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Abstract

Malignant transformation is known to involve substantial rearrangement of the molecular

genetic landscape of the cell. A common approach to analysis of these alterations is a

reductionist one and consists of finding a compact set of differentially expressed genes or

associated signaling pathways. However, due to intrinsic tumor heterogeneity and tissue

specificity, biomarkers defined by a small number of genes/pathways exhibit substantial var-

iability. As an alternative to compact differential signatures, global features of genetic cell

machinery are conceivable. Global network descriptors suggested in previous works are,

however, known to potentially be biased by overrepresentation of interactions between fre-

quently studied genes-proteins. Here, we construct a cellular network of 74538 directional

and differential gene expression weighted protein-protein and gene regulatory interactions,

and perform graph-theoretical analysis of global human interactome using a novel, degree-

independent feature—the normalized total communicability (NTC). We apply this framework

to assess differences in total information flow between different cancer (BRCA/COAD/

GBM) and non-cancer interactomes. Our experimental results reveal that different cancer

interactomes are characterized by significant enhancement of long-range NTC, which arises

from circulation of information flow within robustly organized gene subnetworks. Although

enhancement of NTC emerges in different cancer types from different genomic profiles, we

identified a subset of 90 common genes that are related to elevated NTC in all studied

tumors. Our ontological analysis shows that these genes are associated with enhanced cell

division, DNA replication, stress response, and other cellular functions and processes typi-

cally upregulated in cancer. We conclude that enhancement of long-range NTC manifested

in the correlated activity of genes whose tight coordination is required for survival and prolif-

eration of all tumor cells, and, thus, can be seen as a graph-theoretical equivalent to some

hallmarks of cancer. The computational framework for differential network analysis pre-

sented herein is of potential interest for a wide range of network perturbation problems given

by single or multiple gene-protein activation-inhibition.
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Introduction

Clinically relevant, macroscopically detectable tumors are known to exhibit phenotypic and

molecular genetic heterogeneity [1]. Despite considerable genetic diversity, different tumor

cells manage to maintain common functional capabilities that manifest in hallmarks of cancer

[2]. The underlying mechanisms of cancer hallmark maintenance in different tumors with dif-

ferent genomic profiles are not yet well understood. As a consequence of cancer heterogeneity

and plasticity, differential signatures defined by a relatively small number of genes-proteins

exhibit substantial variability, which complicates the identification of cancer-specific alter-

ations in microarrays and other omics data.

An alternative approach to quantitative characterization of malignant transformations con-

sists in the assessment of the global architecture of cellular networks. Recent advances in net-

work science provide a powerful theoretical framework for the description of global properties

of physical, social and biological networks [3–5]. For construction of binary and weighted bio-

logical networks, gene co-expression maps [6–8], pairwise physical interactions and non-phys-

ical associations between proteins, DNA, RNA, metabolites and gene regulatory events have

been applied [9–23]. Diverse parameters of local and global network organization have been

used for quantitative description and differentiation of normal, diseased and random interac-

tomes including graph-theoretical measures such as node degree, centrality, modularity, clus-

tering, [24–27], network statistics [28], information content [29] and hyperbolicity [30].

Global information-theoretical features, such as network entropy, have been shown to signifi-

cantly differ between cancer and non-cancer interactomes [31, 32].

Cancer networks have repeatedly been reported to be significantly larger, interlinked more

densely and more tautly organized in comparison to non-cancer and, in particular, random

networks [25, 33–37]. These findings were, however, challenged by reasonable criticism that

refers to potential biases of existing network descriptors due to overrepresentation of disease-

related genes. Consequently, these genes exhibit a higher number of interactions, higher

degrees and other artificially exceptional features in contrast to poorly studied targets [38, 39].

To overcome shortcomings of degree-based descriptors, we present a novel degree-normalized

communicability measure that is applied to study information flow in global cancer and non-

cancer networks whose basic topology is defined by directional and gene expression weighted

protein-protein and gene regulatory interactions.

The manuscript is organized as follows. First, methods for construction of gene expression

weighted network topology are described. The experimental results of comparative analysis of

cancer and non-cancer interactomes are presented and discussed. The complete set of raw and

processed data used in this work can be found in supplementary information.

Methods

Microarray data preprocessing

TCGA level-3 microarray data from tumor and normal tissue samples of breast invasive carci-

noma (BRCA), colon adenocarcinoma (COAD) and glioblastoma (GBM) patients are used.

Lists of all TCGA samples used in this study are in S1 Table.

Statistical significance of differential gene expression between tumor and normal tissue

samples is evaluated using the t-test with the p-value threshold p< 0.01. For significantly up/

downregulated genes, the log2-fold average differential gene expression (ADGE) Δi is com-

puted. Unidentified and non-significantly altered genes are assumed to have unchanged level

of expression (Δi = 0). Next, all N genes are sorted according to a hybrid score based on a prod-

uct of t- and ADGE-values: λi = sign(Δi)(tiΔi). To avoid dependency of subsequent calculations
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on statistical outliers, absolute values of gene scores are subsequently substituted by a uniform

pattern of average gene expression ranging in λi 2 [−6.5, 6.5]. This transformation has the

effect that genes with the same rank in a λi-sorted list become equal weights in different cancer

and non-cancer samples:

l
brca
i ¼ l

coad
i ¼ l

gbm
i ¼ l

rand
i ;

l1 > l2 > :: 0 :: > lN� 1 > lN ;

l1 ¼ maxðliÞ ¼ � minðliÞ ¼ � lN :

ð1Þ

Sorted lists of rank-normalized gene weights for all tumor/norm, norm/tumor (i.e., reversely

weighted tumor/norm lists) as well as randomized data are in S2 Table.

Network topology compilation

Network topology is compiled on the basis of directed pairwise protein-protein and gene regu-

latory interactions by integration of open-source data provided with STRING (string-db.org),

MSigDB (software.broadinstitute.org/gsea/msigdb) and PATHWAYCOMMONS

(www.pathwaycommons.org). The complete list of 74538 directed pairwise interactions is in

S3 Table.

Network communicability: plausibility considerations

First, we want to define a plausible measure for quantification of total information flow

(communicability) along a single linear pathway. This should be done in such a way that the

absence or malfunction of one single pathway link (i.e., network edge) results in interruption

or significant impairment of the entire pathway communicability, see Fig 1(a). This intuitively

comprehensible constraint is considered by a measure that is defined as a product of all edge

weights Ei, i.e.,

YN

i¼1

Ei ; ð2Þ

where Ei� 0 are positive numbers whose values indicate working (conducting) or non-work-

ing (non-conducting) state of the i-th pathway link. In the case of unweighted networks, con-

ducting and non-conducting states of pathway links are described by binary weights of

network edges Ei = 1 and Ei = 0. In weighted networks, weights of network edges are positive

floating-point numbers Ei > 0.

If two network nodes are connected by multiple pathways, total information flow should

not critically depend on the state of a single pathway link or even one single pathway, see

Fig 1(b). Consequently, total communicability between each two network nodes can be

defined by a sum of all single pathway communicabilities:

XM

j¼1

YNj

i¼1

Ei

 !

: ð3Þ

Another plausible requirement on the network communicability measure is that intensity

of information flow should decline with increasing distance from the source. Consequently,
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Eq (3) can be extended to

XM

j¼1

1

oðNjÞ

YNj

i¼1

Ei

 !

; ð4Þ

where ω(Nj)> 1 denotes a pathway length dependent weighting factor.

Normalized total communicability

In graph theory, the total number of walks of the length n joining nodes of an arbitrary com-

plex network is calculated as the n-power An of the graph-representing, sparse adjacency

matrix A, see Fig 2. In fact, one can show that Eq (3) is formally identical to the An compilation

rule from the entries of A. In turn, the weighted version of our plausibly derived communica-

bility measure (Eq (4)) naturally emerges within the concept of the adjacency matrix exponen-

tial eA. Following [40, 41], the total communicability Cij(n) between a pair of network nodes

(i, j) joined by all possible walks of the maximum length n is calculated as the exponential of

Fig 1. Principle concept of network communicability assessment. a. Information flow along a single linear

pathway joining two nodes (P1, P4) is defined as a product of weights Ei of all pathway links (here: E1 E2 E3).

Disruption of a single pathway link (E2! 0) results in interruption of the entire pathway communicability. b. Total

information flow through multiple pathways is defined as a sum of communicabilities of all linear pathways joining a

pair of nodes (here: three pathways with communicabilities E1 E2 E3, E4 E5 E6 E7, E4 E8 E9 E7). Disruption of a

single pathway link (E2! 0) does not interrupt the total P1!P4 communicability.

doi:10.1371/journal.pone.0170953.g001
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the adjacency matrix Aij computed up to the n-power term of the eAij series expansion:

Cij ¼ eAij � I � CijðnÞ ¼ Aij þ
ðA2Þij

2!
þ
ðA3Þij

3!
þ . . .þ

ðAnÞij

n!
; ð5Þ

where I is the identity matrix. In simple terms, Cij(n) represents a n!-weighted sum of all walks

(pathways) of the lengths 1, 2, 3‥n joining a pair of network nodes with indices (i, j). In this

study, the matrix exponential is calculated for n� 7 using sparse matrix multiplication algo-

rithms as available with the CSPARSE package [42]. Thereby, computational costs for iterative

compilation of a Cij(n = 7) matrix with 7018 diagonal elements on a Intel Core i5-4590 pow-

ered PC amount roughly one hour.

Unweighted adjacency matrices indicate existence Aij = 1 of connections between each two

nodes (i, j), but they do not consider intensity of their interactions. In order to account for

Fig 2. Example of network communicability calculus using adjacency matrices. Given initial adjacency matrices of directional weighted (W) and

unweighted (A) pairwise interactions between network nodes, all weighted and unweighted walks of the length n > 1 are calculated from the n-power matrices

Wn and An, respectively. Note that the shortest possible loop in a directed graph has the length n = 3. Consequently, diagonal entries of W3 and A3 contain

non-zero values, while the n = 1, 2 power matrices are hollow.

doi:10.1371/journal.pone.0170953.g002
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biologically relevant differences in strength of network interconnections, weighted adjacency

matrices are required. Here, we make strength of network edges dependent on differential

gene expression. The basic idea consists of constructing a matrix of differential gene expres-

sion weighted interactions which entries are positive numbers Wij� 0 that have the following

interpretation

Wij < 1 interaction between ði; jÞ is downregulated;

Wij ¼ 1 interaction between ði; jÞ is unchanged;

Wij > 1 interaction between ði; jÞ is upregulated:

ð6Þ

Since interactions between neighbor nodes are defined on network edges, we want to define a

mapping function which maps differential gene expression of each two neighbor nodes on

their interlinking edge. Furthermore, this mapping should consider that communicability of a

single network link is critically dependent on intensities of interlinked nodes. The above

requirements are met by the following mapping function which is further termed as the mini-

mum metric (shortly, min-metric):

Wij ¼ 2minðli ;ljÞ : ð7Þ

In addition, we introduce an alternative average metric (shortly, avg-metric)

Wij ¼ 20:5ðliþljÞ ð8Þ

that allows to account for a global trend of gene regulation in the entire pathway. In analogy to

Eq (5), the matrix of differential gene expression weighted communicability Gij is defined as

Gij ¼ eWij � I � GijðnÞ ¼Wij þ
ðW2Þij

2!
þ
ðW3Þij

3!
þ . . .þ

ðWnÞij

n!
: ð9Þ

Finally, in order to avoid artificial overweighting of well-studied genes with high number of of

interacting neighbors, we introduce the normalized total communicability (NTC) matrix

Dij(n) where non-zero entries are defined by the ratio of differential gene expression weighted

to unweighted communicability:

DijðnÞ ¼
GijðnÞ
CijðnÞ

: ð10Þ

Consequently, entries of Dij(n) matrices indicate relative changes in total information flow

between each the two network nodes (i, j) joined by pathways of the maximum length n inde-

pendently on the total number of these pathways.

Results

Starting from 74538 directed interactions between 7018 network nodes, NTC matrices of mul-

tistep pathways are computed iteratively as described above (Eqs (5)–(10)). Complete lists of

weighted and unweighted pairwise interactions (i.e., 1st order adjacency matrices) for tumor/

norm, norm/tumor and ‘random expression’ samples are in S3 Table. With increasing path-

way lengths, communicability matrices become densely populated. As shown in Fig 3, the

occupancy of communicability matrices (i.e., the ratio of non-zero matrix entries to the

dimension of the fully occupied matrix 70182) displays a particularly rapid increase from

0.15% to 53% at n = 4 and saturates around 70%. This means that the majority of network

nodes are interconnected via n� 4 distant pathways.
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Differences between cancer and non-cancer interactomes are first studied using the more

restrictive min-metric (Eq (7)). For this purpose, seven NTC matrices Dij(n = 1 − 7) are com-

puted for BRCA/COAD/GBM cancer interactomes. To analyze dependency of NTC on gene

scoring (i.e., gene expression), complementary ‘non-cancer’ NTC matrices are assembled by

resorting the gene lists in reverse or random orders, i.e.,

Reverse : li $ lN� i ;

Random : la $ lb;
ð11Þ

where 1� α 6¼ β� N are two unequal random indices of differentially expressed genes in

sorted BRCA/COAD/GBM gene lists.

To assess global differences between cancer and non-cancer interactomes, the average of all

Dij(n) entries

�DðnÞ ¼
1

NM

XN

i¼1

XM

j¼1

DijðnÞ ; ð12Þ

as well as the fraction of enhanced communicability r(n) as a function of the maximum path-

way length (n = 1 − 7) are computed:

rðnÞ ¼
XK

k¼1

XL

l¼1

DklðnÞ

 !
XN

i¼1

XM

j¼1

DijðnÞ

 !� 1

; ð13Þ

where (k, l) and (i, j) denote indices of elevated (i.e., Dkl(n) > 1) and all NTC entries, respec-

tively. Fig 4 shows plots of �DðnÞ and r(n) for cancer and non-cancer networks. Remarkably,

the average NTC in the range of n� 4 distant pathways exhibits a persistent increase only in

cancer interactomes. In contrast, average NTC of all non-cancer networks declines with an

increasing pathway length. Difference between cancer and non-cancer NTC is also visible in

the fraction of elevated NTC as a function of the maximum pathway length r(n), which shows

Fig 3. Total number of non-zero entries and percentage of occupancy of communicability matrices as

a function of the maximum pathway length n = 1 − 7.

doi:10.1371/journal.pone.0170953.g003
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Fig 4. Statistics of total communicability matrices computed using the min-metric. Left column: average NTC as a function of the maximum pathway

length (n = 1 − 7). Right column: fraction of enhanced network communicability (Eq (13)) as a function of the maximum pathway length (n = 1 − 7). In

contrast to normal and randomly weighted networks, BRCA/COAD/GBM cancer networks exhibit elevated long-range NTC.

doi:10.1371/journal.pone.0170953.g004
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more rapid growth in cancer than in the reference non-cancer networks. Similar patterns of

elevated long-range NTC in cancer interactomes are also observed when using the avg-metric

(Eq (8)). To compare NTC of cancer and non-cancer networks simultaneously in both metrics,

diagonal (θ) and cumulative off-diagonal (ξ) communicabilities in min- and avg-metric are

computed as follows

y
min
i ðnÞ ¼ log ðDmin

ii ðnÞÞ x
min
i ðnÞ ¼ log

PM
j6¼i Dmin

ij ðnÞ
� �

;

y
avg
i ðnÞ ¼ log ðDavg

ii ðnÞÞ x
avg
i ðnÞ ¼ log

PM
j6¼i Davg

ij ðnÞ
� �

:

ð14Þ

Fig 5 shows diagonal and off-diagonal n� 7 gene communicabilities of BRCA/COAD/GBM

vs randomly weighted interactomes as two-dimensional distributions. Significance of the dif-

ferences between cancer and non-cancer communicabilities in (θmin, θavg) and (ξmin, ξavg) rep-

resentations is confirmed by the two-dimensional Kolmogorov-Smirnov test with significance

level p< 0.001.

To determine whether elevated communicability of different cancer interactomes arises

from enhancement of common genes, the impact of simulated gene inhibition on the above

statistical features of NTC matrices (Eqs (12)–(13)) is simulated. For this purpose, a cut set of

common BRCA/COAD/GBM genes with high NTC in both min- and avg-metric is computed

using an iterative procedure, as shown in Fig 6. Starting with the initial set of 530 common

BRCA/COAD/GBM genes, the smallest subset of 90 genes is identified whose simulated inhi-

bition is sufficient to decrease the difference between NTC of cancer and non-cancer interac-

tomes, see Fig 5 (orange labels). Subsequent visualization and ontological analysis using

STRING reveal association of these tightly interlinked genes with enhanced cell division, DNA

replication, cellular stress response and other cancer related functional categories, see Fig 7

and S4 Table. In addition to common genes, there are cancer-type specific genes with high

NTC that appear to group in separate clusters in min-avg diagrams. 76 COAD specific genes,

indicated in Fig 5 with green labels, build a prominent cluster with particularly high NTC val-

ues in avg-metric. These 76 genes are enriched in Hedgehog, Hippo and Wnt pathways which

are known to promote Epitelial-to-Mesenchymal Transition (EMT) and metastatic cell trans-

formation [43], see Fig 8 and S5 Table.

Since our above simulations indicate a high level of robustness of cancer networks with

respect to inhibition of a relatively small number of genes, we are interested in assessing the

inhibitory effects of other prominent gene signatures. For this purpose, we examine a list of 33

genes with a high differential entropy in bladder cancer highlighted in [31]. Remarkably, 12 of

33 bladder cancer genes from [31] are also present in our list of 90 common BRCA/COAD/

GBM genes. According to the hypergeometric test HGT(7018, 90, 33, 12) = 2.6e-15, this over-

lap is statistically significant, see S6 Table. However, simulated inhibition of these 33 genes

turned out to not be sufficient for the suppression of elevated NTC. Fig 9 shows the results of

simulated inhibition 33 bladder cancer genes from [31] and 90 common BRCA/COAD/GBM

genes identified in this work.

Discussion

Network-based approaches to mining omics data are increasingly popular. However, consis-

tent modeling of biological networks remains a challenging task and requires the consideration

of numerous factors whose impact on simulation results is still controversially debated in the
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Fig 5. Diagonal and off-diagonal communicability of tumor (cyan) vs random (bordeaux) interactomes in min- and avg-metric. Each

point represents log-sum of total diagonal (left column) re. off-diagonal (right column) communicability of the i-th network node to itself and

remote neighbors via all walks of the length (n� 7), respectively. Orange labels indicate a subset of 90 common genes that are associated with

elevated communicability in BRCA/COAD/GBM interactomes. Green labels in the COAD plot indicate a fraction of 76 COAD specific EMT-

related genes with particularly high communicability in avg-metric.

doi:10.1371/journal.pone.0170953.g005
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literature. These factors include the role of a particular network topology, directionality and

size as well as the choice of appropriate gene proximity metrics and numerical scores. In this

work, we focused on the construction and evaluation of novel descriptors for measurement of

network information flow. We let other issues remain widely unaddressed, assuming that sim-

ulation results obtained with different network topologies should be, in general, convergent.

To account for the potential bias of degree-based network features, we introduced a degree-

independent measure of information flow—the normalized total communicability (NTC).

NTC relies on a well-known concept of network topology characterization by means of the n-

power adjacency matrices, whose entries indicate the total number of unweighted walks of the

maximum length n between each two network nodes. In our approach, adjacency matrices of

unweighted network topology are used for normalization of differential gene expression

weighted walks. Consequently, NTC does not explicitly depend on node degrees, but rather

serves as an integrative measure of up- or downregulation of all pathways of the maximum

length n joining each two network nodes.

Similar to other works, we use public databases on pairwise protein-protein and gene regu-

latory interactions to compile the basic network topology. However, here we rely on a subset

of directed interactions that naturally restrict the emergence of loops to n� 3 network steps.

Our simulation results show that elevated long-range communicability of different cancer net-

works is largely caused by circulation of information flow within compact subnetworks of

tightly interlinked genes. In networks with non-directed interactions, this feature might be

missing.

Our simulations indicate a high level of robustness of cancer networks with respect to inhi-

bition of a low number of genes-proteins. Simulated inhibition of a few dozen genes, including

a hit list of 33 bladder cancer genes from [31], was not sufficient to suppress elevation of long-

Fig 6. Identification of the cut set of genes associated with elevated NTC in BRCA/COAD/GBM cancer

samples. First, an initial cut set of 530 common BRCA/COAD/GBM genes with elevated NTC is estimated.

By iterative reduction of the initial gene set, 90 genes are identified whose simulated inhibition is sufficient to

level down the difference between NTC of cancer and non-cancer interactomes.

doi:10.1371/journal.pone.0170953.g006
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range NTC. Despite the fact that elevated NTC arises in different cancer interactomes from

heterogeneous gene expression profiles, we identified a subset of 90 common BRCA/COAD/

GBM genes whose simulated inhibition is capable of reducing differences between NTC of

cancer and non-cancer interactomes. These genes turn out to be associated with cancer-related

ontological categories, including enhanced cell division, DNA replication, elevated energy

demand and cellular stress response. We conclude that enhanced NTC reflects correlated

Fig 7. Subnetwork of 90 common BRCA/COAD/GBM genes with high NTC, cf. Fig 5 (orange labels).

doi:10.1371/journal.pone.0170953.g007
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activity of genes whose coordination is required for maintenance of sustained proliferation

and replication of all tumor cells. In other words, elevated long-range NTC represents a graph-

theoretical hallmark of cancer networks. Under the assumption of gradual elevation of NTC in

course of cancer development, an abnormal increase of NTC can serve as an early marker of

malignant cell transformation. Further investigations of normally proliferating and cancer

cells at different stages of disease development are required to prove this assumption and to

define reliable diagnostic measures.

While focusing on construction of a feasible graph-theoretical formalism for gene expres-

sion weighted network modeling, this work does not go into the discussion of biological mech-

anisms of cancer network rewiring and regulation. Different biological processes on single

gene, chromosome and whole genome level including gene mutations, changes in gene copy

number, chromotripsis are known to accompany malignant cell transformation [44]. Consid-

eration of this layer of information will be an important subject for future research.

Finally, our graph-theoretical framework is of potential interest for a broad spectrum of

network perturbation problems such as single or multiple gene-protein activation, inhibition

or malfunction due to the impact of mutations or interactions with pharmaceutic drugs.

Fig 8. Subnetwork of 76 COAD specific genes with high NTC in the avg-metric, cf. Fig 5 (green labels).

doi:10.1371/journal.pone.0170953.g008
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Fig 9. Effects of simulated inhibition of 90 common BRCA/COAD/GBM genes with high NTC vs 33 bladder cancer genes with high differential

entropy from [31], see full gene lists in S4 Table. Inhibition of 33 high-score targets from [31] moderately decreases global communicability features of

cancer networks. However, it is obviously not sufficient to suppress their elevation with increasing pathway length. In contrast, simulated inhibition of our 90

targets results in decreasing the difference between NTC features of cancer and non-cancer interactomes.

doi:10.1371/journal.pone.0170953.g009
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