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Abstract

Background: Between 2013 and 2015, the UK Biobank collected accelerometer traces from 103,712 volunteers aged between
40 and 69 years using wrist-worn triaxial accelerometers for 1 week. This data set has been used in the past to verify that individuals
with chronic diseases exhibit reduced activity levels compared with healthy populations. However, the data set is likely to be
noisy, as the devices were allocated to participants without a set of inclusion criteria, and the traces reflect free-living conditions.

Objective: This study aims to determine the extent to which accelerometer traces can be used to distinguish individuals with
type 2 diabetes (T2D) from normoglycemic controls and to quantify their limitations.

Methods: Machine learning classifiers were trained using different feature sets to segregate individuals with T2D from
normoglycemic individuals. Multiple criteria, based on a combination of self-assessment UK Biobank variables and primary care
health records linked to UK Biobank participants, were used to identify 3103 individuals with T2D in this population. The
remaining nondiabetic 19,852 participants were further scored on their physical activity impairment severity based on other
conditions found in their primary care data, and those deemed likely physically impaired at the time were excluded. Physical
activity features were first extracted from the raw accelerometer traces data set for each participant using an algorithm that extends
the previously developed Biobank Accelerometry Analysis toolkit from Oxford University. These features were complemented
by a selected collection of sociodemographic and lifestyle features available from UK Biobank.

Results: We tested 3 types of classifiers, with an area under the receiver operating characteristic curve (AUC) close to 0.86
(95% CI 0.85-0.87) for all 3 classifiers and F1 scores in the range of 0.80-0.82 for T2D-positive individuals and 0.73-0.74 for
T2D-negative controls. Results obtained using nonphysically impaired controls were compared with highly physically impaired
controls to test the hypothesis that nondiabetic conditions reduce classifier performance. Models built using a training set that
included highly impaired controls with other conditions had worse performance (AUC 0.75-0.77; 95% CI 0.74-0.78; F1 scores
in the range of 0.76-0.77 for T2D positives and 0.63-0.65 for controls).

Conclusions: Granular measures of free-living physical activity can be used to successfully train machine learning models that
are able to discriminate between individuals with T2D and normoglycemic controls, although with limitations because of the
intrinsic noise in the data sets. From a broader clinical perspective, these findings motivate further research into the use of physical
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activity traces as a means of screening individuals at risk of diabetes and for early detection, in conjunction with routinely used
risk scores, provided that appropriate quality control is enforced on the data collection protocol.

(JMIR Diabetes 2021;6(1):e23364) doi: 10.2196/23364
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Introduction

The UK Biobank
Objective measures of physical activity can be used to
characterize people’s free-living movement behavior to provide
the kind of digital phenotype [1] that promises to support a
vision of participatory, preventive, and personalized health care.
The UK Biobank collected the largest available data set of
free-living physical activity traces [2]. It includes uncontrolled,
raw accelerometry traces collected for 7 days for a random
selection of 103,712 out of a total of 502,664 UK Biobank
participants (approximately 25%) between February 2013 and
December 2015. All the studies cited here, including the one
described in this paper, have used a reduced set after performing
quality checks.

This data set has been used in recent studies to quantify
differences in physical activity levels across the general UK
Biobank population [3] and to show that participants with
chronic diseases exhibit lower levels of activity than the general
UK Biobank cohort [4]. It has also demonstrated associations
between cardiometabolic health, multimorbidity, and mortality
[5,6]. However, this data set has not been used to validate the
hypothesis that accelerometer traces measures of physical
activity can be used as a predictor for type 2 diabetes (T2D)
and, thus, potentially, as a valid digital phenotype for early
detection of T2D.

T2D and Physical Activity
T2D is linked with low physical activity levels and increasing
age [7]. This disease has become much more prevalent and is
rapidly rising globally, especially in parts of the developing
world [8].

Research into the effectiveness of activity monitoring for T2D
detection and prevention is motivated by the disproportionately
high cost, both economic and social, of treating T2D [9],
considering that approximately 90%-95% of diagnosed diabetes
among adults is type 2. In the United Kingdom alone, more than
2.7 million people have been diagnosed with T2D, whereas a
further 750,000 people are believed to have the symptoms but
are yet to be diagnosed with the disease [10].

Studies have been undertaken to use digital phenotypes for early
diagnosis, but most studies have focused on using traditional
multi-omics approaches [11].

The UK Biobank Accelerometer Data and T2D
In this study, we tested the hypothesis that activity profiles,
when represented in sufficient detail, differ significantly between
individuals with T2D and the general population.

This study begins by defining participants with T2D in the UK
Biobank using a combination of preexisting diagnoses collected
in the UK Biobank assessment centers and automated analysis
of the participants’ electronic health records (EHRs) follow-up.
We then evaluate the extent to which accelerometer traces can
distinguish individuals with T2D from normoglycemic controls.
The approach employs a combination of traditional machine
learning classification models to quantify the predictive power
of features extracted from accelerometer traces and to assess
their limitations relative to this task.

Methods

Overview
This paper refers to each volunteer’s 1-week activity recording
period as their wear time and to the UK Biobank volunteers as
the accelerometry cohort.

The data set used in this study was derived from the collection
of activity traces for each of these participants, filtered using
the inclusion and exclusion criteria described below. Variables
representing physical activity features were extracted from the
raw traces. In addition, a small set of sociodemographic,
anthropometric, and metabolic variables were added, following
recent studies [11] in which the same variables were used to
characterize the behavioral phenotype of UK Biobank
participants relative to cardiovascular disease (CVD) and T2D.

Inclusion and Exclusion Criteria for T2D-Positive
Participants
The criteria described below and the resulting data set sizes are
summarized in Figure 1. Participants with T2D were identified
using a combination of self-reported data collected at the
Biobank assessment center and data from the participants’
primary care EHR, including prescriptions. At the time of
writing, EHR records were available for approximately 245,000
out of 502,664 individuals (approximately 45%) of the UK
Biobank population. Inclusion in the T2D group, based on
self-reporting, follows the same criteria as in the study by
Schüssler-Fiorenza Rose et al [11], namely, individuals with
an explicit diagnosis as part of their assessment, based on the
UK Biobank Showcase [12].
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Figure 1. Training set selection criteria for type 2 diabetes–negative and type 2 diabetes–positive individuals. EHR: electronic health record; QC:
quality control.

At the baseline assessment center, participants who had been
diagnosed with diabetes or T2D were selected; those taking
insulin within their first year (variable 2986-0.0) and who were
less than 35 years old (variable 2976-0.0) at diagnosis were
excluded to reduce the likelihood of individuals with type 1
diabetes and monogenic forms of diabetes [13]. This resulted
in 2755 participants from the accelerometry cohort being
identified as having T2D.

Primary care EHRs were also used to identify participants who
developed T2D after their baseline assessment but before their
accelerometer wear time. The incidence of T2D was defined as
the occurrence of a Read Code version 2 or Clinical Terms
Version 3 (CTV3) code corresponding to T2D after the date of
the assessment center visit. Read Code version 2 code sets
developed by Kuan et al were used [14], and equivalent CTV3

codes were mapped using mapping data provided by the UK
Biobank [4,5].

The low prevalence of T2D in the UK Biobank population is
reflected in the very small positive group, compared with an
overwhelmingly large non-T2D control group (99,636
participants). Therefore, it is necessary to rebalance these classes
before model learning. Rather than random selection from the
control group, better selection criteria can be adopted.

We observed that the normoglycemic control group might
include individuals with nondiabetes-related physical activity
impairments. Excluding such individuals is desirable, as it is
likely to remove noise from the control group. The controls’
selection process described below includes a judgment,
grounded in general medical knowledge, of how a wide variety
of conditions may have affected a participant’s ability to perform
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normal activities. Although the assessment may not be entirely
accurate, to the best of our knowledge, this is the first attempt
to select a control group based on EHR data. The outcome was
assumed to be no worse than random selection from the control
group. The results show that the prediction accuracy improves
relative to using a random control training set.

The selection process involved a further analysis of EHRs for
a period antecedent of wear time to identify any nondiabetes
medical conditions that may have resulted in physical activity
impairment. This analysis is limited by the partial availability
of EHRs (approximately 20,000 individuals within the cohort).
The analysis is described in detail in Multimedia Appendix 1.

An impairment score is calculated for each individual by (1)
associating a severity score with each type of relevant disease
reference in the Read Code version 2 catalog and (2) averaging
the scores across all occurrences of the disease references in
the individual’s EHR history, within 6 months before wear time.
Records are included for 1 month after wear time, as there may
be a delay in recording new conditions. The analysis resulted
in 2 control subpopulations, as shown in Figure 1 (bottom right):
Norm-0, where we expected no impairment (n=8463), and
Norm-2, with expected high impairment (n=1666). These results
are summarized in Table 1. Both sets were used as part of
supervised learning in separate experiments, as explained below.

Table 1. Number of participants in each subpopulation according to activity impairment severity score.

Participants with adequate wear time, n (%)Total participants, NImpairment score

8463 (76.80)11,019Norm-0

1666 (49.66)3355Norm-2

It is also acknowledged that 151 out of 3101 T2D-positive
individuals also had a high impairment severity score for
physical activity. This small subset of the T2D-positive
population was not excluded from the training data sets. T2D
is a complex disease that can cause many complications or
comorbidity with other conditions, such as CVD. Therefore, to
capture all behaviors and activity patterns associated with T2D,
it is important to include the severely impaired T2D-positive
individuals in the overall T2D-positive population.

We have also experimentally verified that removing these few
individuals from the training set does not alter the properties of
the resulting model (refer to the Results section).

Training Data Sets
Using these 2 control groups, 2 training sets were formed:
training set 1: T2D versus Norm-0 and training set 2: T2D versus
Norm-2. The first was used to test our main hypothesis that
activity levels in the T2D group were significantly different
from those in the unimpaired control group. The second was
used to quantify the effect of possible nondiabetic activity

impairment as a source of noise in the controls. This was
achieved by training the same models using training set 1 and
training set 2 and then comparing their relative predictive
performance.

Physical Activity Features
A raw accelerometry trace consists of a triaxial (x, y, and z) time
series. The open-source accelerometer analysis toolkit developed
at the University of Oxford, available on GitHub [15], was used
to annotate timelines for each raw activity trace [16]. The tool
breaks down the time series into 30-second fragments, called
epochs, and then employs a classifier (random forests and hidden
Markov models) to annotate a time series in which each epoch
belongs to 1 of 5 activity types: sedentary, moderate, walking,
sleep, and light tasks. This tool distinguishes between walking
from sedentary and moderate activities. According to the authors
of this study, these activity types correspond to the following
metabolic equivalent of task levels: sedentary, 1.5; moderate,
4.9; walking, 3.2; sleep, 1.0; and light tasks, 2.2. The feature
extraction hierarchy is summarized in Figure 2.
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Figure 2. Hierarchy of physical activity representations.

The level above the time series activity recognition sequence
uses activity bouts. An activity bout is defined as a single epoch
or an uninterrupted consecutive series of epochs in which a
single activity type is performed. The length of a bout refers to
the many 30-second epochs for which each bout is performed.
The features extracted for this study are at the level of activity
bouts of each activity type: their frequency, average length, and
percentage of time spent in each, broken down into fractions of
a 24-hour day. This choice is inspired by neuroscience research
on the effects of cognitive impairment in early stages of
Parkinson disease on gait, where ambulatory bouts play a key
role [17,18]. A personalized analysis of daily activities was
performed to extract these features. First, to accommodate for
different sleeping habits, night-sleep time boundaries were
identified for each individual. These are defined as the average
of the largest nearly continuous period of sleep activity bouts

over a 24-hour period. The remaining period of the 24-hour day
is then divided into 3 phases, denoted as morning, afternoon,
and evening. Within each phase, the activity bout level features
were extracted for each activity type.

This analysis results in a breakdown of 60 activity bout-level
features, organized into a 5×4 matrix for each individual, with
features extracted for four periods of the 24-hour day including
sleep time as shown in Figure 3. Each element in the matrix
(the type of activity and time of day) has 3 features: (1) number
of bouts for that activity, (2) percentage of time spent in the
activity, and (3) average length of the bouts. This arrangement
resulted in a total of 60 features per individual. These were then
aggregated over 7 days of wear time, taking the average for
each element in the matrix. This feature space is referred to as
the high-level activity bout features in this study. The code is
available on GitHub [19].

Figure 3. Feature matrix for physical activity bout representation space.

Sociodemographic, Anthropometric, and Lifestyle
Features
To quantify the relative importance of the new high-level
activity bout features when used in machine learning, traditional
sociodemographic and lifestyle indicators that are commonly

associated with the incidence of T2D have been added. These
are shown in Table 2 and were chosen based on previous studies
[5,20]. These features are combined with self-reported physical
activity assessments, some of which are not part of the output
from the Oxford accelerometer analysis tool, notably vigorous
activity. In contrast, the physical activity features in our
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approach are the high-level activity bout features obtained from
objective accelerometer measurements. Objective physical

activity metrics also help to validate subjective measurements
[21,22].

Table 2. Sociodemographic, lifestyle, and anthropometric characteristics selected from the UK Biobank baseline assessment for comparison with
high-level activity bout features space.

DescriptionSociodemographic, lifestyle, and anthropometry characteristic

Male or female (approximately 50:50 ratio)Sex

Recruits at baseline were aged between 40 and 69 yearsAge at the assessment center

Predominantly White British, with some participants identifying as Black,
Asian and Minority Ethnic groups

Ethnic group

Participant reports if they were alcohol drinkers in the past, were currently
drinking alcohol, or never had drunk alcohol

Alcohol drinking status

Participants report if they had smoked in the past, were currently smoking,
or had never smoked

Smoking status

Percentage of fat in total body mass (a better indicator for obesity than
BMI)

Body fat percentage

Measurement taken around the abdomen at the level of the umbilicus
(belly button)

Waist circumference

Self-reported average duration of sleep in a daySleep duration

Self-reported average time spent watching television per dayTime spent watching television

Metric for material deprivation within a populationTownsend index

Self-reported average duration of time spent walking in a dayDuration of walking activity

Self-reported average duration of time spent performing vigorous activities
during the day

Duration of vigorous activity

Self-reported average duration of time spent performing moderate activity
during the day

Duration of moderate activity

The International Physical Activity Questionnaire-Short Form
was used for the variables measuring physical activity (including
moderate, vigorous, and walking), television viewing times,
and sleep duration (Table 2). Some of these sociodemographic
and lifestyle features contained missing data. This was solved
using a k-nearest neighbor imputer in scikit-learn [23], which
calculates the missing value using the mean of k-nearest
neighbors found in the training data using Euclidean distances,
thus preserving the distribution of the original data.

Binary Classification
This exercise compares a number of classification models,
obtained using different learning algorithms and using training
sets training set 1 and training set 2, introduced earlier, in
separate sets of experiments. Furthermore, different
combinations of features were considered for each of the training
sets: (1) high-level activity bout features only, (2)
sociodemographic and lifestyle features only, and (3) high-level
activity bout features combined with sociodemographic and
lifestyle features.

These combinations produce a space of 6 data sets on which
the models are trained. Three learning algorithms were tested
on these data sets: random forest, logistic regression, and
Extreme Gradient Boosting (XGBoost) algorithm. XGBoost is
a relatively recent and perhaps less known algorithm [24], which
has come to prominence owing to its superior performance,
both in terms of training time and prediction accuracy, compared
with random forests. XGBoost uses gradient boosting, an

ensemble method that builds a stronger classifier by adding
weaker models on top of each, iteratively, until the training data
achieve a good level of prediction performance.

A total of 18 classifier models were trained using these
combinations of 6 data sets and 3 algorithms. A standard 10-fold
cross-validation was used to avoid overfitting. When learning
the classifiers, a random selection of half the Norm-0
T2D-negative controls in training set 1 only was undertaken to
balance the size of the Norm-0 T2D-negatives and T2D-positive
(3103 individuals). Norm-0 T2D-negative individuals still vastly
outnumbered the T2D-positive population.

Following common practice for binary classifiers, this study
reports F1 scores, precision, recall, and area under the receiver
operating characteristic curve (AUC) scores. F1 conveys the
balance between precision and recall and is a value between 0
and 1, where 1 indicates perfect precision and recall. It is
calculated using the harmonic mean of the precision and recall.
The AUC is a metric, with values between 0 and 1, for how
well a classifier is capable of distinguishing between 2 classes.
A value of 1 implies a good measure of discrimination, whereas
a value of 0.5 implies no discrimination capacity.

On the basis of these performance and evaluation metrics,
models were compared to assess (1) the differences in predictive
power between the 2 feature sets using training set 1; (2) the
effect of noise in controls, using training set 2; and (3) the best
modeling algorithms.
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Clustering Analysis
Further analysis was undertaken where unsupervised clustering
algorithms were used to segregate and identify unlabeled
individuals that exhibit similar behavior with the new high-level
activity bout feature space. These clusters were then profiled
and interpreted in terms of their anthropometric, lifestyle, and
sociodemographic characteristics. This analysis is beyond the
scope of this paper but is reported in Multimedia Appendix 2.

Results

Distribution of Physical Activity Features
To summarize the distribution of the T2D-positive and Norm-0
T2D-negative populations, the high-level activity bout features
were aggregated for a 24-hour period and averaged across both
populations.

On average, both the T2D-positive and T2D-negative
populations do not undertake significantly different quantities

of each activity type aggregated to the level of the 24-hour day
with approximately 5% moderate activity, 42% sedentary
activity, 38% asleep, 5% light tasks, and 10% walking.
However, the high-level activity bout features also offer an
insight into the regularity and length of activity bouts. The
values for these features do offer some discrimination between
the T2D-positive and Norm-0 T2D-negative populations. The
histograms below demonstrate an example of this by showing
the distribution of daily averages for bout length, the number
of bouts, and the percentage of times spent on sleep activity.

The histograms in Figures 4-6 show noticeable differences
between the 2 populations in the features that we have
developed, when aggregated out to a day. Breaking the daily
patterns into 4 distinct times of day (morning, afternoon,
evening, and during sleep) would further demonstrate the
differences in activity bout patterns for the 2 populations by
virtue of the granularity. The combined effect of all these
granular-level activity bout features produces high model
accuracy, as reported below.

Figure 4. Histogram for daily average percentage times spent asleep.

Figure 5. Histogram for daily average length of sleep bouts.
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Figure 6. Histogram for daily average number of sleep bouts.

Binary Classification
A summary and performance comparison across the 18 models
built for this study is presented in Tables 3 and 4, where AUC
measures are obtained by averaging over 10 models using
cross-validation for robustness. The receiver operating

characteristic (ROC) curves and AUC scores are shown in
Figures 7-12. All models were split between training and test
data sets with an 80:20 ratio. More detailed metrics for precision,
recall, F1, and ROC curves, using 10-fold cross-validation, are
available in Multimedia Appendix 3.

Table 3. Classification results measured using area under the receiver operating characteristic curve scores, showing the effect of choice of type 2
diabetes–negatives, Norm-0 (no physical activity impairment) versus Norm-2 (severe physical activity impairment). The values in the cells represent
area under the receiver operating characteristic curve scores.

High-level activity bout features+sociode-
mographic and lifestyle

Sociodemographic and lifestyleHigh-level activity-bout featuresPredictive model

Norm-2Norm-0Norm-2Norm-0Norm-2Norm-0

0.770.860.780.830.680.80Random forest

0.780.860.780.830.700.79Logistic regression

0.750.850.740.800.660.78Extreme gradient boosting

Table 4. Classification results measured using F1, showing the effect of choice of type 2 diabetes-negatives, Norm-0 (no physical activity impairment)
versus Norm-2 (severe physical activity impairment). The values in the cells represent F1 scores.

High-level activity bout features+sociode-
mographic and lifestyle

Sociodemographic and lifestyleHigh-level activity bout featuresPredictive model and

T2Da status

Norm-2Norm-0Norm-2Norm-0Norm-2Norm-0

Random forest

0.770.730.770.650.700.65T2D-positive

0.630.810.630.780.540.78T2D-negative

Logistic regression

0.770.740.770.690.720.66T2D-positive

0.650.820.650.790.540.77T2D-negative

Extreme gradient boosting

0.760.730.740.670.680.66T2D-positive

0.630.800.620.760.520.77T2D- negative

aT2D: type 2 diabetes.
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Figure 7. Receiver operating characteristic curve and area under the receiver operating characteristic curve for type 2 diabetes vs Norm-0: High-level
activity bout features & sociodemographic and lifestyle features combined. AUC: area under the receiver operating characteristic curve; ROC: receiver
operating characteristic curve; T2D: type 2 diabetes.

Figure 8. Receiver operating characteristic curve and area under the receiver operating characteristic curve for type 2 diabetes vs Norm-0: High-level
activity bout features only. AUC: area under the receiver operating characteristic curve; ROC: receiver operating characteristic curve; T2D: type 2
diabetes.
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Figure 9. Receiver operating characteristic curve and area under the receiver operating characteristic curve for type 2 diabetes vs Norm-0:
Sociodemographic and lifestyle features only. AUC: area under the receiver operating characteristic curve; ROC: receiver operating characteristic curve;
T2D: type 2 diabetes.

Figure 10. Receiver operating characteristic curve and area under the receiver operating characteristic curve for type 2 diabetes vs Norm-2: High-level
activity bout features & sociodemographic and lifestyle features combined. AUC: area under the receiver operating characteristic curve; ROC: receiver
operating characteristic curve; T2D: type 2 diabetes.
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Figure 11. Receiver operating characteristic curve and area under the receiver operating characteristic curve for type 2 diabetes vs Norm-2: High-level
activity bout features only. AUC: area under the receiver operating characteristic curve; ROC: receiver operating characteristic curve; T2D: type 2
diabetes.

Figure 12. Receiver operating characteristic curve and area under the receiver operating characteristic curve for type 2 diabetes vs Norm-2:
Sociodemographic and lifestyle features only. AUC: area under the receiver operating characteristic curve; ROC: receiver operating characteristic curve;
T2D: type 2 diabetes.

When performance is measured using AUC, stronger results
are achieved when using high-level activity bout features and
sociodemographic and lifestyle in combination, as expected.
Using high-level activity bout features on their own reduces

performance (approximately 7%-8%). However, high-level
activity bout features provide almost the same performance as
traditional sociodemographic and lifestyle features on their own.
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Models were also generated using alternate training data sets,
where 151 T2D-positive individuals with high physical activity
impairment severity scores were excluded. These models exhibit
very similar performance to those presented above, suggesting
that physically impaired (Norm-2) T2D-positive individuals
can be used as part of the T2D positives in the training set.

F1 measures in Multimedia Appendix 3 reveal differences in
classification accuracy between T2D against Norm-0 controls,
and T2D against Norm-2 controls. When using Norm-0 controls,
negatives are more accurately predicted than T2D, presumably
because of class imbalance (4178 vs 3103). It is also clear that
excluding physically impaired negatives improves the results.

When Norm-2 is used, however, T2D is more accurately
predicted than negatives, perhaps because in this case, Norm-2
is the minority class (1666 vs 3103) and because of potential
diversity within the highly impaired control population. This
will be investigated in a future study.

In all cases, the combination of high-level activity bout features
and sociodemographic and lifestyle variables gives better results
than using either set of features on their own, as expected. The
performances of both feature sets are largely independent of the
choice of the learning algorithm, as seen by the overlapping
ROC curves.

Discussion

Principal Findings
Using data from the UK Biobank, this study supports the
hypothesis that individuals with diagnosed T2D exhibit physical
activity patterns that are significantly different from those of
normoglycemic controls, thus providing novel ways to detect
T2D, that is, through appropriate analysis of physical activity
patterns. Although most previous studies, particularly using UK
Biobank, are limited to self-reported physical activity levels
[5,11,25], here we have demonstrated the benefits of extracting
a more objective and granular representation of physical activity
from raw accelerometry traces data, namely, by activity type
and time of day or sleep time. Using these features, either on
their own or in combination with a selected set of
sociodemographic, anthropometric, and lifestyle variables, we
have shown that appropriately trained machine learning models
were able to discriminate between the 2 cohorts with good
predictive accuracy.

Practical Significance
These findings suggest that it may be possible to use continuous
or periodic self-monitoring of individuals at risk of T2D,
specifically those in a prediabetes state, for screening and early
detection of disease progression. This is particularly important
as evidence shows that reversal of T2D is possible, with a higher
success rate when interventions are undertaken within the first
5 years of the disease [26-28].

However, early detection is still an unsolved problem, with
recent figures reporting that over 190 million people worldwide

live with undiagnosed diabetes [29]. Risk scores that are
routinely used for screening, such as the Leicester score, are
easy to obtain but not very accurate [30].

This suggests that self-monitoring of physical activity patterns,
such as those presented in this study, may complement risk
scores to help with the early detection of T2D, especially in
high-risk individuals. Today, this can be achieved at a low cost
using readily available technology [31], including
internet-enabled data loggers that do not require participants to
return devices, such as smartphones, periodically. However,
further research is required to establish the quality and
significance of physical activity data for this specific purpose.

Limitations
In principle, it may be possible to try and detect early signs of
T2D using specific fingerprint patterns found in physical activity
traces, where an example of a pattern may be a person who
takes short bouts of low or moderate activities with frequent
sedentary breaks in between. However, in practice, we found
no evidence in the UK Biobank data set that strong correlations
exist between specific physical activity patterns and T2D. Thus,
what the machine learning approach has to offer may be limited
to the strong indication demonstrated in this work, namely, that
granular features extracted from the raw traces, taken together,
are indeed good predictors and usefully augment the more
traditional sociodemographic set of variables.

Although the UK Biobank is the largest known public
accelerometry data set where a T2D cohort can be identified,
detecting differences between T2D and controls remains
challenging because of their low prevalence in the population,
which is reflected in this study with the relatively small data
set available for training when using supervised machine
learning. Simultaneously, this data set was subject to noise for
two reasons. First, because no formal quality assurance protocol
was enforced during data collection, and second, because of the
limited knowledge about other non-T2D–related conditions
among the controls, which may contribute to reduced physical
mobility or a more sedentary routine. We have shown how
EHRs can be used to overcome this limitation.

Conclusions
This study motivates further research into the use of granular
physical activity measures as a form of digital phenotype for
T2D. It also suggests that more rigorous protocols on wearing
physical activity loggers are required to improve the quality of
the data and the signal-to-noise ratio, along with stringent
inclusion and exclusion criteria or at least comprehensive
knowledge of clinical conditions that may affect the signal in
the traces. This is also reflected in other studies [32,33]. When
such quality criteria are met, it should be possible to repeat the
analysis presented here using data sets from large-scale
deployment of physical activity loggers to validate the
hypothesis that early detection of T2D is scientifically and
technically feasible.
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CTV3: Clinical Terms Version 3
CVD: cardiovascular disease
EHR: electronic health record
ROC: receiver operating characteristic curve
T2D: type 2 diabetes
XGBoost: Extreme Gradient Boosting
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