STAT) proteins downstream of the many cytokine
receptor families triggered by elevated cytokines found in Coronavirus Disease 2019
(COVID-19). In this report, cytokines found in the storm are discussed in relation to the
JAK-STAT pathway in response to SARS-CoV-2 and the lessons learned from RNA
viruses and previous Coronaviruses (CoVs). Therapeutic strategies to counteract the
SARS-CoV-2 mediated storm are discussed with an emphasis on cell signaling and
JAK inhibition.
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INTRODUCTION

Covid-19 Pathogenesis and the Cytokine Storm
Late 2019 a positive single strand RNA virus crossed over to humans, causing a Coronavirus (CoV)
related pneumonia in Wuhan China. The pathogen responsible for the following CoV Disease 2019
(COVID-19) global pandemic was identified as Severe Acute Respiratory Syndrome Coronavirus-2
(SARS-CoV-2) on January 7th, 2020 (1). Unlike past CoVs which can be mildly pathogenic others
like SARS-CoV and Middle East Respiratory Syndrome CoV (MERS-CoV) can result in severe
disease and fatality (2). SARS-CoV-2 falls into the latter, with an estimated 178,837,204 infected and
greater than 3,880,450 deaths worldwide as of June 23rd, 2021 (World Health Organization). For
many the cause of death is due to Acute Respiratory Distress Syndrome (ARDS)/respiratory failure,
septic shock, or multiorgan system dysfunction (Centers for Disease Control and Prevention).
Additionally, COVID-19 related strokes are on the rise likely due to thromboembolism
complications (3, 4).

Many of these overt symptoms result from a cytokine release syndrome or “cytokine storm”,
with uncontrolled anti- and pro-inflammatory components reaching beyond the local site of
infection and resulting in systemic collateral damage (5). Disproportional outcomes of COVID-19
pathology are largely attributed to this dysfunctional immune response (6, 7). This notion is
org July 2021 | Volume 12 | Article 6904771

https://www.frontiersin.org/articles/10.3389/fimmu.2021.690477/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.690477/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:rkirken@utep.edu
https://doi.org/10.3389/fimmu.2021.690477
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.690477
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.690477&domain=pdf&date_stamp=2021-07-13


Grant et al. The JAK/STAT Pathways in COVID-19
supported by findings that asymptomatic individuals display less
inflammatory cytokine profiles and a subtle immune
response (8).

SARS-CoV-2 infected, hospitalized patients display elevated
levels of Interleukins (ILs) IL-2, IL-4, IL-7, IL-9, IL-6,
Granulocyte-Colony Stimulating Factor (G-CSF), Granulocyte
Macrophage-CSF (GM-CSF), Interferon a2 (IFNa2), Interferon
g (IFNg), IL-10, IL-1a, IL-1Ra, IL-1b, Macrophage-CSF (M-
CSF), IL-12, Tumor Necrosis Factor a (TNFa), IL-17, IL-8,
Macrophage Inflammatory Proteins 1A (MIP1A), Macrophage
Inflammatory Proteins 1B (MIP1B), Monocyte Chemoattractant
Protein-1 (MCP-1), IFNg-Inducible Protein 10 (IP-10),
Fibroblast Growth Factor (FGF), Hepatocyte Growth Factor
(HGF), Vascular Endothelial Growth Factor (VEGF), and
Platelet-Derived Growth Factor (PDGF) (6, 9). These elevated
cytokines subsequently activate multiple cytokine receptor
families belonging to the Type I, Type II, Immunoglobulin
Superfamily, G-Protein Coupled, TNFa and Growth Factor
Receptors. Many of these cytokine receptors rely on the Janus
Kinases (JAKs) and Signal Transducers and Activators of
Transcription (STAT) proteins to immunologically eradicate
the SARS-CoV-2 pathogen and restore immune homeostasis.
Cytokines utilizing Type I, Type II and G-Protein Coupled
Receptors propagate direct signals through JAKs and STATs
and many have been linked to disease severity (Figure 1). Others
are regulated by or cross-talk with JAK-STAT pathways.
JAK AND STATS

JAKs consist of seven Janus Homology (JH) domains, JH1-JH7,
shared across JAK1, JAK2, JAK3 and Tyrosine Kinase 2 (TYK2)
(10, 11). JH1 harbors the kinase domain involved in Tyr
phosphorylation while the JH2 consists of an “inactive”
pseudo-kinase domain regulating overall activity. JH3-JH7
Frontiers in Immunology | www.frontiersin.org 2
consists of the 4.1R, Ezrin, Radixin, Moesin (FERM) and Src
Homology 2 (SH2) domains involved in receptor binding.
Canonically, JAKs act by transferring the g-phosphate of ATP
to the hydroxyl side chain of Tyr residues residing on paired
receptors, recruiting in SH2 containing proteins, most notably
the STATs. Once captured by the receptor, STATs are
phosphorylated by the JAKs among other SRC family kinases
(12). Subsequent disengagement from the receptor results in
STAT dimerization formed by SH2 interactions with
phosphorylated Tyr enhancing nuclear translocation and
transcriptional activities. The seven STAT family members
contain six domains that include the N-terminal, coiled-coil,
DNA binding, linker, SH2, and a transactivation domains (10,
13). And although structurally similar, their target genes are
overlapping but also unique (14).
JAKS AND THE IMMUNOLOGICAL
RESPONSE

The JAK-STAT pathway is essential for various stages of
immunity that ranges from initiating signaling events required
for innate and adaptive responses to the pathological stage of
driving the storm (15, 16). For example, the innate immune
system, launches an anti-viral response through JAK dependent
IFNs, pro-inflammatory cytokines and chemokines including
those found in the cytokine storm (IFNa2, IL-6, IL-8, G-CSF,
MCP-1) (17, 18). This initial response seeks to inhibit viral
progression and to activate the adaptive immune system. In this
second phase, cytokines elicit an appropriate adaptive response
to viral infection by facilitating CD4+ T helper (Th)
differentiation and or CD8+ T cytotoxic (Tc) and B cell
function. Many cytokines cross-talk and are dependent upon
the JAK-STAT pathway to affect the spectrum of Th phenotypes
that normally respond to a range of pathogenic variation
FIGURE 1 | The Cytokine Storm in COVID-19 Utilizes JAKs and STATs. A simple schematic showing elevated cytokines in COVID-19 signaling by Type I, Type II,
Immunoglobulin, and G-protein coupled receptors with those correlated to disease severity outlined in red. Paired JAKs are seen signaling immediately downstream
of receptors directly activating STATs (solid line).Only the predominantly activated STAT is depicted for shown cytokines.
July 2021 | Volume 12 | Article 690477
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including among others Th1, Th2, T follicular helper (Tfh), T
regulatory (Treg) and Th17 cells (19, 20). Some of these
canonical cytokines sway Th differentiation including IFNg, IL-
2, IL-12 towards Th1; IL-2, IL-4 to Th2; IL-12 to Tfh; IL-2 to
Treg; and IL-6, IL-1 to Th17 subsets (19). IL-4 and IFNg inhibit
Th1 and Th2 responses respectively (21, 22). Others are
produced by Th subtypes including IFNg, IL-2, TNFa in Th1;
IL-4, IL-6, IL-10 in Th2; IL-17 in Th17; and IL-10 in both Tfh
and Treg cells. Additionally IL-7, IL-9, MIP1A, MIP1B, MCP-1,
and GM-CSF can influence differentiation and adaptive
immunity. Failure of the adaptive arm to clear the infection
results in a cytokine storm consisting of these latter JAK
signaling cytokines (Figure 2).

Typically, Th1 cells drive cellular immunity largely
accomplished by Tc and NK cells while Th2 and Tfh gear
towards humoral immunity utilizing plasma B cells. Treg cells
restore and maintain immunological homeostasis (23) while
Th17 are crucial in eliciting a response against extracellular
pathogens. The signature Th phenotype that succeeds at
clearing SARS-CoV-2 infection between asymptomatic, mild/
moderate, and severe/critical cases remains elusive. It is implied
that asymptomatic and mild to moderate disease achieve viral
clearance by intact innate and adaptive responses while
hyperinflammation leads to severe/critical disease (24).

It is likely that SARS-CoV-2 immunity in mild to moderate
disease is largely accomplished by Th1 responses. Supporting
this claim, roughly 70% of non-hospitalized patients that
recovered from SARS-CoV-2 infection exhibit virus specific
CD8+ Tc cells (25). Furthermore, patients that recovered from
past SARS-CoV infection achieve lasting immunity through
Frontiers in Immunology | www.frontiersin.org 3
virus specific memory CD4+ and CD8+ T cells (2). Others have
proposed Th2 responses in children translate to the mild
outcomes of SARS-CoV-2 infection (26). Although, Tfh and
Th2 responses are seen in hospitalized patients (27) with the
latter response associated with severe symptoms to SARS-CoV-2
(28). Thus, it is unknown if humoral responses are sufficient to
clear SARS-CoV-2 infection (29). Interestingly, unexposed
SARS-CoV-2 individuals can present Th cells that recognize
the spike viral protein, indicative of past exposure to other CoV
(25, 30). Indeed, sera from SARS-CoV-2-uninfected donors
contain antibodies against the S2 subunit of the spike protein
that can neutralize SARS-CoV-2 (25). SARS-CoV-2–uninfected
children and adolescents are more likely than adults to contain
these cross reactive and ‘protective’ antibodies (31). These
findings support that immunogenic sites of the spike protein
are conserved between other CoV and SARS-CoV-2 (32).

Past CoV have revealed antagonism against the adaptive
immune response by impairing CD4+ and CD8+ T cell
activation (2). And comparably, severe COVID-19 patients
display ineffective Th1 phenotypes indicated by decreased
levels of CD8+ Tc cells coupled with markers of exhaustion
(33). Lymphopenia in severe COVID-19 patients is met with
decreases in both CD4+ and CD8+ T cells (33, 34). Th cells tend
to shift towards Th17 cells in severe patients (35, 36) while Tregs
are decreased in critically ill patients (35, 37). Details on how Tc
and Th cells aid or worsen the progression of COVID-19 are
discussed elsewhere (38). Taken together, many severe cases of
COVID-19 are accompanied by an uncontrolled immunological
response. The latter triggered in part by mechanisms of SARS-
CoV-2 immune evasion leading to non-productive cytokine
FIGURE 2 | Cytokines within the Storm are Depicted in the Immunological Response to SARS-CoV-2 Infection. A model of the immunological response to SARS-
CoV-2 infection displaying cytokines within the storm including those that signal by JAKs and STATs. Cytokines are placed in the immunological timeline based on
their expected role in innate and adaptive responses to SARS-CoV-2 infection. Cytokines enhancing immune function are outlined in blue. Cytokines promoting Th
differentiation are outlined in green while those inhibiting Th differentiation are outlined in fuchsia. Cytokines are later shown during the COVID-19 cytokine storm
outlined in yellow.
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profiles (39). Each of these cytokines are discussed below with an
emphasis on those that signal through the JAK-STAT pathway.
TYPE I CYTOKINES

g Chain Family
The common g chain (gc) cytokines are critical for the survival of
T and B cell lineages that generate adaptive immunity to viral
infections such as SARS-CoV-2. Emerging data from SARS-
CoV-2 patients show increases in nearly all gc cytokines
including, IL-2, IL-4, IL-7, and IL-9, were all except IL-9 are
associated with disease severity (9, 40). Their respective receptors
lacking intrinsic catalytic activity pair with gc and recruit JAK1
and JAK3 to phosphorylate Tyr residues drawing in STAT
proteins. Their redundancy ends in part by each STAT protein
that is dominantly recruited and phosphorylated in response to a
given gc cytokine. Although STATs can be activated at varying
degrees, IL‐2, IL‐7, and IL-9 preferentially activate STAT5A and
STAT5B, while IL‐4 activates STAT6 (20).

Many gc cytokines are released by naïve or differentiated
CD4+ T and CD8+ Tc cells to strengthen the adaptive immune
response (41). For example, Th1 cells release IL-2 enhancing Tc
differentiation and expansion (42). IL-2 and IL-4 induce Th2
differentiation, where downstream activation of STAT6 by IL-4
regulates Ig gene transcription and switch recombination in
plasma B cells (20, 43). IL-7 can induce Th1 differentiation
and, like IL-2, is important for the maintenance of memory T
cells (44, 45). IL-9, produced by Th2 and Th17 cells has been
shown to enhance the suppressive functions of natural Treg cells
and promote Th17 differentiation (46, 47).

The simultaneous release of gc cytokines suggests that SARS-
CoV-2 fails to generate a single Th phenotype and succeeds at
eliciting immunological chaos; perhaps an attempt of redirecting
away from cell mediated and humoral responses that aid in viral
clearance. Alternatively, elevated levels of gc cytokines in
COVID-19, may reflect an attempt to strengthen the adaptive
arm of the immune system. Despite the probable increases in gc
cytokines acting as growth factors for lymphocytes, lymphopenia
is frequently observed in severe COVID-19 patients (33, 34).
This paradox has been tackled in depth by others with various
explanations (48) including T cell exhaustion. While IL-2 signals
are essential for T cell expansion, prolonged IL-2 can mediate
exhaustion of CD8+ Tc as well (49, 50).

IL-6
IL-6 is a signature cytokine of inflammation correlating with
COVID-19 mortality (51). Binding of IL-6 to its receptor
promotes dimerization with gp130 leading to the activation of
JAK1, JAK2 and TYK2 (52). JAKs then phosphorylate gp130 to
recruit SH2 containing STAT1 and STAT3 that subsequently
become phosphorylated. Within various cells, STAT1 and
STAT3 form either homo or hetero-dimers acting as
transcription factors to regulate expression of multiple genes (53,
54). This in part allows for the pleiotropic activities of IL-6 ranging
from polarizing naïve Th cells to supporting differentiation of non-
Frontiers in Immunology | www.frontiersin.org 4
immune cells (55). For example, IL-6 promotes Th2, and Th17
differentiation while inhibiting Th1 responses (56, 57). Among
many cytokines discussed hereafter IL-6 also regulates coagulation
(58) likely contributing to COVID-19 thrombosis related mortality
(59, 60). To ameliorate the effects of IL-6, antibodies generated
against IL-6 or its receptor are under clinical trial investigation.
However, preliminary data are showing limited efficacy against
COVID-19 (61, 62).

IL-12
IL-12 utilizes IL-12p40, IL-12 Receptor b1 (IL-12Rb1) and IL-
12Rb2 bound to Tyk2 and JAK2, respectively (63). The latter chain
creates docking sites for STAT4 that undergoes phosphorylation to
regulate transcription and signaling. STAT4 Ser phosphorylation
in response to IL-12 has been shown crucial for T cell IFNg
secretion a typical Th1 response (64). IL-12 is also important for
Tfh differentiation (65). IL-12p40 mRNA increases rapidly after
CNS CoV infection and contributes toward morbidity associated
with viral encephalitis (66). Additionally, increased IL-12
expression is correlated with COVID-19 severity (40). Yet, IL-12
is needed by host viral defenses given its influence on Th
differentiation. And vaccine development against the SARS-CoV-
2 S-protein includes a component of IL-12 based therapy currently
in Phase I clinical trials (clinicaltrials.gov).

G-CSF
Severe COVID-19 patients display elevated levels of G-CSF a
primary growth factor for neutrophil differentiation (40). G-CSF
signaling is mediated through the Tyr receptor kinase G-CSF
Receptor (G-CSFR) and bc, activating JAK2 and subsequently
STAT3 (67, 68). In one study, neutrophilia occurred in more
than half of severe COVID-19 patients (69) and is likely
attributed in part by the actions of G-CSF.

GM-CSF
GM-CSF also activates JAK2 and STAT3/5 through its GM-CSF
Receptor a and bc subunit and is involved in Th17
differentiation (70). Known to link the CNS with inflammation
it is perhaps not surprising that elevated levels of GM-CSF are
seen in CNS SARS-CoV positive children exhibiting
Encephalitis-like syndrome (71). Neurological symptoms seen
in SARS-CoV-2 cases have yet to be distinguished as a result
from encephalitis, meningitis, or secondary effects of severe
infection (72). SARS-CoV-2 viral particles and RNA are
observed in neuroanatomical areas that receive olfactory tract
projections (73). And other routes of entry for SARS-CoV-2
neuro-invasion have been purposed (74). CNS damage continues
to be observed in COVID-19 patients discussed by De Felice et al.
(75) and CNS pathologies warrant further investigation.
TYPE II CYTOKINES

Type I and II IFN
Type I IFN (IFN-I) and Type II IFNg are key in alerting and
protecting the body against viral infections (76). Interestingly,
July 2021 | Volume 12 | Article 690477
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IFNa2 and IFNg are highly expressed in severe COVID-19
patients. IFN-I acting on their ubiquitously expressed receptors
utilize JAK1 and TYK2 for signaling. Once activated the JAKs
phosphorylate STAT1 and STAT2, enabling them to complex with
IFN Regulatory Factor 9 (IRF9) and initiate transcription of
classical IFN stimulated genes involved in antiviral response,
immune regulation, and anti-proliferation (76–78). IFNg utilizes
JAK1 and JAK2 signaling to promote STAT1 antiviral activity and
drive Th1 differentiation and thus cellular immunity (79, 80).
Priming infected cells for destruction, many viruses antagonize
IFN responses by targeting the JAK-STAT pathway (81). For
example, SARS-CoV Non-Structural Protein 1 (NSP1) acts as a
virulence factor for evading the IFN response in part by decreasing
phosphorylation of STAT1 (82). STAT3, also downstream of IFN
but mainly induced by IL-6, is found dephosphorylated at Tyr 705
in the presence of SARS-CoV (83). Similarly, SARS-CoV-2 ORF3b
truncated viral protein in addition to ORF6, and ORF8 can
suppress IFN-I signaling (84, 85). Cell lines infected with SARS-
CoV-2 show a reduction in JAK1, JAK2, TYK2 and STAT2 protein
expression. Moreover, virus-infected cells are not able to induce
STAT1, STAT2 and STAT3 phosphorylation to the same extent
than non-infected cells in response to IFNa2 (86).

A strategy to harness the initial actions of IFN-I and maintain
balance of the immune response, active forms of IFN-I are being
investigated in clinical trials against COVID-19 (87, 88). Akin to
SARS-CoV, SARS-CoV-2 infection responds similarly to IFN-I
therapy, where the timing of its use is critical for efficacy.
Specifically, early IFN-I therapy is associated with reduced
mortality, while late therapy increases mortality in a retrospective
study (89). The timing of effective IFN-I administration is intuitive
given its presence in the milieu of cytokines needed to trigger first
phase innate immunity, while its delayed presence triggers
hyperinflammation (90). However, appealing, IFN-I strategies
should be taken with caution given that SARS-CoV-2 can utilize
IFNa to induce ACE2 expression, its common route of entry (91).

IL-10
The type II cytokine receptor for IL-10, signals through JAK1
and TYK2 activating STAT3, yet in contrast to IFN yields an
anti-inflammatory response inhibiting Th1 differentiation (92).
Treg cells achieve their anti-inflammatory effects in part by
secret ing IL-10 (19) . Unl ike MERS-CoV, e levated
concentrations of IL-10, are seen in SARS-CoV-2 and may be
linked to the decreased numbers in CD8+ Tc cells (93, 94).
Certain viruses encode IL-10 homologs to suppress the immune
system, thus the high levels of IL-10 seen in severe COVID-19
patients likely benefit SARS-CoV-2 (9, 40, 95). However, with the
right timing IL-10 can aid in viral clearance when coupled to
IFNg (96). Lastly the anti-inflammatory effects by IL-10 can
inhibit coagulation activation and stimulate fibrinolysis (97).
G PROTEIN-COUPLED RECEPTORS

Signaling via G-Protein coupled receptors, IL-8, MIP1A, MIP1B,
MCP1, IP-10 are elevated in COVID-19 patients (9, 40),
Frontiers in Immunology | www.frontiersin.org 5
conceivably stimulating migration of immune cells to the site
of infection. Binding of these chemokines to their respective
receptors, IL-8 to CXCR1/CXCR2, MIP1A to CCR1/CCR5,
MIP1B to CCR5/CCR8, MCP1 to CCR1/CCR2, and IP-10 to
CXCR3 activate the JAK/STAT pathway (98–101) all recruiting
JAK2 and STAT3 (98–103), except IP-10. Although IP-10 can
indirectly activate downstream STAT1, STAT4 and STAT5
(104). IL-8 acts as a chemoattractant for many immune cells,
dominantly recruiting neutrophils for host defense. Although
recruited neutrophils are critical for clearing infections, excessive
neutrophil invasion could be the culprit of lung injury observed
in COVID-19 pneumonia (69). MIP1A and MIP1B, the former
linked to COVID-19 severity, are associated with the trafficking
of CD8+ and CD4+ T cells, respectively (105, 106). Despite
primarily attracting macrophages and lymphocytes (107),
MIP1A can also attract neutrophils (108). MCP-1 has been
associated with recruiting both pathological macrophages/
neutrophils (109) and virus clearing CD8+ Tc cells (110). In
addition to acting as a chemoattract, MCP-1 can polarize Th2
responses (98, 111, 112). In contrast, IP-10 stimulates a Th1
response (113) recruiting primarily T cells (114) and its presence
correlates with viral load (115–117). Both MCP-1 and IP-10 are
linked to COVID-19 severity (9, 40).
REGULATION AND CROSS-TALK WITH
JAK-STAT PATHWAYS

Immunoglobulin Superfamily Receptors
IL-1a, IL-1b and IL-1Ra act as damage-associated molecular
pattern (DAMP) detectors (118), likely activated by the direct
and collateral damage of SARS-CoV-2. Binding IL-1 (IL-1a, IL-
1b) to IL-1 receptor type I (IL-1R1) results in a robust pro-
inflammatory response (119). In contrast, IL-1Ra produces an
anti-inflammatory response (119). Although these factors do not
utilize the JAK-STAT pathway, it has been reported that IL-1
inhibits IL-6 driven STAT1 activation (120). M-CSF belongs to
the immunoglobulin superfamily and does not cross-talk with
the JAK-STAT pathway. Likely propagated by the heightened
Th17 response, IL-17 is found at elevated levels in severe
COVID-19 patients (40). IL‐17A–IL‐17F form either homo- or
heterodimers and signal through IL-17 Receptor A (IL‐17RA)
and IL‐17RC subunits (121) to promote inflammation. The IL‐
17RA is relatively expressed in the lungs (http://www.
pro te ina t l a s .o rg ) and i t s ac t i va t ion can promote
chemoattractants for neutrophil invasion (122). There is
evidence that Th17 responses are implicated in severe lung
pathology and mortality induced by CoVs (123). Furthermore,
it has been shown to signal in astrocytes via an indirect JAK2,
STAT1 and STAT3 axis (124, 125).

Tumor Necrosis Factor Receptors
While TNFa does not signal through JAK-STAT proteins, it is
discussed here because it is found elevated in COVID-19 patients
requiring intensive care (9). TNFa signals through two receptors,
TNFR1 and TNFR2 triggering inflammatory pathways, and
July 2021 | Volume 12 | Article 690477
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immune modulation respectively (126). TNFa is also released by
differentiated Th1 cells. Cross-talk between TNFa and the JAK-
STAT pathway has been suggested by few reports demonstrating
changes in STAT3 and STAT5 following activation of TNFR1
and TNFR2 (126, 127). Prothrombotic effects of TNFa are
thought to be mediated by TNFR2 rather than TNFR1 (128).
Circulating TNFa, IFNg, IL-1, IL-6, IL-8, and MCP-1 all effect
tissue factor expression that initiate coagulation (129, 130).
Additionally, TNFa, IL-1, IL-6, IL-12 and IL-2 can induce
thrombin (130) which converts fibrinogen to fibrin (131)
involved in the cross-linking that stabilizes blood clots. TNFa
and IL-1 can also inactivate fibrinolysis (130). Taken together,
TNFa along circulating cytokines may contribute to COVID-19
thrombotic complications.

Growth Factor Receptors
Growth factors signal mainly through receptors containing their
own intrinsic catalytic activity, bypassing the need for JAKs.
Increased levels of growth factor in SARS-CoV-2 patients
include VEGF, FGF, HGF and PDGF that are involved in
processes such as angiogenesis, morphogenesis and fibrotic
remodeling. FGF, VEGF, HGF and PDGF have all been shown
to be regulated by or cross-talk with JAK-STAT pathways. For
example, VEGF expression along with IL-6 can be induced by IL-
17 through STAT1 to promote angiogenesis (125). JAK2 and
STAT5 are utilized by FGF receptor 2 (FGFR2) to facilitate
morphogenesis (132). HGF stimulates the recruitment and
phosphorylation of STAT3 that is also relevant to
morphogenesis (133). And PDGF can facilitate airway
remodeling by cross-talk via a JAK2, STAT1 and STAT3
pathway (134).
TARGETING THE JAK FAMILY

JAKs represent a major therapeutic target for the treatment of
COVID-19. However, inhibition of all JAKs might not have
beneficial outcomes. Correlating COVID-19 disease severity with
elevated cytokines shouldn’t imply each cytokine is pathogenic.
Cytokines act upon multiple cell types and across distal and
proximal sites. In this review the impact of cytokines signaling
directly through JAKs were sought to predict their beneficial
immunological, ambiguous or pathological responses to SARS-
CoV-2 (Table 1), color-coded light to dark (respectively), and
organized corresponding to JAKs and STATs in Figure 3A. IL-2,
IL-7, IFNa2, IFNg, IL-12, IL-10 andMIP1B are predicted to elicit
a beneficial immune response against SARS-CoV-2. While IL-6,
G-CSF, GM-CSF, and IL-8 might provoke unwanted
pathological outcomes. These cytokines utilize different
combinations of JAKs and STATs where more often
“beneficial” cytokines recruit JAK1 and JAK3 in contrast to
“pathogenic” cytokines that predominantly recruit JAK2. The
latter being associated with downstream activation of STAT3,
also suggested as a plausible target for the treatment of COVID-
19 (135). Of note, while few STAT3 direct inhibitors are FDA
Frontiers in Immunology | www.frontiersin.org 6
approved, there are added concerns of inhibitory cross-reactivity
with STAT1, critical for antiviral responses (136).

The use of selective JAK inhibitors for the treatment of
COVID-19 have conflicting views. Prioritizing IFN antiviral/
antibacterial immunity, suggest sparing JAK combinations
downstream of IFN-I (JAK1/TYK2) and IFNg (JAK1/JAK2)
(15). In contrast, Schett et al. suggest targeting JAK2,
downs t r eam of IL -6 and GM-CSF to ame l io ra t e
hyperinflammation, and spare JAK1/JAK3 downstream of
IFN-I, IL-2, IL-15, IL-21 and IFNg involved in viral clearance
(137). Others have proposed TYK2 as a target, given that variants
effecting expression are related to COVID-19 critical
illness (138).

These conflicting views on selective JAK inhibition may be
resolved by considering the role of JAK dependent cytokines
within the immunological timeline discussed previously (see
Figure 2). Mild to moderate responses to SARS-CoV-2 are
likely associated with intact innate and adaptive responses
while severe disease progresses with hyperinflammation
brought on by the cytokine storm (24). Thus, strategies to
combat SARS-CoV-2 in early mild to moderate disease would
benefit from sparing initial (JAK1/TYK2) and (JAK1/JAK2)
combinations given IFNs role in innate immunity and
transition to Th1 adaptive immunity. However, during the
cytokine storm in COVID-19, targeting JAK2 and sparing
JAK1/JAK3 combinations may preserve cell mediated and or
humoral defenses against SARS-CoV-2. Three FDA approved
JAK inhibitors, Tofacitinib, Ruxolitinib and Baricitinib can act
on each JAK kinase at varying degrees (Figure 3B). Each has
undergone clinical trials for treating COVID-19 patients (15)
where drug combinations using Baricitinib have been approved
by emergency use authorization (139). In agreement with the
former analysis, Baricitinib preferentially targets JAK1/JAK2
while somewhat sparing JAK3 inhibition. In general, JAK
blockade has shown to reduce recovery time and mortality
compared to standard treatments (140).
DISCUSSION

Classic JAK inhibitors exploit the JH1 active site acting as ATP
mimetics and because they act on more than one JAK they are
casually considered to be pan-inhibitors rather than JAK specific
inhibitors (141). The majority of the pipeline of JAK inhibitors
are classified as Type I and Type II, depending on whether they
target an active or inactive kinase, respectively. The ATP-binding
site is highly conserved across kinases allowing them to act
broadly. For example, JAK inhibitors are said to cross-react with
AP2-associated protein kinase 1 (AAK1) that regulates
endocytosis and could thus prevent SARS-CoV-2 entry (142).
In contrast, Type III and Type IV inhibitors function to
allosterically disrupt either proximal or distal changes to the
ATP-binding site respectively (143). These distal and non-
entirely conserved regions might be ideal for specific
JAK inhibition.
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At present, there are limited allosteric JAK inhibitors available
and none of which have been approved by the FDA (144). New
allosteric strategies might include, exploiting endogenous
mechanisms of JAK regulation. For example, small peptide
inhibitors mimicking as substrates could accomplish steric
hindrance in a JAK specific manner by targeting unique
substrate specific residues within the JH1. Additionally,
identifying negative regulatory phosphorylation sites within
JAKs could be key in determining which kinase specific
phosphatases could be effectively inhibited to disrupt
subsequent downstream signals. Lastly, the pseudokinase JH2
domain acts as an intrinsic regulator of JAK activity and
identifying key residues, or non-conserved motifs, required for
negative regulation could be exploited for JAK inhibition.
Frontiers in Immunology | www.frontiersin.org 7
The use of JAK inhibitors for treating COVID-19 have been
met with caution given their potential risk of thrombosis (145–
147). Whether these concerns apply to pan-JAK inhibitors and/
or specific JAK inhibitors should be addressed. Regardless, the
hypercoagulability state that contributes to thrombotic effects in
COVID-19 patients may be compounded by pan-JAK inhibition
(145, 148). Thus, such patients experiencing complications of
thrombosis may not benefit from “pan” JAK inhibitors (15).
Perhaps the ability to effectively counter these complications
reflects differences in the hemostatic system that differs across
age and sex similar to the risk of COVID-19 pathogenesis (6,
149–151). Nevertheless, hospitalized COVID-19 patients can
benefit from a recently approved treatment regimen consisting
of baricitinib, in combination with remdesivir.
TABLE 1 | Predicted actions of JAK signaling cytokines in SARS-CoV-2 infection.

Consequence Function Impact Collective
Consequence

IL-2 Th1 differentiation 1 Beneficial
Th2 differentiation 0
Maintains memory T-cells 1
Treg differentiation 1
Inhibits Th-17 1
Coagulation -1

IL-4 Inhibits Th1 differentiation -1 Ambiguous
Th2 differentiation 0
Immunoglobulin switch 1

IL-7 Th1 differentiation 1 Beneficial
Maintains memory T-cells 1

IL-9 Treg activation 1 Ambiguous
Released by Th2 cells 0
Th17 differentiation -1

IL-6 Th2 response 0 Pathological
Th17 differentiation -1
Coagulation -1

IL-12 Th1 differentiation 1 Beneficial
Tfh differentiation 0
T-cell IFN secretion 1
Involved in encephalitis -1

G-CSF Neutrophilia -1 Pathological
GM-CSF Th17 response -1 Pathological

CNS inflammation -1
IL-8 Neutrophil recruitment -1 Ambiguous
MIP1A Recruits CD8 cells 1 Ambiguous

Neutrophil recruitment -1
MIP1B Recruits CD4 cells 1 Beneficial
MCP-1 Th2 responses 0 Ambiguous

Recruits CD8 cells 1
Neutrophil recruitment -1
Macrophage recruitment 0

IFNa2 Antiviral response 1 Beneficial
Immune regulation 1
Anti-proliferation 1
ACE2 expression -1

IFNg Antiviral response 1 Beneficial
Th1 differentiation 1

IL-10 Produced by Tregs 1 Beneficial
Counters coagulation 1
Inhibits Th1 differentiation -1
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The FDA recommends continued efforts in drug strategies to
accelerate recovery, slow disease progression and lower mortality
in COVID-19. These efforts might benefit from specific JAK2
inhibitors with the rationale as provided in this review. Lastly, it
should be noted that JAK inhibition is one of many treatment
strategies for COVID-19 patients that are not managed by
currently approved treatment strategies. Such efforts must
continue during vaccine distribution programs and continued
for unvaccinated individuals or when vaccination is ineffective.
For now, JAK inhibitors are accessible in this time sensitive fight
against SARS-CoV-2 and a path to dodge the storm.
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21. Wurtz O, Bajénoff M, Guerder S. Il-4-mediated Inhibition of IFN-g
Production by CD4+ T Cells Proceeds by Several Developmentally
Regulated Mechanisms. Int Immunol (2004) 16(3):501–8. doi: 10.1093/
intimm/dxh050

22. Oriss TB, McCarthy SA, Morel BF, Campana MA, Morel PA.
Crossregulation Between T Helper Cell (Th)1 and Th2: Inhibition of Th2
Proliferation by IFN-Gamma Involves Interference With IL-1. J Immunol
(1997) 158(8):3666–72.

23. Nurieva RI, Chung Y. Understanding the Development and Function of T
Follicular Helper Cells. Cell Mol Immunol (2010) 7(3):190–7. doi: 10.1038/
cmi.2010.24

24. Kaushic C. Understanding Immune Responses to SARS-Cov-2. In: Rsc
COVID-19 Series. Ottawa, ON: Royal Society of Canada, Voices of the
RSC (2020).

25. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR,
et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans
With COVID-19 Disease and Unexposed Individuals. Cell (2020) 181
(7):1489–1501 e15. doi: 10.1016/j.cell.2020.05.015

26. Steinman JB, Lum FM, Ho PP, Kaminski N, Steinman L. Reduced
Development of COVID-19 in Children Reveals Molecular Checkpoints
Gating Pathogenesis Illuminating Potential Therapeutics. Proc Natl Acad Sci
USA (2020) 117(40):24620–6. doi: 10.1073/pnas.2012358117

27. Meckiff BJ, Ramirez-Suastegui C, Fajardo V, Chee SJ, Kusnadi A, Simon H,
et al. Imbalance of Regulatory and Cytotoxic Sars-CoV-2-Reactive Cd4(+) T
Cells in COVID-19. Cell (2020) 183(5):1340–53.e16. doi: 10.1016/
j.cell.2020.10.001

28. Gil-Etayo FJ, Suàrez-Fernández P, Cabrera-Marante O, Arroyo D,
Garcinuño S, Naranjo L, et al. T-Helper Cell Subset Response is a
Determining Factor in COVID-19 Progression. Front Cell Infect Microbiol
(2021) 11:624483. doi: 10.3389/fcimb.2021.624483

29. Woodruff MC, Ramonell RP, Nguyen DC, Cashman KS, Saini AS, Haddad
NS, et al. Extrafollicular B Cell Responses Correlate With Neutralizing
Antibodies and Morbidity in COVID-19. Nat Immunol (2020) 21(12):1506–
16. doi: 10.1038/s41590-020-00814-z

30. Braun J, Loyal L, Frentsch M, Wendisch D, Georg P, Kurth F, et al. SARS-
Cov-2-Reactive T Cells in Healthy Donors and Patients With COVID-19.
Nature (2020) 587(7833):270–4. doi: 10.1038/s41586-020-2598-9

31. Ng KW, Faulkner N, Cornish GH, Rosa A, Harvey R, Hussain S, et al.
Preexisting and De Novo Humoral Immunity to SARS-CoV-2 in Humans.
Science (2020) 370(6522):1339–43. doi: 10.1126/science.abe1107
Frontiers in Immunology | www.frontiersin.org 9
32. Wang C, van Haperen R, Gutiérrez-Álvarez J, Li W, Okba NMA, Albulescu
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