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A pseudokinase version of the
histidine kinase ChrS promotes
high heme tolerance of
Corynebacterium glutamicum
Aileen Krüger and Julia Frunzke*

Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, Jülich, Germany

Heme is an essential cofactor for almost all living cells by acting as prosthetic

group for various proteins or serving as alternative iron source. However,

elevated levels are highly toxic for cells. Several corynebacterial species

employ two paralogous, heme-responsive two-component systems (TCS),

ChrSA and HrrSA, to cope with heme stress and to maintain intracellular heme

homeostasis. Significant cross-talk at the level of phosphorylation between

these systems was previously demonstrated. In this study, we have performed

a laboratory evolution experiment to adapt Corynebacterium glutamicum to

increasing heme levels. Isolated strains showed a highly increased tolerance

to heme growing at concentrations of up to 100 µM. The strain featuring

the highest heme tolerance harbored a frameshift mutation in the catalytical

and ATPase-domain (CA-domain) of the chrS gene, converting it into

a catalytically-inactive pseudokinase (ChrS_CA-fs). Reintroduction of the

respective mutation in the parental C. glutamicum strain confirmed high heme

tolerance and showed a drastic upregulation of hrtBA encoding a heme export

system, conserved in Firmicutes and Actinobacteria. The strain encoding the

ChrS pseudokinase variant showed significantly higher heme tolerance than

a strain lacking chrS. Mutational analysis revealed that induction of hrtBA in

the evolved strain is solely mediated via the cross-phosphorylation of the

response regulator (RR) ChrA by the kinase HrrS and BACTH assays revealed

the formation of heterodimers between HrrS and ChrS. Overall, our results

emphasize an important role of the ChrS pseudokinase in high heme tolerance

of the evolved C. glutamicum and demonstrate the promiscuity in heme-

dependent signaling of the paralogous two-component systems facilitating

fast adaptation to changing environmental conditions.
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Introduction

Heme constitutes 95% of functional iron in the human
body and is a key molecule for almost all living cells
(Ponka, 1999; Andrews et al., 2003) acting as cofactor for
many important proteins, including cytochromes, hydroxylases,
catalases, peroxidases (Ajioka et al., 2006; Layer et al.,
2010), and serving as alternative iron source (Anzaldi and
Skaar, 2010). Nevertheless, elevated levels of this iron-bound
protoporphyrin are highly cytotoxic. While this toxicity partially
originates from the redox-active iron, causing the formation
of reactive oxygen species (Kumar and Bandyopadhyay,
2005), a not yet unraveled porphyrin-related toxicity is
furthermore suggested (Stojiljkovic et al., 1999). Consequently,
organisms have evolved sophisticated mechanisms ensuring
heme homeostasis (Padmanaban et al., 1989; Anzaldi and Skaar,
2010). Among those, systems enhancing heme tolerance play
an important role in both pathogenic and non-pathogenic
prokaryotes. Known strategies include mechanisms of (i)
heme sequestration (e.g., HemS of Yersinia enteroliticia
Stojiljkovic and Hantke, 1994), (ii) heme degradation (e.g.,
IsdG of Bacillus anthracis Skaar et al., 2006), and (iii)
heme export by the HrtBA system (Stauff and Skaar, 2009b;
Heyer et al., 2012; Nakamura et al., 2022). The heme-
dedicated ATP-binding cassette efflux pump HrtBA is a highly
conserved system and predominantly found in Firmicutes
and Actinobacteria (Krüger et al., 2022). Recent structural
studies shed light on the mechanism HrtBA employs to
sequester and extrude heme from the cytoplasmic membrane
(Nakamura et al., 2022).

In Gram-positive bacteria, two-component systems (TCS)
play a predominant role in the regulation of heme homeostasis
(Bibb et al., 2007; Stauff and Skaar, 2009a; Hentschel et al., 2014;
Keppel et al., 2019; Krüger et al., 2022). The prototypical TCS
consists of a membrane-bound histidine kinase (HK), which
undergoes autophosphorlyation at a conserved histidine residue
upon stimulus perception. Subsequently, the phosphoryl group
is transferred to a conserved aspartate residue of a cytoplasmic
response regulator (RR) resulting in an appropriate output,
e.g., altering gene expression (Stock et al., 2000; Mascher et al.,
2006; Laub and Goulian, 2007). HKs may be composed of
multiple domains with a significant architectural diversity, but
typically consist of an N-terminal transmembrane domain and
a C-terminal transmitter domain. The transmitter domain can
be split up in the dimerization and histidine phosphotransfer
(DHp) domain and the catalytical and ATPase (CA) domain
(Dutta et al., 1999; Gao and Stock, 2009). The CA-domain
comprises four sequence motifs, including N, G1, F, and G2
boxes, which bind ATP in a pocket using an ATP lid and are
consequently necessary for the autophosphorylation reaction
(Kim and Forst, 2001; Wolanin et al., 2002). The DHp-
domain possesses the H box motif harboring the conserved
histidine residue which is phosphorylated upon stimulus

perception (Dutta et al., 1999), as well as the X box, which
is required for dimerization. The DHp- and CA-domain
are connected via a flexible linker, which probably also
supports keeping the RR in place during the phosphotransfer
reaction (Casino et al., 2009). Many HKs are bifunctional
possessing also a phosphatase motif and subsequently acting
both as kinase and phosphatase for the RR (Perego and
Hoch, 1996; Laub and Goulian, 2007; Hentschel et al., 2014).
Furthermore, also catalytically inactive variants of kinases have
been identified, referred to as pseudokinases, that can act as
important signaling modulators by various mechanisms (Raju
and Shaw, 2015; Kung and Jura, 2019; Kwon et al., 2019;
Mace and Murphy, 2021).

Gene duplication events facilitate the evolution of TCS
signaling enabling the integration of new input signals and
diversification of the gene regulatory network. Members of
the Corynebacteriaceae family, including the Gram-positive
soil bacterium Corynebacterium glutamicum, represent an
interesting example of a recent gene duplication event, encoding
two paralogous two-component systems that both respond
to the multifaceted molecule heme (Figure 1). After sensing
heme availability via intramembrane interaction (Ito et al.,
2009; Keppel et al., 2018), the TCS ChrSA acts as an
activator of the hrtBA operon encoding the heme export
system (Heyer et al., 2012). In contrast, the paralogous
TCS HrrSA is a global regulator of heme homeostasis
controlling more than 200 genomic targets including inter
alia genes involved in heme biosynthesis, respiration as well
as hmuO, encoding heme oxygenase (Keppel et al., 2020).
Strikingly, a high level of cross-phosphorylation between the
systems was observed (Keppel et al., 2019), while phosphatase
activity of these HKs remains specific to their cognate RR
(Hentschel et al., 2014).

In this study, we addressed the question how this underlying
signaling cascade consisting of two paralogous TCSs facilitates
fast adaptation to high heme levels, such as encountered
by pathogenic species in the mammalian host, using the
non-pathogenic C. glutamicum as a model. Understanding
the mechanisms underlying microbial heme tolerance are
not only important for the control of bacterial infections
but also of biotechnological relevance for the engineering
of a microbial production host demanding high product
tolerance (Ko et al., 2021). Adaptive laboratory evolution
(ALE) of C. glutamicum to increased heme levels resulted
in the isolation of highly heme-tolerant clones bearing
mutations in the CA-domain of ChrS. The catalytically
inactive ChrS pseudokinase was shown to be required for
the efficient activation of ChrA via the paralogous HK
HrrS. Overall, this study demonstrated the potential of
this ALE approach to provide new mechanistic insights in
heme-dependent signaling and highlights the flexibility of
paralogous TCS signaling facilitating the fast adaptation to
enhanced heme levels.
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FIGURE 1

Interaction between the two heme-responsive two-component systems (TCS) ChrSA and HrrSA in Corynebacterium glutamicum. The
simplified schematic representation shows the interaction of the two TCS ChrSA (orange) and HrrSA (blue) and each one representative target
gene. ChrSA is solely responsible for the detoxification from heme via activating the hrtBA operon and autoregulates its own expression (Heyer
et al., 2012). The HrrSA system was recently shown to act as regulator for heme homeostasis, controlling hmuO as well as more than 200
further genes involved in heme biosynthesis, respiratory chain, oxidative stress, or cell envelope remodeling (Keppel et al., 2020). The histidine
kinases ChrS as well as HrrS undergo autophosphorylation in response to heme, activating the respective response regulator ChrA and HrrA.
Cross-phosphorylation of the non-cognate response regulator has been demonstrated, while the phosphatase activity remains specific for the
respective cognate response regulator (Hentschel et al., 2014).

Materials and methods

Bacterial strains and growth conditions

Bacterial strains used in this study are listed in
Supplementary Table 1. For standard cultivation,
C. glutamicum cells ATCC 13032 (wild type) and derivatives
were streaked on agar plates (17 g/l) containing brain heart
infusion (BHI) (Difco, BD, Heidelberg, Germany) (37 g/l)
and inoculated at 30◦C overnight. One single colony was
picked and incubated for approximately 8 h at 30◦C in 5 ml
BHI in reaction tubes (for cultivation in shake flasks) or
in 1 ml BHI in deep-well plates (VWR International, PA,
United States) (for microtiter cultivation). This first pre-culture
was used to inoculate the second pre-culture 1:10 in CGXII
minimal medium (Keilhauer et al., 1993) supplemented with
2% (w/v) glucose but without any iron source to starve the
cells from iron allowing the usage of heme as alternative
iron source in the main culture. CGXII medium without
FeSO4 is in the following referred to as “iron-free CGXII.” If
appropriate, 25 µg/ml kanamycin was added to the medium.

Incubation followed shaking at 120 rpm over night at 30◦C.
For the main experiment, cultures were inoculated to an
OD600 of 1 in iron-free CGXII with 2% (w/v) glucose, and
the respective amount of hemin (Sigma-Aldrich, St. Louis,
United States). For simplicity, hemin is further referred to as
heme throughout this study.

For the ALE experiment, the main culture was grown in
deep-well plates for 1–3 days and then freshly transferred at
an OD600 of 1 for the next batch. After the 13th inoculation,
glycerol stocks of each population were frozen at −80◦C.
This allowed a restreaking of each potentially heterogeneous
population on BHI-agar plates and picking of single evolved
clones. Online monitoring of bacterial growth was performed
using the BioLector R© microtiter cultivation system of Beckman
Coulter GmbH (Baesweiler) (Kensy et al., 2009). Backscatter
(a.u.) was measured in 30 min intervals as scattered light
with a wavelength of 620 nm (gain: 20); YFP-fluorescence
was measured at an excitation wavelength of 508 nm and an
emission wavelength of 532 nm (gain: 80). Specific fluorescence
(a.u.) was calculated by dividing the YFP-signal by the
backscatter signal for each measurement.
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Escherichia coli strains including DH5α and
BTH101 were cultivated in Lysogeny Broth (10 g/l
tryptone, 5 g/l yeast extract, 10 g/l NaCl) medium at
37◦C in a rotary shaker and if needed for selection,
50 µg/ml kanamycin or 100 µg/ml ampicillin was
added to the medium.

Recombinant DNA work

Standard molecular methods were performed according
to Sambrook and Russell (2001). For polymerase chain
reactions (PCR) amplification of DNA fragments,
chromosomal DNA of C. glutamicum ATCC 13032 was
used as template and prepared as described previously
(Eikmanns et al., 1994). Synthesis of oligonucleotides as
well as sequencing was performed by Eurofins Genomics
(Ebersberg, Germany).

Plasmids were constructed by amplifying DNA
fragments using the respective oligonucleotides
(Supplementary Tables 2, 3) and enzymatically ligated
into a pre-cut vector backbone using Gibson assembly
(Gibson et al., 2009).

For the deletion of genes in the genome of C. glutamicum,
the suicide vector pK19-mobsacB was used (Schäfer et al., 1994).
Electrocompetent C. glutamicum cells were transformed with
the respective isolated plasmids by electroporation (van der Rest
et al., 1999). Subsequently, the first and second recombination
events were performed and verified as described in previous
studies (Niebisch and Bott, 2001). The respective deletion was
confirmed by amplification and sequencing.

Whole genome sequencing

Whole genome resequencing of C. glutamicum strains
isolated during the ALE experiment was performed using
next generation sequencing (NGS). Genomic DNA was
prepared using the NucleoSpin microbial DNA kit (Macherey-
Nagel, Düren, Germany) according to manufacturer’s
instructions. Concentrations of the purified genomic DNA
were measured using Qubit 2.0 fluorometer (Invitrogen,
Carlsbad, CA, United States) according to manufacturer’s
instructions. The purified genomic DNA was used for the
preparation for genome sequencing using NEBNext Ultra
II DNA Library Kit for Illumina (New England BioLabs,
Frankfurt am Main) and MiSeq Reagent Kit v2 (300-cycles)
(Illumina, San Diego, CA, United States), according to
manufacturer’s instructions. A MiSeq system (Illumina,
San Diego, CA, United States) was used for sequencing.
Data analysis and base calling were accomplished with
the Illumina instrument software. FASTQ output files
were analyzed for single nucleotide polymorphisms using

PathoSystems Resource Integration Center (PATRIC) 3.6.12
(Davis et al., 2020).

Gradient plates

For heme gradient plates, the different mutant strains
were cultivated in triplicates as described above using deep-
well plates for the first and second pre-culture. Subsequently,
cultures were harvested and resuspended to an OD600 of
1 in 0.9% NaCl. For each spot, 2 µl of the respective
samples were spotted on the gradient plates. The gradient
plates were always prepared freshly. Therefore, 30 ml of
iron-free CGXII with 2% (w/v) glucose, and 17 g/l Bacto
Agar (Difco, BD, Heidelberg, Germany) was poured into a
squared agar plate, which was in inclined position. Then,
after drying of the first layer, the incline was removed and
further 30 ml of iron-free CGXII containing 2% glucose, and
15 µM heme were poured in the plates so that a heme
gradient results.

Bacterial two-hybrid assays

Bacterial two-hybrid plate assays for the
qualitative assessment of protein-protein
interactions

Bacterial two-hybrid assays were performed based on
the BACTH kit according to manufacturer’s instructions
(Euromedex, Souffelweyersheim, France). This method
is based on the two fragments T25 and T18 of the
catalytical domain of the adenylate cyclase from Bordetella
pertussis, which is only active when these two fragments
are physically in close contact. Therefore, T25 and
T18 were each fused once to ChrS, ChrS-Ala245fs,
and HrrS. If the HKs interact with each other, this
allows a functional complementation of T25 and T18,
leading to cAMP synthesis, which binds to the catabolic
activator protein (CAP). cAMP/CAP complexes are
pleiotropic regulators of gene transcription in E. coli
and therefore turn on the expression of e.g., the
lac operon.

Therefore, E. coli BTH101, which lack adenylate cyclase
activity, were transformed with two plasmids of heterologous
proteins fused once to T25 and once to T18. This approach
was directly diluted and spotted as 100, 10−1, and 10−2

dilutions on LB plates containing 40 µg/ml X-Gal, 50 µg/ml
kanamycin, 100 µg/ml ampicillin, and 0.5 mM IPTG and
incubated approximately 24 h at 30◦C. Bacteria producing
interacting proteins will form blue colonies. Otherwise,
the colonies remain white. This allowed to check also
for heterogeneity in expression. Additionally, the approach
was also plated on LB plates only with antibiotics, to
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allow picking for further biological replicates for the β-
galactosidase assay.

Bacterial two-hybrid β-galactosidase
measurements

Transformed E. coli strains (compare 1.5.1) were re-
cultivated in deep-well plates as triplicates in LB media with
50 µg/ml kanamycin, 100 µg/ml ampicillin and 0.5 mM
IPTG. OD600 of the overnight cultures was measured in
a Tecan Reader (Thermo Fisher Scientific, Massachusetts,
United States). The β-galactosidase assay was adapted according
to a previous study for 96-well plates (Griffith and Wolf,
2002). Per sample, 1 ml Z-buffer (60 mM Na2HPO4 ×

12H2O, 40 mM NaH2PO4 × H2O, 10 mM KCl, 1 mM
MgSO4 × 7H2O, 50 mM β-mercaptoethanol) was mixed
with 20 µl 0.1% SDS, 40 µl chloroform and 200 µl of
cell culture. The solution was resuspended 15 times for
permeabilization. 100 µl of the permeabilized cells were
put into a microtiter plate, where each 20 µl of 4 mg/ml
o-nitrophenol-ß-galactosidase (ONPG) was added. When
a yellowish color was observable (10 min), 50 µl of 1 M
Na2CO3 was added for reaction termination. Using the
Tecan Reader (Thermo Fisher Scientific, Massachusetts,
United States), A420 and A550 was measured. The Miller
Unit, representing the standardized amount of β-Gal
activity, was calculated using the following formula:

1 MU = 1000 ∗
(A420 − (A550 ∗ 1.75))

(t ∗ v ∗ A600)
(1)

With A420 being the absorbance of the yellow o-nitrophenol,
A550 the scatter from the cell debris, 1.75 is the factor
which needs to be multiplied with A550 to approximate
scatter observed at 420 nm, t is time in minutes, v is
the volume of the culture employed in the plate and A600

for the cell density. The value of A600 was calibrated to
proper OD600.

DNA microarrays

For the analysis of the transcriptome, C. glutamicum
wild type and C. glutamicum ChrS-Ala245fs were cultivated
in triplicates as described above in 50 ml CGXII medium
containing 2% glucose, no FeSO4 and 4 µM heme in
shake flasks. Cells were harvested after 6 h, when the
wild type reached an OD600 around 2.5 and the mutated
strain around 5. The cell suspension was centrifuged
at 4,250 × g, 10 min, 4◦C in falcons filled with ice.
The resulting pellets were frozen in liquid nitrogen
and stored at −80◦C. The following RNA preparation,
cDNA synthesis, microchip hybridization, scanning,
and overall evaluation was performed as described in
previous studies (Baumgart et al., 2013). The microarray

data described in this study are available at NCBI’s
Gene Expression Omnibus under the GEO accession
number GSE206796.

Results

Adaptive laboratory evolution of
Corynebacterium glutamicum toward
tolerance of high heme levels depends
on the heme exporter HrtBA

Previous studies reported a crucial role of the two-
component system ChrSA for heme tolerance of C. glutamicum
(Heyer et al., 2012). Figures 2A,B show characteristic growth
curves of the C. glutamicum wild type (Figure 2A) and
the deletion mutant 1hrtBA (Figure 2B) on increasing
concentrations of heme. Growing on standard conditions with
36 µM FeSO4 as iron source, the wild type displayed a
growth rate of 0.42 ± 0.01 h−1. Lower heme concentrations
between 2.5 and 5 µM showed strongly reduced growth rates
of 0.16 ± 0.003 and 0.20 ± 0.003 h−1, respectively, and
reduced backscatter levels compared to the cultivation under
non-limiting conditions. Higher concentrations between 10
and 15 µM heme exhibited restored backscatter levels and
growth rates of 0.22 ± 0.005 and 0.27 ± 0.012 h−1, but
were accompanied by an elongated lag phase as a result of
heme toxicity. This effect of toxicity was even more evident
for the growth of a strain lacking the operon hrtBA. While
growth on standard conditions and low concentrations of
heme were comparable to the WT, higher concentrations
led to a significantly elongated lag phase of ∼35 and
50 h, respectively.

To elucidate mechanisms promoting high heme tolerance,
we performed an ALE experiment applying increasing
concentrations of heme to C. glutamicum wild type and the
1hrtBA strain (Figure 2C). The ALE was accomplished in
CGXII minimal medium, with 13 repetitive batch cultivations
and started from each four independent single colonies,
yielding four evolving populations. Batch cultures were
started on 10 µM heme and were stepwise increased to
finally reach 60 µM heme in the case of C. glutamicum wild
type. From C. glutamicum wild type populations, four single
clones were isolated from agar plates after the 13th batch
cultivation and then further characterized in liquid culture
(Figure 2D). Further analysis on earlier inoculation steps was
also performed (Supplementary Figure 1). Remarkably, all
isolates from the 13th inoculation were able to grow in the
re-cultivation on medium containing up to 100 µM heme
where growth of the parental strain was completely inhibited.
By contrast, heme levels above 15 µM heme remained toxic
to the 1hrtBA strain and could not be increased throughout
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FIGURE 2

Adaptive laboratory evolution of C. glutamicum to high heme levels. The C. glutamicum wild type (WT) (A) as well as the 1hrtBA strain (B) were
inoculated at a starting-OD600 of 1 in CGXII medium containing 2% glucose and either 36 µM iron (blue) or increasing concentrations of heme
(2.5–15 µM, shades of orange). Data represent the average of three biological replicates including standard deviations depicted as error bars.
(C) Schematic representation of the adaptive laboratory evolution (ALE) experiment. The heme concentration was increased from 10 to 60 µM
heme for the WT in overall 13 repetitive batch cultures (depicted in the bar graph). For the 1hrtBA strain, concentrations > 15 µM remained
toxic throughout the experiment and therefore were not further increased. (D) Growth of each three single clones derived from four different
evolved C. glutamicum wild type populations on 100 µM heme. (E) Growth of each three single clones of the three evolved 1hrtBA populations
on 10 µM heme.

the ALE experiment without killing the cells. Only three of
the four starting populations survived 13 inoculations and for
these, no significant adaptation was observed throughout the
ALE experiment (Figure 2E). These results already underlined
that HrtBA represents a key factor for the adaptation of
C. glutamicum to high heme levels.

Mutations in the catalytic- and ATPase
domain of ChrS lead to significantly
improved growth on heme

Whole genome sequencing of the four isolated clones from
the ALE experiment revealed that all of them possess a mutation
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in the gene encoding the HK ChrS (Table 1). Remarkably,
in all four cases, the catalytic- and ATPase (CA) domain was
affected. For clone 2, a stop codon was inserted directly at the
beginning of the CA-domain, while clone 3 possesses an amino
acid exchange inside and close to the start of this domain.
Strikingly, clone 1 and 4 (evolved in two independent cell
lines) showed the exact same frameshift mutation for alanine at
position 245, immediately after the dimerization and histidine
phosphotransfer (DHp) domain of ChrS. This mutation also
affects the linker between the CA- and DHp-domain. Since
the strains carrying this mutation showed the highest heme
tolerance, evolved clone number 1, in the following referred to
as 1.fs, was further analyzed within this study.

Reintegration of this mutation into the wild type parental
strain confirmed that this frameshift mutation in chrS led
to highly improved growth on heme (Figure 3A and
Supplementary Figure 2). Protein structure prediction via
AlphaFold2 shows the truncated CA-domain of ChrS-Ala245fs
with additional 60 amino acids caused by the frameshift
resulting in a presumably catalytically-inactive pseudokinase
variant (Figure 3B; Jumper et al., 2021; Varadi et al., 2021).

The 1.fs strain showed normal growth under standard
conditions. However, it outcompeted the wild type in the
presence of heme at all concentrations tested, but not under
iron starved conditions (Figures 3C,D and Supplementary
Figure 2). A heme gradient plate experiment further confirmed
the improved heme tolerance of the evolved clone 1.fs,
and showed that this is also the case for the reintegrated
pseudokinase variant ChrS-Ala245fs (Figure 3E).

The ChrS pseudokinase promotes
increased hrtBA expression and is
crucial for the improved growth on
heme

The main known target of ChrA is the hrtBA operon
encoding a heme export system. To unravel the impact of
the frame-shift mutation in chrS on its activation kinetics,
hrtBA reporter assays were performed, using the reporter
plasmid pJC1-PhrtBA-eyfp (Heyer et al., 2012). In fact, reporter
assays (Figure 4A) showed a > 10-fold elevated expression
of hrtB in the evolved clone 1.fs compared to the WT. This
also applies for strain carrying the reintegrated gene variant
(Supplementary Figure 3A) and was further confirmed
by qPCR (Supplementary Figure 4). Strikingly, hrtBA
expression was constitutively high also during cultivation under
standard conditions, i.e., without external addition of heme
(Supplementary Figure 3).

In the following, we further analyzed the growth and hrtBA
expression of the evolved clone in comparison to different
mutant strains, including the deletion mutants 1chrS and
1chrS1hrrS as well as the phosphatase mutant chrS-Q191A

(Figures 3E, 4A; Hentschel et al., 2014). Heme gradient plates
showed that the complete deletion of the chrS gene also led
to an improved growth compared to the WT. This is caused
by the abolished dephosphorylation of ChrA by its cognate
kinase/phosphatase ChrS, allowing constant hrtBA expression
due to cross talk with HrrS. The delay in hrtB expression is
explained by the less sensitive response of HrrS to heme (Keppel
et al., 2019). Interestingly, the 1chrS deletion strain grew worse
than the evolved strain 1.fs. This is in line with the lower hrtBA
expression level in comparison to 1.fs. These results indicated
that the remaining part of ChrS, which is present in the evolved
clone, must play a crucial role for this high activation. Strikingly,
1.fs also significantly outperformed the phosphatase mutant
chrS-Q191A in terms of growth and hrtBA expression.

Considering that the frame-shift mutation in chrS likely
abolished the catalytic activity of the ChrS kinase, we wondered
whether activation of ChrA is solely dependent on HrrS. Cross-
talk between the kinases was previously described (Hentschel
et al., 2014) and might explain the activation of the hrtBA
operon in the evolved clone. To test this hypothesis, the hrrS
gene was deleted in evolved strain 1.fs and compared to a
1hrrS mutant in the parental background. Figure 4B shows
that upon deletion of hrrS, 1.fs grew with an elongated lag
phase of ∼50 h, which is even longer than for the WT. This
result was in agreement with reporter assays showing that hrrS
deletion also led to an abolishment of the hrtBA expression
in 1.fs (Figure 4C). These results confirmed our hypothesis
that HrrS is essential for activating hrtBA expression in the
evolved clone encoding the catalytically-inactive pseudokinase
of ChrS. Deletion of hrrA in the evolved variant did not
influence its improved heme tolerance, therefore indicating that
this is mainly an effect of HrrS activating ChrA (Supplementary
Figure 5A,B). Overexpression of chrA also improved the
heme tolerance to some extent (Supplementary Figure 5C).
Interestingly, a plasmid-based overexpression of hrtBA in
the WT background led to growth defects, probably caused
by severe iron/heme starvation due to the excessive heme
export (Supplementary Figure 6). This is further supported
by comparative transcriptome analyses showing a higher
upregulation in the strain overexpressing hrtBA compared to the
evolved clone. This demonstrates the necessity of a tight balance
between export and intracellular iron availability to maintain
homeostasis while achieving optimal heme tolerance.

To investigate if the truncated version of ChrS still plays
a role in the phosphotransfer to ChrA, we exchanged the
conserved histidine residue at position 186 to an alanine
(Figure 4D). This amino acid exchange did, however, not
significantly influence the heme tolerance of strain 1.fs.
Therefore, it can be assumed that the truncated version
of ChrS does not participate in the phosphotransfer via
autophosphorylation at the histidine 186.

Based on these results, we postulated that a lack of the
catalytic activity of ChrS is beneficial for C. glutamicum heme
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TABLE 1 Key mutations identified in C. glutamicum strains featuring increased heme tolerance.

Clone Type Variance nucleotides Variance amino acids Locus

1.fs, 4.fs Frameshift 733delG Ala245fs cg2201 Sensor histidine kinase ChrS

2.* Non-sense 862C > T Gln288*

3. < Missense 916A > C Thr306Pro

The * is the symbol for the insertion of a stop-codon. Similar, the > indicates an amino acid exchange.

tolerance. In line with this hypothesis, an in-frame deletion
of the CA-domain of chrS led to improved growth on heme
compared to the wild type. However, this strain did not reach
comparably high heme tolerance like the 1.fs strain (Figure 4E).
Upon additional deletion of the DHp-domain, this growth
advantage was abolished suggesting the necessity of homo- or
heterodimerization and/or interaction with ChrA.

ChrS and HrrS form heterodimers
in vivo

In general, HKs act as homodimers. However, based on the
fact that the autophosphorylation histidine residue of ChrS in
the evolved mutant 1.fs was not relevant for its growth benefit
on heme (Figure 4D), we aimed to investigate the homo- and
heterodimerization properties of the C. glutamicum HKs ChrS
and HrrS and the pseudokinase ChrS (ChrS_CA-fs).

To assess these protein-protein interactions between the
respective monomers ChrS, HrrS and the truncated HK variant
ChrS_CA-fs, we performed bacterial two-hybrid (BACTH)
assays (Euromedex, Souffelweyersheim, France). The plate
assays in Figure 5A as well as the quantitative β-galactosidase
assay in Figure 5B show that homodimerization for both the
native and the evolved HKs was observed when these fusion
proteins were produced as C-terminal fusions in E. coli. The
assays also revealed heterodimerization of the native HKs,
while there was no significant evidence for heterodimerization
of the truncated ChrS_CA-fs version. Similar results were
observed when the proteins were produced as N-terminal
fusions (Supplementary Figure 7).

In a next set of experiments, we investigated the interaction
between the sensor kinases and the RRs. Here, BACTH assays
confirmed the interaction of ChrS with ChrA and HrrS with
HrrA, as well as the cross-talk between ChrS and HrrA.
Interaction was not observed for ChrS_CA-fs and neither ChrA
nor HrrA within the β-galactosidase assay, although a slight
signal appeared to be visible on plates (Figure 5). However, the
assays did also not reveal the already reported cross-talk between
HrrS and ChrA (Hentschel et al., 2014) demonstrating also the
limitations of the in vivo approach based on the E. coli system.
Therefore, a direct interaction between ChrA and the evolved
ChrS_CA-fs in the C. glutamicum in vivo background should
not be excluded.

Heme-binding proteins contribute to
heme tolerance

Within this study, we showed the crucial role of the
HrtBA export system for C. glutamicum heme tolerance. To
identify further potentially relevant factors, we performed a
comparative transcriptome analysis of the ChrS-Ala245fs strain
and C. glutamicum wild type (Table 2). As expected, the hrtBA
operon showed significantly increased mRNA levels in the
evolved clone (∼150-fold increase). Besides hrtBA, several other
heme-related targets also showed increased expression levels,
including the TCS chrSA itself, hmuO encoding heme oxygenase
and the heme transport system hmuU. Quantitative PCR
confirmed unaltered expression levels of hrrS (Supplementary
Figure 4). Strikingly, all genes encoding known heme-binding
proteins were significantly upregulated. Furthermore, many
targets of the DtxR regulon were upregulated (Wennerhold
and Bott, 2006), while targets of the RipA regulon were
downregulated (Wennerhold et al., 2005). This indicates that
the evolved clone encounters a strong iron depletion, most
likely caused by the extreme heme export. This is in line
with a growth defect of this strain under iron starvation
conditions (Figure 3C).

To test whether the upregulation of heme-binding proteins
could also contribute to heme tolerance mediated by heme
sequestration, we further analyzed the impact of heme binding
proteins by the construction of serial deletions (Figure 6).
A strain lacking the heme binding proteins hmuT, htaA, htaB,
htaC, and htaD showed wild typic growth at low (4 µM)
and high (20 µM) heme levels. However, at moderate (10
µM) heme concentrations, the mutant showed a significant
growth defect. These results suggested that heme sequestration
via heme-binding proteins could promote heme tolerance at
moderate levels.

Discussion

In this study, we pursued a laboratory evolution approach
to adapt C. glutamicum ATCC 13032 to high heme levels. This
ALE approach resulted in the isolation of strains harboring a
frameshift mutation in the chrS HK gene yielding a catalytically
inactive pseudokinase, which was shown to promote high heme
tolerance of up to 100 µM. This effect could mainly be attributed
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FIGURE 3

The ChrS-Ala245fs pseudokinase promotes heme tolerance. Data represent the average of three biological replicates including standard
deviations depicted as error bars. Cells were inoculated at a starting-OD600 of 1 in CGXII medium containing 2% glucose and the indicated
amount of heme or iron. (A) Growth of C. glutamicum carrying the reintegrated ChrS-Ala245fs allele (gray) compared to the evolved clone 1.fs
(orange) and the wild type (WT) (blue). (B) Predicted protein structures of ChrS (blue) and the truncated ChrS-Ala245fs variant (orange, with 60
additional amino acids caused by the frameshift, shown in red). Prediction was performed using AlphaFold2 (Jumper et al., 2021; Varadi et al.,
2021). Domain arrangements are shown next to the protein structures. TM, transmembrane domain; DHp, dimerization- and
histidine-phosphotransfer-domain; CA, catalytic- and ATPase-domain. (C) Growth of the WT (blue) and the evolved clone 1.fs (orange) on
different heme and iron concentrations; further conditions shown in Supplementary Figure 2. (D) Comparison of growth rates µ in h-1 of WT
(blue) and 1.fs (orange) at different heme and iron conditions. (E) Different strains were spotted on heme gradient plates. The WT was compared
to the evolved clone (1.fs), the reintegration for the evolved clone (ChrS-Ala245fs), the chrS deletion strain (1chrS), the chrS and hrrS deletion
strain (1chrS 1hrrS) and the phosphatase mutant (chrS-Q191A). Photos of plates were taken after 24 and 48 h. A representative experiment out
of three is shown.

to the strong upregulation of the heme exporter HrtBA and was
strictly dependent on phosphotransfer via the non-cognate HK
HrrS to the RR ChrA. Further mutational analysis confirmed
that the conserved histidine residue of the ChrS pseudokinase
(ChrS_CA-fs) was not involved in this phosphotransfer reaction.

Continuously high hrtBA expression levels observed
in our evolved 1.fs strain are in agreement with a defect
in ChrS phosphatase function of this strain. Remarkably,
the evolved strains encoding the truncated pseudokinase
variant ChrS showed significantly higher heme tolerance
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FIGURE 4

Mutational analysis provides insights in the hrtBA activating cascade of the evolved C. glutamicum 1.fs clone. Data represent the average of
three biological replicates including standard deviations depicted as error bars. Cells were inoculated at a starting-OD600 of 1 in CGXII medium
containing 2% glucose and the indicated amount of heme or iron. (A) Reporter assays visualizing hrtBA-expression using the plasmid
pJC1-PhrtB-eyfp for transformation of the wild type (WT) (dark blue), the evolved clone 1.fs (dark orange), 1chrS (light orange), 1chrS1hrrS
(mid-blue), and chrS-Q191A (light blue). (B) Growth of the evolved clone (shades of orange) and the WT (shades of blue) natively or with each a
deletion of hrrS. (C) Reporter assays for hrtB-expression using pJC1-PhrtB-eyfp upon deletion of hrrS in 1.fs (shades of orange) and the WT
(shades of blue). (D) Growth of the wild type strain (shades of blue) and the evolved 1.fs strain (shades of orange) natively or possessing an
amino acid exchange of the autophosphorylation histidine (H186) of ChrS. (E) Impact of ChrS truncation on growth; ChrS variants lacking only
the CA-domain (light orange) or CA-domain and DHp-domain (dark orange) compared to the WT and 1.fs strain (shades of blue). TM,
transmembrane domain; DHp, dimerization- and histidine-phosphotransfer-domain; CA, catalytic- and ATPase-domain.

and higher hrtBA expression levels compared to a
phosphatase deficient strain chrS-Q191A or a strain
lacking chrS completely (1chrS) (Hentschel et al., 2014).
Consequently, dephosphorylation of ChrA seems to be
abolished in the mutant clones, but the presence of the
ChrS pseudokinase is apparently further beneficial for
enhancing heme tolerance.

Our results indicate that the catalytically inactive version
of ChrS promotes—directly or indirectly—the efficient

phosphotransfer reaction from the paralogous HrrS to
ChrA leading to the constitutive activation of hrtBA
(due to the absence of ChrS phosphatase activity). Gene
duplication is a powerful evolutionary driving force and
the presence of paralogs has previously been shown to be
beneficial for adaptations to new environmental conditions
(Gevers et al., 2004; Bratlie et al., 2010). In our study,
the interaction between the two paralogous TCSs HrrSA
and ChrSA enabled fast adaptation and the evolution of novel
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FIGURE 5

Bacterial two-hybrid assays of interactions between ChrSA and HrrSA. (A) BACTH interactions between the histidine kinases ChrS, HrrS and the
evolved ChrS variant (here ChrS_CA-fs) were analyzed as C-terminal fusions; results for N-terminal variants are shown in Supplementary
Figure 7. Blueish color of the colonies indicate interaction, while white colonies indicate no interaction (Euromedex, Souffelweyersheim,
France). First histidine kinase represents the T25-fusion, the second the T18-fusion. + = pKTN25-zip with pUT18-zip (leucine zipper, positive
control), – = pKTN25 with pUT18 (negative control). (B) Quantitative analysis using a β-galactosidase assay. Triplicates were cultivated and
treated according to Griffith and Wolf (2002) to measure colorimetric β-galactosidase activity (given in Miller units). Gray bars represent the
controls, blue bars show the interaction between the histidine kinases, and orange bars show the interaction of histidine kinase with the
response regulators. Drop assays on top of the bar plots represent the triplicates picked after re-cultivation.

functionality of the signaling cascade based on the pseudokinase
version of ChrS.

Pseudokinases are described as kinases lacking catalytic
functions, but can contribute to signaling via functioning
as allosteric modulators, dynamic scaffolds, or competitors
of protein-protein interactions (Reiterer et al., 2014; Kwon
et al., 2019; Tomoni et al., 2019). An example for a
bacterial pseudokinase is DivL from Caulobacter crescentus.
DivL controls the autophosphorylation of another HK CckA
mediated by the phosphorylation status of the RR DivK. The
direct interaction with DivL is required for maximal kinase
activity of CckA, but this is achieved by a yet unknown
mechanism (Iniesta et al., 2010; Tsokos et al., 2011; Francis and
Porter, 2019). It was shown that neither the ATPase domain
nor the autophosphorylation residue of DivL is necessary
for its function (Reisinger et al., 2007)—which is similar

to the scenario observed for ChrS in this study. It can
therefore be hypothesized that the catalytically inactive ChrS
pseudokinase has a stimulating effect on HrrS activity, e.g.,
by influencing it’s “on” or “off” states. An alternative or
additional reason for enhanced phosphotransfer could also be
the recruitment of ChrA via the ChrS pseudokinase fostering
phosphotransfer from HrrS by the formation of heterodimers.
In fact, heterodimerization between the native versions of
ChrS and HrrS could be demonstrated using BACTH assays
speaking for a direct signaling between ChrS and HrrS in vivo.
However, interaction could not be observed with the truncated
version of ChrS, but it has to be kept in mind that the E. coli
based BACTH does not perfectly reflect the C. glutamicum
in vivo situation. Here, we also observed high upregulation of
the chrSA operon itself offering also enhanced levels of RR
acceptor protein.
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TABLE 2 Comparative transcriptome analysis of C. glutamicum wild type and C. glutamicum chrS-Ala245fs growing on 4 µ M heme.

Category and cg gene number Gene designation and description of product mRNA ratioa P-value

Heme-related genes

cg0468 hmuU, hemin transport system, permease protein 16.90 0.05

cg2200 chrA, two-component system, response regulator 8.85 0.01

cg2201 chrS, two-component system, signal transduction histidine kinase 43.60 0.04

cg2202 hrtB, ABC-type transport system, permease component 170.13 0.00

cg2204 hrtA, ABC-type transport system, ATPase component 151.54 0.00

cg2445 hmuO, heme oxygenase 8.30 0.01

Heme-binding proteins

cg0466 htaA, secreted heme-transport associated protein 5.80 0.01

cg0467 hmuT, hemin-binding periplasmic protein precursor 21.23 0.06

cg0470 htaB, secreted heme transport-associated protein 66.64 0.02

cg0471 htaC, secreted heme transport-associated protein 16.87 0.04

cg3156 htaD, secreted heme transport-associated protein 18.64 0.05

DtxR regulon

cg0160 Hypothetical protein cg0160 2.98 0.00

cg1120 ripA, transcriptional regulator of iron proteins, AraC family 5.76 0.10

cg1419 Putative Na+-dependent transporter 4.85 0.01

cg1476 thiC, thiamine biosynthesis protein ThiC 2.48 0.04

cg1695 Putative plasmid maintenance system antidote protein 0.34 0.05

cg1930 Putative secreted hydrolase 5.68 0.01

cg1930 Putative secreted hydrolase 5.68 0.01

cg1931 Putative secreted protein 9.98 0.05

cg1931 Putative secreted protein 9.98 0.05

cg2311 SAM-dependent methyltransferase 3.47 0.00

cg2444 Hypothetical protein cg2444 4.67 0.01

cg2782 ftn, ferritin-like protein 0.32 0.06

cg2796 MMGE/PRPD family protein 11.01 0.00

cg2962 Uncharacterized enzyme involved in biosynthesis of extracellular polysaccharides 6.69 0.02

RipA regulon

cg0310 katA, catalase 0.14 0.00

cg0445 sdhC, succinate dehydrogenase 0.36 0.02

cg0446 sdhA, succinate dehydrogenase 0.40 0.00

cg0447 sdhB, succinate dehydrogenase 0.45 0.00

cg1343 narH, probable respiratory nitrate reductase oxidoreduct 0.49 0.03

cg1344 narG, nitrate reductase 2, alpha subunit 0.30 0.00

cg1487 leuC, isopropylmalate isomerase large subunit 0.29 0.01

cg1737 acn, aconitate hydratase 0.29 0.01

cg2636 catA1, catechol 1,2-dioxygenase 0.03 0.00

cg3048 pta, phosphate acetyltransferase 0.24 0.00

aExpression of selected genes given as the mRNA ratio of the evolved strain compared to the WT (>2-fold or < 0.5-fold, p-value < 0.05). Data represent the average of three biological
replicates (for a complete list of up- and downregulated genes, see Supplementary Table 4).

Although only a few reports on heterodimerization of HKs
exist up to date (Capra and Laub, 2012; Willett and Crosson,
2017), studies in e.g., Pseudomonas aeruginosa showed that the
HK RetS directly controls the HK GacS on three different levels
by heterooligomerization (Goodman et al., 2009; Jing et al.,
2010; Francis et al., 2018). Such pivotal (multiple) regulatory
roles of heterodimers or –oligomers could also play a role in

the native C. glutamicum system. In previous studies, HrrS was
shown to act as “kickstarter” of the ChrSA-mediated response
and the absence of HrrS led to a delayed promoter activation of
hrtBA (Keppel et al., 2019). Consistently, heterooligomerization
of HrrS with ChrS could support the fast activation of ChrA
when heme becomes available, e.g., by cross-phosphorylation
on the HK-level. An alternative option could be an indirect
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FIGURE 6

Heme binding proteins contribute to heme tolerance. The C. glutamicum wild type (WT) (blue) and the heme binding deficient mutant
1hmuT1htaA1htaBC1htaD strain (orange) were inoculated at a starting-OD600 of 1 in CGXII medium containing 2% glucose and either 4, 10,
or 20 µM heme. Data represent the average of three biological replicates including standard deviations depicted as error bars.

communication between ChrS and HrrS via another—yet
unknown—component involved in cross-signaling (Buelow and
Raivio, 2010; Salvado et al., 2012).

Apart from the conserved heme export system HrtBA,
transcriptome analysis gave further hints for additional players
contributing to heme tolerance in C. glutamicum. Here, we
observed a high upregulation of all genes encoding heme-
binding proteins and a deletion mutant showed reduced
tolerance to intermediate heme levels. In fact, heme-binding
proteins could serve a detoxifying role via heme sequestration,
as described throughout the literature for other organisms,
including HbpC of Bartonella henselae (Roden et al., 2012),
HemS of Yersinia enterocolitica (Stojiljkovic and Hantke, 1994)
or HupZ of Group A Streptococcus, which has been recently
hypothesized to function as heme chaperone (Lyles et al., 2022).

Moreover, several transport systems are differently
expressed in the evolved strains. Export of further toxic heme-
related products, or even import of neutralizing compounds
coping with H2O2, like e.g., described for the ribulose-5-
phosphate 3-epimerase in Escherichia coli or the Mn(II)
uptake system of Neisseria gonorrhoeae importing manganese
(Horsburgh et al., 2002; Seib et al., 2004; Sobota and Imlay,
2011), could also aid at tolerating heme. Of special interest is
e.g., the operon cg2675-cg2678, which encodes an ABC-type

transport system and was found also to be regulated by the
heme-responsive RR HrrA (Keppel et al., 2020). Future studies
on these systems, are however, required to elucidate their role
in heme tolerance or homeostatic processes.

The appearance of a ChrS pseudokinase was not yet
described to occur naturally in corynebacterial strains (Bott
and Brocker, 2012). However, our experimental approach
demonstrated their ability to quickly adapt to high heme
levels, which is for example relevant for virulence conditions
in the mammalian host (Stauff and Skaar, 2009a). In the soil
environment, a constant expression of the hrtBA operon is
likely too costly as reflected by the strong upregulation of
the iron starvation response in the evolved clones, including
the regulon of DtxR (Wennerhold and Bott, 2006) and the
downregulation of RipA targets (Wennerhold et al., 2005).
The native cascade consequently rather facilitates a fast but
transient activation of hrtBA in response to heme levels
(Keppel et al., 2019).

Strains featuring an elevated heme tolerance are also highly
interesting for the biotechnological production of heme, which
is commercially produced for medical uses or the food sector
for artificial meat products. Recent metabolic engineering efforts
resulted in E. coli (Kwon et al., 2003; Zhao et al., 2018)
and C. glutamicum heme-producing strains (Ko et al., 2021)
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achieving heme yields of about 0.14–0.61 mmol mol−1. In this
context, the pseudokinase variant of ChrS described in this study
might aid future metabolic engineering approaches to promote
efficient heme export and high product tolerance.
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