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Abstract: Although they have been under development for years and are attracting a lot of attention,
vision-based tactile sensors still have common defects—the use of such devices to infer the direction of
external forces is poorly investigated, and the operating frequency is too low for them to be applied in
practical scenarios. Moreover, discussion of the deformation of elastomers used in vision-based tactile
sensors remains insufficient. This research focuses on analyzing the deformation of a thin elastic
layer on a vision-based tactile sensor by establishing a simplified deformation model, which is cross-
validated using the finite element method. Further, this model suggests a reduction in the number
of markers required by a vision-based tactile sensor. In subsequent testing, a prototype HiVTac is
fabricated, and it demonstrates superior accuracy to its vision-based tactile sensor counterparts in
reconstructing an external force. The average error of inferring the direction of external force is 0.32◦,
and the root mean squared error of inferring the magnitude of the external force is 0.0098 N. The
prototype was capable of working at a sampling rate of 100 Hz and a processing frequency of 1.3 kHz,
even on a general PC, allowing for real-time reconstructions of not only the direction but also the
magnitude of an external force.

Keywords: tactile sensors; force measurement; image processing; computer vision; robot sensing
systems

1. Introduction

Other than visual and auditory senses, which involve sensing waves propagating
between their sources and destinations, the tactile sense, generated directly between the
source and destination through contact, is another significant aspect of perception between
creatures and the real world. For many years, efforts have been made to develop robots
that are more human-like, and doing so requires tactile perception. Intrinsically, tactile
perception is an interactive process between mechanics and the nervous system. Inspired
by that, to begin with, research into tactile sensors focuses on converting mechanical signals
to electrical signals, just as the nervous system does, by elaborate circuits with multiple elec-
tronic components, such as resistive [1,2], piezoelectric [3,4], capacitive [5,6], magnetic [7,8],
optoelectronic [9,10], and triboelectric [11,12] components. The common downsides to all
the above approaches are: (1) designing such dedicated circuits can be time-consuming,
(2) such complicated circuit structures with too many electronic components reduce the
robustness of the whole system, and (3) electromagnetic interference is introduced as an ex-
tra problem. In recent decades, thanks to the advances in the semiconductor industry and
in computer vision techniques, obtaining tactile information in a visual way has attracted
increasing attention because of the high resolution, low cost, high robustness, and ease
of manufacture associated with doing so [13]. Similar to the above electric-based tactile
sensors, vision-based ones convert mechanical information to visual signals, which can then
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be tracked by an image sensor for further inference. Moreover, using an image sensor as
the core electronic component in vision-based tactile sensors allows them to be compatible
and seamlessly fused with any existing system that also uses cameras for visual input.
Most importantly, it is also feasible to reconstruct the spatial direction of external forces, in
addition to their magnitude.

Grasping, which is a common and critical application scenario of robots, can be
enhanced by enabling accurate tactile perception. For a robot with tactile sensors designed
for dedicated tasks [14,15], to perceive the existence of an external force is sufficient for
such a system to make decisions such as increasing the grasping force when a slip is
detected. However, for commercial applications of robots, a general grasping scenario
must be considered. For instance, imagine a scene in which a domestic robot is going
to grasp a can of soda (rigid) and an egg (fragile) successively. The difference between
the grasping forces needed to hold these objects stably and safely can be very large, and
a decision-making strategy based just on the existence of an indicator is not suitable for
dealing with such a complex task. One possible solution to this problem is to develop more
accurate tactile perception.

Furthermore, perceiving the direction of an external force provides extra information
for robotic tasks. The kinetic status of an object to be grasped by a robotic hand is depicted
not only by the magnitude of the contact force between the object and the robot, but also its
direction. For dynamic object-grasping tasks [15,16], the direction of the contact force is
a key factor for kinetic status detection. Concretely, the component of contact force in the
vertical direction indicates the quality of the grasp action. On one hand, a large downward
vertical component suggests the risk of slipping; on the other hand, an upward vertical
component indicates that the target object has been placed steadily on a plane. Moreover,
in a soft catching task, as shown in Figure 1, a robotic end-effector tries to catch an object
in the air. Without any external optical input, the kinetic status of the target object can be
reconstructed only by a vis ion-based tactile sensor—the direction and magnitude of the
velocity V of the object could be approximately inferred by the contact force Fc consisting
of normal pressure and friction. Based on the inference result, the end-effector is controlled
to follow the inertia of the target object, gradually decreasing the velocity V of the target
object to 0. In a hard catching task, where the end-effector stays still, the kinetic status of
the target object is changed suddenly by a large impulse, which could destroy that object if
it is fragile. In contrast, soft catching, which imitates the behavior of humans, maximizes
the integrity of a target object by increasing the time period to change its kinetic status.
Compared with dedicated force sensors which are able to detect both the magnitude and
direction of external forces, such as three-axis force sensors [17,18], achieving that goal on a
vision-based tactile sensor by developing it as a dual-modal (image and tactile) sensor is
promising. In a grasping or catching task with a vision-based tactile sensor, such as the one
depicted in Figure 1, the status of the target object before contact can be detected by the
camera. It would then switch to tactile mode once the contact point has been estimated and
wait to make contact with the target object.

In addition to the accurate measurement of the magnitude and direction of the external
force, the operating frequency is a significant aspect to be improved. In practice, the contact
force can change extremely quickly. Thus, developing tactile sensors that are able to work
with high acquisition frequencies is essential for following the gradient of external forces.
More precisely, a slip should be defined as the moment when static friction changes to
sliding friction, as investigated in [15,16,19–21]. To detect such an event, the variation trend
of the contact force must be derived from its real-time value, which requires the operating
frequency of vision-based tactile sensors to be no less than 100 Hz.
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Figure 1. Soft catching. The target object contacts a vision-based tactile sensor attached to the
end-effector with velocity ‖V‖ = v0 and contact force Fc. The velocity V decreases to 0 gradually.

In this work, we propose a novel environmental-robust vision-based tactile sensor
for the real-time and accurate reconstruction of the vector of an external force to improve
the accuracy of reconstructing external forces with higher operating frequencies, and to
investigate the feasibility of inferring their spatial direction. The rest of this paper is
organized as follows: Section 2 briefly reviews conventional research on vision-based tactile
sensors. This is followed by a deformation analysis of the thin-film elastomer utilized in
our prototype in Section 3. This analysis instructed the design and experimental procedure
of the prototype, outlined in Section 6. The experimental results in Section 7 validated the
performance and intuitively demonstrated the advantages of the proposed device. Finally,
a summary and conclusion, together with an outlook of this work, are given in Section 8.

2. Related Work

There are tactile sensors designed for other application scenarios, e.g., texture recogni-
tion, but the following discussion is confined to those designed for force measurement.

2.1. Vision-Based Tactile Sensors with and without Markers

The basic principle of vision-based tactile sensors is to convert mechanical events to
visual changes that can be captured by image sensors. A mapping from a visual signal
to mechanical actions is also established reversely. The methods of generating a visual
signal from mechanical contact can be divided into two main approaches—those that utilize
markers and those that do not. Baimukashev et al. [22] utilized plastic optical fibers (POFs)
to isolate signal processing electronics from hazardous working environments. To reduce
the volume of vision-based tactile sensors when detecting a large area, Soter et al. [23]
transmitted the deformation of an elastomer by colored fluids for non-local visual signal
analysis. However, the disadvantages of this kind of device are obvious—the complexity
of the whole system is greatly increased. Therefore, the robustness of the system is sup-
pressed, not to mention the complicated fabrication process. By contrast, a large majority
of researchers [14,15,19–22,24–30] chose to develop marker-based optical tactile sensors
because of the associated lower system complexity and their easy fabrication. Here, the
word marker is defined as a small point-like element that can be attached to or implanted in
the elastomer. Except for the hazardous working environments [22], using a marker-based
optical tactile sensor can be a simple, robust, and cost-effective choice.
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2.2. Elastomer in Vision-Based Tactile Sensors with Markers

As an intermediate to convert mechanical quantities to visual ones, the elastomer
used in vision-based tactile sensors with markers can also be divided into two categories
based on their volume—one with a large bulk of elastomers and one with a thin elastic
layer. Sferrazza et al. [26] introduced their work using a 4.5 mm-thick transparent gel
as a container of markers, in addition to a 1.5 mm-thick black silicone layer, as a bulk of
elastomers on which to apply external forces. Kamiyama et al. [25] fabricated a device
that has a 40 mm-thick elastomer for force measurement. The use of such a bulk of
elastomers enlarges the measuring range of tactile sensors, but the large elastomer volume
makes it hard to fuse it with existing robotic systems; for this reason, more and more
research is focusing on devices using a thin elastic layer. Sui et al. [19] and Yang et al. [30]
demonstrated tactile sensors using a thin-film elastomer for slip detection and surface
sensing, respectively. Lambeta et al. [29] applied a fingertip vision-based tactile sensor
to existing robotic systems by using a thin-film elastic layer to achieve a smaller device
volume. In addition, the deformation of these two kinds of elastomer is described by
different models—a bulk of elastomers involves a half-space model [31,32], while the
behavior of thin film elastomers in a vision-based tactile sensor still needs discussion.

2.3. Measuring the Magnitude of External Forces by Vision-Based Tactile Sensors

Measuring the magnitude of an external force is one of the major functions of vision-
based tactile sensors since tactile sense is stimulated by mechanical events after all. Li et al. [33]
proposed F-touch for six-axis force measurement with a maximum root mean square error
(RMSE) of less than 0.1 N. However, compared with our prototype with an RMSE of
0.0098 N, the structure of this device is complicated—there are tens of elements to be
assembled; and calibration depending on a third-party force sensor is required to calculate
a six-by-nine matrix for the force magnitude measurement. In addition, this device has
a sampling rate of only 30 Hz. Baghaei et al. [34] carried out an investigation of dynamic-
vision-based force measurements on three deep long short-term memory (LSTM) neural
networks with a mean squared error (MSE) of less than 0.1 N. However, this kind of deep
neuron network is not easy to implement and would consume a lot of computing resources,
increasing the cost of deploying these methods on vision-based tactile sensors. There is still
large potential for improving the inference accuracy of the force magnitude in vision-based
tactile sensors, and more effort for enhancing inference accuracy is necessary.

2.4. Measuring the Direction of External Forces by Vision-Based Tactile Sensors

As a vector, it is imperfect to measure only the magnitude of an external force, ignoring
the existence of the other key element—direction—that constitutes the vector of the contact
force. However, rarely has research attempted to measure the direction of forces using
vision-based tactile sensors. Zhang et al. [15] visualized the resultant force of the normal
force and friction to help estimate whether slip occurs in a grasping task. In fact, however,
using the resultant force makes no difference compared with using just the friction itself
to estimate the slip status. Rather, the characteristic of inferring the directions of external
forces should act as strong evidence for estimating the kinetic status of the contact object.
Moreover, the accuracy of inferring the external force direction is still insufficient.

2.5. Operating Frequency of Vision-Based Tactile Sensors

Other than the above-mentioned method [33], which has a sampling rate of only
30 Hz, Sferrazza et al. [26] reported transfer learning to detect the distribution of normal
force by tracking an array of markers using a PC with a 2.80 GHz CPU, but achieved a
working frequency of only 60 Hz. In [19], the overall working frequency of the whole
pipeline for slip detection was limited to 25 Hz when dealing with 1280 × 720 input images
on an NVIDIA Jetson Nano B10 development board. Such a level of performance is far
from the claim that their method works in “real-time”. Except for those whose sampling
rate is confined by the electronic devices utilized, such as [33], the main reason for the
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slow processing of vision-based tactile sensors with markers lies in the mismatch between
the large amount of input data and the limited computing resources—there are tens or
even hundreds of markers that need to be tracked and analyzed to infer the contact forces.
Whether the reduction in the amount of markers leads to the increasing operating frequency
of a vision-based tactile sensor still remains to be discussed.

2.6. Device Size and Geometry

On one hand, the device size of vision-based tactile sensors is directly relative to their
practical application. Lambeta et al. [29] applied a fingertip vision-based tactile sensor
with sensing field of 19 mm × 16 mm to existing robotic systems. Such a small size may
be suitable for a fingertip sensor, but it confines its applications—in [29], the robotic hand
interacted with only a glass bead—while a larger device with an increased sensing field is
worthy of expanding the application scenario of vision-based tactile sensors. Viko’s [35]
device, with a sensing area of 35 mm × 35 mm, is able to grasp objects of larger sizes, such
as shuttlecocks, cans, lotion bottles, etc.

On the other hand, the geometry of a deformable elastomer is another key factor when
designing vision-based tactile sensors. The geometry of vision-based tactile sensors can
be mainly categorized into two groups—convex and planar. In surface texture recogni-
tion [27,36–38], devices with a convex hemispherical sensing surface are designed and
fabricated to explore the texture of surfaces with arbitrary curvature, even if the object
is slightly concave, while for grasping tasks [15,20,28,29,35,39–41], the deformed planar
elastomer wraps the target object and provides steady grasping forces, for which a planar
elastic layer is rather common in such vision-based tactile sensors.

Considering the practical application of a vision-based tactile sensor of interacting
with desktop objects that are usually convex and less than 10 cm in at least one dimension,
a planar elastic layer with a size of around 30 mm × 30 mm is suitable for such devices.

Contribution of This Work

With the aim of addressing the above disadvantages, this paper proposes a prototype
vision-based tactile sensor HiVTac with a reduced number of markers that is capable of in-
ferring not only the magnitude but also the direction of an external force. The contributions
of this paper is shown in Figure 2 can be listed as follows:

• We establish a deformation model for a thin-film elastic layer in a vision-based tactile
sensor;

• We reconstruct the vector of the external force (both magnitude and spatial direction)
with high accuracy;

• We reduce the amount of markers to be tracked to achieve a higher sampling rate than
vision-based tactile sensors, tracking tens or even hundreds of markers at the same
time, although this brings an application limitation to the proposed device.

Figure 2. Key advances of this work.

3. Deformation Model and Corresponding Simulation

Compared with using a bulk of elastomers in front of a camera as the contact part of a
vision-based tactile sensor [25], replacing this with a thinner elastic layer [14,15] is a trend
for achieving a smaller device volume, such that the tactile sensors can be embedded into
existing robotic structures. In this research, the following deformation model, together with
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a corresponding finite element simulation, is established on a corner-fixed square OABC of
polydimethylsiloxane (PDMS) film with dimensions 28 mm × 28 mm × 500 µm, driven
by an external force F applied around the center of the film (Figure 3). The square size of
28 mm × 28 mm is decided by the camera module we use to fabricate the prototype in
the subsequent experiment, and the thickness of 500 µm, which is relatively “thick” for
PDMS films, is chosen for increased robustness. In this research, the contact force is applied
approximately at the center of the elastic layer. The deformation model is established based
on the following hypothesis and conditions:

• Consider PDMS as a linear elastic material, only if the external load is not large enough
to damage its polymer chain [42–44];

• Only a stretching force between the load point and the four fixed corners of the square
elastic layer contributes to the deformation of the elastic layer;

• For simplification, only deformations in the radial direction of the load point are taken
into consideration. Deformations in other directions caused by internal stress are
ignored;

• The external force, without torsion, is always applied near the center of the elastic
layer in the proposed device;

• Deformations on the four sides of the square elastic layer are small and have little
effect on the corresponding analysis, so they are ignored and not reflected in any of
the following relevant figures.

Figure 3. Schematic diagram of the deformation model.

The objective of establishing such a model is to find the area where its deformation
is more obvious than others from the view of a camera, called a representative area. All
markers, called representative markers, should be placed in such an area to obtain a
larger displacement after the external force is applied. An arbitrary external force applied
near the center of the square elastic layer can be divided into two components—normal
force and shear force. In the following two subsections, the relationship between the
marker displacement and its distance from the load point of the external force is explored.
Although the analysis is based on the assumption that external force is applied at the
center of the elastic layer, the proposed methodology can be generalized for multipoint or
distributed forces.

3.1. Normal Force

Suppose there is a thin (thickness = 0) square elastic layer whose side length is 2a,
and its four corners O, A, B, and C are tightly fixed. Normal force F⊥ is applied at the
center, driving the center P to P′ with a press depth of PP′, which deforms the layer as
shown in Figure 4. M(xm, ym, 0) is an arbitrary point on the film other than P, moving to
M′(xm′ , ym′ , zm′) due to F⊥.
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Figure 4. Deformation of the PDMS film as a linear elastic material with normal external force applied.
OABC is a square PDMS film, with a side length of 2a, fixed on the x–y plane at its four corners—O,
A, B, and C. At its center P, F⊥ is applied perpendicularly to the x–y plane, moving P to P′ and
deforming the film with a press depth of d(= PP′). The four components of F⊥ on the OP′, AP′, BP′,
and CP′ axes are, respectively, σO, σA, σB, and σC. M is an arbitrary point other than P, moving to
M′ after deformation. The angle between P′M′ and PP′ is denoted by ϕ. N is the intersection point
of PM, extended to side AB.

−−→
PMA and

−−→
PMB, with angle α, are two components of

−→
PM. The same

applies to
−−→
PM′A,

−−→
PM′B, and α′.

Refer to the law of cosines:

P′M′ =
√

P′M′2A + P′M′2B + 2P′M′A × P′M′B cos α′. (1)

−→
PM can be divided on the PA and PB axes to

−→
PM =

−−→
PMA +

−−→
PMB, PM =

√
PM2

A + PM2
B, (2)

and the same applies to
−−→
P′M′ on the P′A and P′B axes:

−−→
P′M′ =

−−→
PM′A +

−−→
PM′B. (3)

Further, the relationship between strain and stress can be described by

σi = E
(

P′M′i − PMi

PMi

)∣∣∣
i=A,B

, (4)

where E is the Young’s modulus of the material, and σi represents the components of F⊥
on the OP′, AP′, BP′, and CP′ axes. The displacement of the extended film on σi’s axis is
represented by

P′M′i =
(σi

E
+ 1
)

PMi|i=A,B , (5)

which is proportional to its original length. Since P is at the center, σi|i=O,A,B,C = σ.
Equation (1) becomes

P′M′ =
( σ

E
+ 1
)√

PM2
A + PM2

B + 2PMA × PMB cos α′. (6)
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The projection of P′M′ on the x–y plane is

P′M′ sin ϕ

=
( σ

E
+ 1
)√

PM2
A + PM2

B + 2PMA × PMB cos α′ sin ϕ,
(7)

where, in the tetrahedron PABP′,

a√
a2 + d2

≤ sin ϕ ≤
√

2a√
2a2 + d2

(8)

cos α′ =
d2

2a2 + d2 , (9)

and, refering to Equation (5),

( σ

E
+ 1
)
=

√
2a2 + d2
√

2a
. (10)

sin ϕ reaches its minimum value when PM is right in the middle of ∠APB, where

PMA = PMB =

√
2PM
2

. (11)

Referring to Equation (2), substitute Equations (8)–(11) into Equation (7):

P′M′ sin ϕ

=
√

PM2 + 2PMA × PMB cos α′ sin ϕ×
( σ

E
+ 1
)

≥

√
PM2 + 2

√
2PM
2

×
√

2PM
2

d2

2a2 + d2 ×
a√

a2 + d2
×
√

2a2 + d2
√

2a
= PM.

(12)

In other words, Equation (12) can be written as

P′M′ sin ϕ = PM + ε(xm, ym), (13)

where ε(xm, ym) is a small non-negative value depending on the location of M(xm, ym, 0).
The projection of M′P′ on the x–y plane is slightly longer than PM. The projection of
M′(xm′ , ym′ , zm′) on x–y plane M′xy

(
xm′ + εx, ym′ + εy, 0

)
is very close to that of its original

point M. Since there is an optical–digital conversion step before the image is fed into the
algorithm for subsequent inference, the radial distortion of the 150◦ wide-angle fisheye lens
used in this project must be taken into consideration. Its projection function is given by

rd = f θ, (14)

where rd is the radial distance of an incident ray with an entrance angle of θ to the optical
axis on the image plane [45,46]. The focal length is denoted by f . In this case, θ is in positive
correlation to PM, suggesting that the displacement of a marker would be amplified:

rM = f arctan

(
PM
Dph

)
, (15)

in which Dph is the distance from M to the pinhole of this fisheye lens on the optical axis.
For M′, we have

rM′ = f arctan

(
PM + ε(xm, ym)

Dph − zm′

)
. (16)
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The displacement from M to M′ from the view of the camera is

dispN(PM) = MM′ = rM′ − rM

= f

(
arctan

PM + ε(xm, ym)

Dph − zm′
− arctan

PM
Dph

)

= f arctan
zm′ × PM + ε(xm, ym)Dph

PM2 + ε(xm, ym)× PM + Dph ×
(

Dph − zm′
) ,

(17)

where the fraction inside arctan is monotonically increasing in its domain PM ∈
[
0,
√

2a
]
,

indicating that the larger the distance between the marker and the center (PM), the more
the displacement of the marker would be amplified. In other words, markers should be
placed as far as possible from the center P for a larger displacement from the view of
the camera.

3.2. Shear Force

In this section, film deformation caused by shear force is discussed. Similarly, only
stress in the radial direction of P is considered. Suppose there is a square PDMS film that is
the same as that of the last section, whose center P(a, a) is dragged by an arbitrary force
F‖ and moved to P′, as shown in Figure 5a. Since F‖ can be divided into two orthogonal
components,

F‖ = σx + σy; (18)

the same applies to the displacement from P(a, a) to P′, where either σx or σy reveals how
the film deforms.

y

O
x

A

BC

P

P′

F‖

σx

σy

(a)

y

O
x

A

BC

P

P′y

MO

M′O

MC

M′C

M

M′
N

σy

(b)

Figure 5. Deformation of PDMS film as a linear elastic material with external shear force applied.
(a) An arbitrary applied shear force F‖ can be divided orthogonally. (b) P is the point where shear
force σy is applied in y direction, moving P to P′, together with M, MO, and MC moving to M′, M′O,
and M′C, respectively. Both lines PM and P′y M′ intersect with OC at point N.

As demonstrated in Figure 5b, MO and MC are two arbitrary points on segments OP
and CP, respectively. They move to M′O and M′C when P(a, a) moves to P′y(a, a + PP′).
As analyzed in Section 3.1, we have

M′OP′y
MOP

= 1 +
σO
E

,
MCP
M′CP′y

= 1− σC
E

. (19)
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where σO is the elastic stress produced by molecules from O to P′, similar to σC. Generally,
suppose now there is a pair of points M and M′ satisfying

−→
PM =

−−→
PMO +

−−→
PMC,

−−→
PM′ =

−−→
PM′O +

−−→
PM′C. (20)

It is obvious that
−−−−→
MO M′O,

−−−−→
MC M′C, and

−−→
MM′ are all parallel to

−→
PP′y. Further, we have

dispS(PM) = MM′ = PP′y ×
PN − PM

PN
. (21)

For a constant σy, MM′, which is the displacement of a marker on the x–y plane,
reaches its maximum value PP′y when PM→ 0, that is,

arg max
PM

MM′(PM) = 0, (22)

suggesting that in the case of applying a shear force at P, the observable displacement of
the markers would be more obvious if they were closer to the force’s load point, and the
same applies to the other orthogonal component σx. Overall, markers should be placed as
near to the center P as possible to obtain a larger displacement after deformation.

3.3. Finite Element Simulation of Elastic Layer under Normal and Shear Force

The displacement of points on the elastic layer of a vision-based tactile sensor is
actually a three-dimensional vector, but the displacement captured by the image sensor
is the component of that vector on the focal plane. Figure 6 demonstrates the finite el-
ement simulation result of a spatial displacement of points on an elastic film from the
camera’s view. For Figure 6a, the center of the elastic layer is driven 10 mm away from
its initial position, perpendicularly, by a normal force. The displacement of a point, from
the camera’s view, is positively correlated with the distance from that point to the center.
Maxima are located in areas near the four fixed corners. However, with a 10 mm press
depth, the maximum displacement, from the camera’s view, is 0.18 mm, corresponding
to Equation (13). Each point on the elastic film moves away from the center P with a
displacement of ε(xm, ym) < 0.18 mm. Both Figure 6a and Section 3.1 suggest that markers
should be placed as far as possible from the center P for a larger displacement from the
camera’s view when normal force is applied. Moreover, the center of the film in Figure 6b is
also driven 10 mm away from its initial position by a shear force in the top-right direction.
The displacement of a point, from the camera’s view, is negatively correlated with the
distance between that point and the center, corresponding to Equation (22). Both Figure 6b
and Section 3.2 indicate that a more obvious displacement could be captured by the camera
if markers were placed as near as possible to the center—that is, MOP→ 0.

Referring to both the deformation model and the simulation result, the representative
area should be located far from and near to the load point to reflect the normal and the
shear force, respectively. This is a trade-off between those two aspects. The deformation
model was further validated by subsequent experiments, where only four markers were
attached for precise force reconstruction. Meanwhile, reducing the number of markers
contributes to increased speed of vision-based tactile sensors.
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(a) (b)

Figure 6. Deformation analysis of a 28 mm× 28 mm× 500 µm PDMS film. The displacement of points
on the elastic film from the view of an image sensor (components of a three-dimensional displacement
on the focal plane), when (a) normal and (b) shear force are applied at the center. The four corners
of this elastic film are fixed. The length and saturation of the red arrows are proportional to the
magnitude of the displacement. The direction of each arrow reflects the direction of its displacement.

4. Design and Fabrication of the Device

Although the mathematical deduction and finite element simulation cross validate
each other, the effectiveness of the proposed deformation model is further investigated by
evaluating a practical prototype.

A prototype of the proposed tactile sensor, HiVTac, was fabricated as shown in
Figure 7. First, a piece of 40 mm × 40 mm PDMS was cut off from an off-the-shelf KYQ
serial (Hangzhou Guinie Advanced Materials Co., Ltd., Hangzhou, China) PDMS film.
The distance between the two adjacent fix points of the elastic layer was 28 mm, for which
a = 14 mm. A KS2A543 color image sensor with a 150◦ wide-angle lens captured 800
(width)× 600 (height) pixel images at 100 frames per second (fps) in MJPG format. The focal
length was f = 2.1 mm and

Dph =

√
PM2 + (10× 10−3)

2, (23)

where 10× 10−3 m is the approximate distance between the center of the elastic layer P
and the pinhole of the lens. Referring to Figure 6a, markers were attached on diagonals for
better reflections of the normal forces, for which PN =

√
2a.

Figure 7. Prototype of the proposed vision-based tactile sensor. The top is a square PDMS film on
which four markers are attached symmetrically near the center, and below which is a wide-angle
image sensor on a PCB. These two components are isolated by four nylon spacers.
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Considering symmetry and the philosophy of using as few markers as possible for
faster force reconstruction, the number of markers was set to four. Referring to the deriva-
tion of Equation (17), which indicates that the markers should be away from the force
application point to better reflect normal force, and Equation (22), which indicates that the
markers should be near the force application point to better reflect the shear force, four red
circle markers with a diameter of 1 mm were cut out from red tape by a hole puncher and
adhered symmetrically around the center of the PDMS film. Due to the trade-off between
reflecting normal force (Equation (17)) and shear force (Equation (22)), the quality of the
displacement of the markers can be defined as

Q(PM) = 50× dispN(PM) + dispS(PM). (24)

The coefficient 50 was set manually, based on Figure 6, for a balanced reflection of
normal and shear traction in Q. This quantity reflects the obviousness of the marker’s
displacement when an external load is applied. To reveal how the locations of the markers,
denoted by R = PM/PN, influence Q, real positive values of PM maximizing Q were
solved when normal zm′ and shear PP′y traction were in the interval [0, a/2]. The result is
shown in Figure 8, which corresponds well with not only Figure 6 but also the analysis in
Sections 3.1 and 3.2. When normal traction is small (zm′ → 0), markers should be attached
near the force application point for a better reflection of the shear force, and vice versa.
The mean of R is

R ' 0.2655, (25)

based on which each marker is placed at point M, where PM/PN = R, on each of the
line segments between P and the four fixed points. Four holes on the piece of film were
punched so that it could be fixed on nylon spacers by screws. The space within those four
holes was 28 mm × 28 mm squared. The bottom ends of the nylon spacers were plugged
into holes formed in the camera’s PCB, and were fixed by hexagonal screws. The overall
size of the prototype was around 38 mm × 38 mm × 40 mm.

Figure 8. Locations of markers (R) maximizing the quality of the markers’ displacement, Q.

5. Force Vector Reconstruction

The objective of this work is to establish a mapping from features of markers to the
direction and magnitude of an external force, and the experimental setup used is shown
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in Figure 9. Both the proposed device and a force gauge are connected to a PC. In each
loop, coordinates of the four markers, (x0, y0, x1, y1, x2, y2, x3, y3), together with the center,
(xrect, yrect), and area, (Arearect), of their bounding rectangle are extracted by a high-speed
image processing algorithm as features x = [x0, y0, x1, y1, x2, y2, x3, y3, xrect, yrect, Arearect]

T.
At the same time, the ground truth of the external force is read from the force gauge via
a serial connection, giving the label y = [α, β, ‖F‖]T, where α and β are read directly from
the scale of the goniometer:

[
xTyT]T forms one data set. For each pair of (α, β), there are

2200 data sets uniformly distributed in the interval ‖F‖ ∈ [0, 0.2] N, measured directly by
the digital force gauge ZTA-DPU-5N. Since the mapping from x to y is non-linear, to achieve
high inference accuracy, a multilayer perceptron (MLP) consisting of three hidden layers
with 512 units in each is trained for 100 epochs, with a batch size of 64. The optimizer is
Adam [47], the learning rate is set to 0.001, and the model is used to reconstruct the external
force applied at the center of the elastic layer.

Figure 9. Workflow to generate one data set group.

The algorithm to extract the markers’ features consists of the following steps: (1)
convert the color space of the captured image from RGB to HSV; (2) use a manually defined
threshold to generate an array containing only four red markers; (3) dilate that array for
robust detection of the four markers; (4) find the contours of all four markers and calculate
their moments, the center coordinates of which are defined as the location of the markers,
recorded in the input vector x.

6. Experiment

Figure 10a shows a two-axis goniometer stage, whose top surface’s normal vector is
denoted by~n. From its initial status, the upper stage rotated the top platform around its
rotation center, which was 68 mm above the top surface, with an angle of α from −10◦(A)
to 10◦(B). Similarly, the bottom stage drove the platform with an angle of β from −8◦(C)
to 8◦(D). Overall, ~n(α, β), where α ∈ [−10◦, 10◦] and β ∈ [−8◦, 8◦], constitute an elliptic
space.

A complete view of all experiment equipment is illustrated in Figure 10b. All com-
ponents were placed on an SVH-1000 stand (IMADA Co., Ltd., Toyohashi, Japan). A 3D-
printed bottom holder was fixed on the base of the stand, above which was the two-axis
goniometer stage. A 3D-printed support was designed to steadily lift the proposed de-
vice and ensure that the center of its elastic layer was exactly at the rotation center of
the goniometer stage. A ZTA-DPU-5N force gauge (IMADA Co., Ltd.), characterized by
a 3000 Hz sampling rate with a cone attachment, was attached to the moving part of the
stand. It could be moved perpendicularly by controlling the handle on the right side.
At each specific pose (α, β) of the proposed device, the force gauge moved up and down to
press the elastic layer with its cone attachment. The pose of the prototype was adjusted
by changing either α or β, one at a time, with interval steps of 1◦, for which there were,
in total, 357 poses. In practice, the maximum press depth of the proposed device was
restricted by the distance between the elastic layer and the top of the lens, which limited
the maximum external force to 0.2 N in this case. This range was enough for the device
to interact with lightweight objects—plastic bottles, mark pens, etc.—and to evaluate the
feasibility of developing vision-based tactile sensors in a quantitative manner. It can be
improved by increasing the distance between the elastic layer and the camera, by using
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an embedded image sensor, or by utilizing an elastomer with a larger Young’s modulus,
even if the point of this research lies in verifying accuracy and increasing processing speed
when reconstructing the vector of an external force.

(a) (b)

Figure 10. Experiment platform. (a) A two-axis goniometer stage, and (b) an overview of the whole
experimental platform.

7. Results and Discussion

For 2200 data sets under each pose (α, β) of the proposed device, 80% of the collected
data were randomly chosen as the training set for the neural network, and the remaining
20% were evenly divided into validation and test sets. The prediction result on the test set
at pose α = 0◦, β = 0◦ is shown in Figure 11, together with the corresponding ground truth.
The prediction accuracy, operating frequency, etc., of the proposed device are analyzed in
detail below.

(a) (b) (c)

Figure 11. Predicted (a) α, (b) β, and (c) ‖F‖ at pose α = 0◦, β = 0◦.

7.1. Accuracy

The average errors of α, β, and ‖F‖, which were calculated by the inference results
minus the ground truth, were verified on the test set as illustrated in Figure 12a–c. As shown
in Figure 12a, the maximum positive and negative errors were 1.445◦ and −1.416◦. Large
positive errors (>1◦) were concentrated near α = −10◦. In other words, the inference
values of α tended to be located in the interval (−8◦,−9◦). Symmetrically, large negative
errors (<−1◦) showed up on the opposite side near α = 10◦. One probable reason for this
phenomenon is that at poses where |α| = 10◦, the shear component of the external force
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was larger than the static friction between the cone attachment of the force gauge and the
square PDMS elastic layer, leading to a shift of the load point away from the center. Such
a shift made the pattern of markers similar to that of |α| = 8◦ or 9◦. Such a phenomenon
could not be observed near the maximum absolute value of β = −8◦ or 8◦, which also
indicates that the above phenomenon was due to the large sloping of the external force
caused by a large α. White blocks indicating the lower error on this heatmap at |α| = 8◦

and 9◦ are also indirect evidence of this phenomenon.

(a) (b) (c)

(d) (e) (f)

Figure 12. Average errors of (a) α, (b) β and (c) ‖F‖ on test set at each pose of proposed device, (α, β),
and corresponding frequency distributions (d–f).

As shown in Figure 12b, the maximum positive and negative errors of the inference
value on β were 1.547◦ and −1.364◦, respectively. The number of absolute errors of β larger
than 1◦ was much smaller than that in Figure 12a, suggesting again the negative effect of an
external force with a large shear component on the accuracy of the proposed device when
inferring the direction of the external force. The average error of ‖F‖ is shown in Figure 12c.
The maximum positive error 0.032 N and negative error −0.043 N appeared at poses
(α = −4, β = 0) and (α = −10, β = 4). The errors of the force magnitude near the above
two poses were also larger than other areas on the heatmap. As shown in Figure 12d,e,
the normalized frequencies of the errors of α and β within the interval [−0.5, 0.5] were,
respectively, 80.39% and 89.36%. This difference was also caused by the large error in
inferring α when |α| approached 10◦. For 99.16% of all 357 poses, as shown in Figure 12f,
the average error of ‖F‖ was within the interval [−0.030, 0.030] N, and 72.27% of that was
within the interval [−0.010, 0.010] N, reflecting the ultra-high accuracy of inference on ‖F‖.
Overall, with maximum absolute inference errors on α, β, and ‖F‖ of 1.445◦, 1.547◦, and
0.043 N, respectively, and the errors being distributed near 0, as illustrated in Figure 12d–f,
the root mean squared error of inferring ‖F‖ is 0.0098 N.
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Furthermore, inference errors on α, β, and ‖F‖ were influenced by ‖F‖. For instance,
such a relationship at poses |α| = 5◦, |β| = 4◦, which were in the middle of all α and β, are
plotted in Figure 13. For all three inferred outputs, the error in interval ‖F‖ ∈ [0, 0.05] N
was no less than that in the rest, especially for α and β, and this is called an ambiguous
region. This is because when ‖F‖ < 0.05 N, its shear component F‖ → 0 was even smaller,
with the result that F‖ could not be reflected by the pattern of markers, nor could it provide
accurate inference results for α and β. However, the inference errors of α and β converged to
0 promptly when ‖F‖ > 0.05 N. As for the error of ‖F‖ in the ambiguous region, they were
scattered almost uniformly on both sides of 0. This is considered a regular error since the
discriminability of the marker patterns between ‖F‖ = 0 and ‖F‖ ∈ (0, 0.05] N was small.
In contrast, with the increment of ‖F‖ from 0.05 N, the error of ‖F‖ first decreased to 0 and
then continuously increased along the negative direction, especially for Figure 13b,d. Since
(1) this phenomenon could not be observed at symmetric poses of α = 5◦ (Figure 13a,c),
(2) such an anomaly did not occur in inferring α or β, and (3) the distribution interval
width of the error for ‖F‖ remained steady, it is considered a systematic error caused by
an illumination difference at α = −5◦, causing a shift of the markers’ coordinates closer to
the center. Such a shift decreased one of the input features Arearect, which showed a strong
positive correlation with ‖F‖, but not with α or β. On the other hand, it also indicates the
robustness in inferring α and β.

(a) (b)

(c) (d)

Figure 13. Error in inferring α (orange circle), β (green square), and ‖F‖ (blue diamond) vs. ‖F‖ ∈
[0, 0.2] N at poses (a) α = 5◦, β = 4◦, (b) α = −5◦, β = 4◦, (c) α = 5◦, β = −4◦, and (d) α = −5◦,
β = −4◦.

7.2. Operating Frequency

In each loop, the inference program extracted the features of markers, similar to the
process shown in Figure 9, fed them to the trained MLP, and gave a prediction. The time
duration between two neighboring output inference values, together with that from feature
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extraction to the output of a set of inference values in one loop, was recorded and utilized
to calculate the overall equivalent operating frequency and the process and inferenced
equivalent operating frequency, respectively. This test was run on a general PC (HP
430G6 with Intel i5-8265U @1.60 GHz CPU). The result is shown in Figure 14. With the
implementation of multithreading, the equivalent frequency of image processing and
inference reached 1394.78 Hz. On the other hand, the average overall equivalent operating
frequency of 101.26 Hz was approximately equal to the sampling rate of the image sensor
KS2A543, indicating that the performance of the system is currently confined by the
sampling rate of the image sensor, showing the great potential of the proposed device
to reach a higher operating frequency with an image sensor having a larger sampling
rate, even on a general PC. For further improvement of the sensitivity of the device in
soft catching tasks, as in Figure 1, the camera used is expected to be able to work at
higher acquisition rates. Table 1 compares operating frequencies among vision-based tactile
sensors tracking markers for inference. The result indicate negative correlation between
the amount of markers and the operating frequency, and the proposed method largely
accelerates the operating efficiency of vision-based tactile sensors.

Figure 14. Operating frequency of the proposed device. Equivalent overall (blue) and process
(orange) frequency on HP 430G6 with an i5-8265U CPU. The theoretical average sampling rate of the
image sensor KS2A543 used in the proposed device is denoted by the dotted line at 100 Hz.
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Table 1. Operating frequency of vision-based tactile sensors tracking markers.

Method #Markers (Estimated) Frequency (Hz)

Zhang et al. [39] >100 15
* GelSight [21] >100 30

Viko [35] >100 40
Sferrazza et al. [48] >100 50
Sferrazza et al. [26] >100 60

* Lambeta et al. [29] 10–100 60
Yamaguchi et al. [20] 10–100 63

Sato et al. [24] 10–100 67

HiVTac (overall) 4 100
HiVTac (processing) 4 1300

* Only the fps of the utilized image sensor is given. The real operating frequency should be smaller than or equal
to the given value.

7.3. Grasping

The proposed device is attached to an air chuck end-effector to evaluate its perfor-
mance in practical grasping tasks (Figure 15). Assembled on the right beam, the proposed
device and the left beam steadily grasp an AC adapter (∼36 g, Figure 15a) and a medicine
bottle (∼30 g, Figure 15c). The magnitude of the grasping force is measured with a resolu-
tion of 0.001 N. The directions of the contact forces are also reconstructed, indicating the
status of the target objects. Moreover, external forces from different directions are applied
on these objects in Figure 15b,d, and are reflected by the reconstruction results. In this case,
surface contact is approximated as a point load on the proposed device, and it turns out to
be feasible to detect the status of the target objects. For consistency, the magnitude of the
external forces is confined to 0.2 N in the data-collection stage, but the prototype is capable
of reconstructing external forces larger than 0.2 N, as shown in Figure 15b.

(a) (b) (c) (d)

Figure 15. HiVTac in grasping tasks. Top: the proposed device grasps objects. Bottom: corresponding
contact forces.

7.4. Real-Time Reconstruction

Finally, a demonstration was established to show the device’s ability to reconstruct
an external force in real-time. Three pairs of results are shown in Figure 16. Since the
original outputs of the trained MLP were y = [α, β, ‖F‖]T, they were converted to a set
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of coordinates in the Cartesian coordinate system. The length of each plotted vector was
proportional to ‖F‖. Figure 16 suggests that the proposed device was able to infer the
directions of external forces accurately and give their magnitudes promptly. For more
experimental results, please see the accompanying video (http://www.hfr.iis.u-tokyo.ac.
jp/research/HiVTac/index-e.html, accessed on 20 April 2022).

(a) (b) (c)

x
y

z

||F||=0.203(N)

(d)

x
y

z

||F||=0.189(N)

(e)

x
y

z

||F||=0.191(N)

(f)

Figure 16. A demonstration of real-time reconstruction. A stick with a cone attachment was used
to press the center of the elastic layer of the proposed device from the (a) normal, (b) left, and (c)
right directions. Their reconstruction results, including magnitude and direction, are plotted in (d–f),
respectively. Notice that the z direction here is opposite to that in Figure 6a.

8. Summary and Conclusions

In this work, we turn back to the physical principle of vision-based tactile sensors—
deformation. A simplified mathematical model is established, with its corresponding finite
element simulation, to reveal how a square PDMS film deforms when an external force is
applied. Based on that, a prototype with only four representative markers was fabricated
and tested to estimate its accuracy and speed in reconstructing the vector of an external
force. The result showed outstanding accuracy in inferring the direction (maximum error
±1.547◦), with a measuring range of α ∈ [−10◦, 10◦] and β ∈ [−8◦, 8◦], as well as the
magnitude (maximum error ±0.043 N) of an external force, which also demonstrates the
validity of the proposed deformation model in instructing where markers should be placed
for a better view of their displacement. Moreover, due to the reduction in the number of
markers that need to be tracked, the proposed system can easily work at 100 Hz or higher,
even on a general computer. Under most circumstances of grasping and catching tasks,
the contact area is predictable; thus, it is worthy to sacrifice the effective contact area for a
large performance improvement. Although a practical grasping task shows the primary
practicability of the prototype, the limitations of a narrow measuring range and a confined
contact area need to be overcome for a wider range of application scenarios. Moreover,
the elastic layer of a 28 mm × 28 mm square is applicable to relatively small objects, but
the contact area should be enlarged to adapt larger and heavier ones. Our next step is

http://www.hfr.iis.u-tokyo.ac.jp/research/HiVTac/index-e.html
http://www.hfr.iis.u-tokyo.ac.jp/research/HiVTac/index-e.html
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to utilize the proposed principle to design a novel device, enlarging its effective area on
its elastomer.

Aside from the key accomplishments listed above, the overall approach followed in
this work seems promising. The deformation analysis of the thin elastic layer used in
the prototype is assumed to be appropriate for any tactile sensors utilizing a thin layer of
elastomer as well. This would help to clarify the correlation between the external force and
the displacements of markers. In this way, the vector of an external force applied at an
arbitrary point on the elastomer can be reconstructed properly. Moreover, the proposed
approach could be further applied to analyze multipoint or distributed forces for the
generalization of vision-based tactile sensors. The balance between the number of markers
and the performance of vision-based tactile sensors needs more investigation to maintain
high effectiveness while extending its application scenarios: the increment of markers could
be considered for more complex contact conditions.
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