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Abstract: Beamforming and its applications in steered-response power (SRP) technology, such as
steered-response power delay and sum (SRP-DAS) and steered-response power phase transform
(SRP-PHAT), are widely used in sound source localization. However, their resolution and accuracy
still need improvement. A novel beamforming method combining SRP and multi-channel cross-
correlation coefficient (MCCC), SRP-MCCC, is proposed in this paper to improve the accuracy of
direction of arrival (DOA). Directional weight (DW) is obtained by calculating the MCCC. Based
on DW, suppressed the non-incoming wave direction and gained the incoming wave direction to
improve the beamforming capabilities. Then, sound source localizations based on the dual linear
array under different conditions were simulated. Compared with SRP-PHAT, SRP-MCCC has the
advantages of high positioning accuracy, strong spatial directivity and robustness under the different
signal–noise ratios (SNRs). When the SNR is −10 dB, the average positioning error of the single-
frequency sound source at different coordinates decreases by 5.69%, and that of the mixed frequency
sound sources at the same coordinate decreases by 5.77%. Finally, the experimental verification was
carried out. The results show that the average error of SRP-MCCC has been reduced by 8.14% and the
positioning accuracy has been significantly improved, which is consistent with the simulation results.
This research provides a new idea for further engineering applications of sound source localization
based on beamforming.

Keywords: sound source localization; multi-channel cross-correlation coefficient; microphone
array; beamforming

1. Introduction

Sound source localization techniques have a wide range of application prospects in
civil and military systems, such as intelligent medical systems, security monitoring and
sonar detection [1–5]. Existing sound source localization techniques can be divided into
the subspace, time delay estimation and beamforming. The subspace approach uses the
orthogonality between the signal and noise subspaces to determine the waveform direction,
including multiple signal classification (MUSIC) and estimating signal parameters via
rotational invariance techniques (ESPRIT) [6,7]. Their performance is heavily dependent on
the covariance matrix estimation, which is influenced by the signal-to-noise ratio (SNR). Hu
et al. proposed an improved MUSIC algorithm to calculate the spatial spectrum and achieve
azimuth estimation [8]. Herzog et al. developed a novel EB-ESPRIT method to estimate
the incoming wave direction of a sound source [9]. The direction estimation accuracy of
studies [8] and [9] is higher than that of MUSIC and ESPRIT, respectively. However, the
accuracy is still significantly reduced at a lower SNR. The time delay estimation method
achieves the source location based on the arrival time difference [10]. In [11], sound source
localization in an indoor environment is completed by using two dual-element arrays to
estimate time delay. However, the time delay estimation method is susceptible to noise.
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When the number of array elements is increased, there is redundant information in the
signals. The multi-channel cross-correlation coefficient (MCCC) method in [12] can improve
the robustness of delay estimation through multi-element array signals. Beamforming
is to obtain the direction of the sound source by summing weighted array signals, and
is classified into frequency domain beamforming and time domain beamforming [13,14].
In frequency domain beamforming, many methods have been proposed to improve its
performance [15,16]. Reference [15] improved the robustness by adding norm constraints
and spatial smoothing techniques. Reference [16] proposed nested arrays to improve beam-
forming performance. Time domain beamforming is compared with frequency domain
beamforming in [17]. The two beamforming methods have similar performance. Time
domain beamforming is a natural broadband method which is suitable for single-frequency
and multi-frequency signals, and it does not require repeated multiple frequency process-
ing. In time domain beamforming, the steered-response power (SRP) is commonly used.
Steered-response power delay and sum (SRP-DAS) is used for direction estimation based on
microphone arrays. The steered-response power phase transform (SRP-PHAT) algorithm is
an optimization of the SRP-DAS, which is easy to implement and has stronger robustness
than SRP-DAS by whitening the signals [18,19]. The SRP-PHAT algorithm as time domain
beamforming has been widely used in target tracking and distributed localization [20–22].
Salvati et al. reported the SRP-PHAT modification algorithm, which can speed up the
operation [23]. However, the directivity based on SRP-PHAT is not outstanding in azimuth
estimation, and the localization accuracy still needs further improvement.

Therefore, combining the advantages of MCCC and SRP, a new beamforming method
(SRP-MCCC) is proposed in this paper. In this method, the wave direction weight (DW)
is calculated by the MCCC, which adjusts the SRP value to enhance the directivity of
microphone arrays and improve spatial resolution. In this paper, Section 2 describes
the positioning principle of the proposed method. Then, the sound source localization
simulation is reviewed in Section 3. Section 4 verifies the performance of the proposed
method under experimental conditions. Finally, conclusions are given in Section 5.

2. Positioning Principle

Figure 1 shows the calculating flow of the position. Suppose the numbers of arrays
and each array elements are M and N, respectively. For each array, the MCCC is evaluated
by the N-elements’ signals. The DW is constructed by using redundant information of
MCCC. After obtaining the DW, the weighted beamforming is performed, and finally, the
relative direction (θI , θ I I , . . . , θM) is found. When M ≥ 2, the source position can be
calculated from (θI , θ I I , . . . , θM).
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2.1. Signal Model 

Figure 1. Positioning flowchart.

2.1. Signal Model

The far-field signal propagation and the N-element linear microphone array model
are shown in Figure 2. θ0 represents the direction from the far-field source to the array, and
di (i = 1, 2 . . . . . . N − 1) denotes the spacing between the two array elements in the array.
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Figure 2. Signal and array model.

Assume that the source signal is s(n), which is a time series. The signals received by
the N-element linear microphone array can be expressed as X(n).

X(n) =


x1(n)
x2(n)

. . .
xN−1(n)

xN(n)

 =


α1s(n− t1) + v1(n)
α2s(n− t2) + v2(n)

. . .
αN−1s(n− tN−1) + vN−1(n)

αNs(n− tN) + vN(n)

 (1)

where xi(n)(i = 1, 2, . . . , N) represents the signal received by the i-th microphone, αi is the
attenuation coefficient of the signal received by the i-th microphone, ti is the propagation
time from the sound source localization to the i-th microphone and vi(n) is the noise signal
received by the i-th microphone.

Taking the first microphone as the reference, the aligned signal y(n, τ) can be written
as:

y(n, τ) = [ α′1x1(n− τ1) α′2x2(n− τ2) . . . α′N−1xN−1(n− τN−1) α′N xN(n− τN) ]
T

= [ α′1s′1(n− τ1) α′2s′2(n− τ2) . . . α′N−1s′N−1(n− τN−1) α′Ns′N(n− τN) ]
T

+[ v1(n− τ1) v2(n− τ2) . . . vN−1(n− τN−1) vN(n− τN) ]
T

(2)

where s′ i(n− τi) represents the i-th signal after alignment. τi (i = 1, 2, . . . , n) is the time
delay from the i-th microphone to the first microphone, and its value is related to the
position of the sound source and the microphone array structure, where τ1 = 0. α′ i is the
relative attenuation coefficient, and it is calculated by

α′ i =
αi
α1

(i = 1, 2, . . . , N) (3)

For a linear array, the following relationship exists between τi and dn (the distance
between the n-th and (n + 1)-th microphone):

τi =


0 (i = 1)

i−1
∑

n=1
dn

d1
τ2(i ≥ 2)

(4)
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2.2. Direction Weight

The Pearson coefficient of the normalized signals is used to replace the value of the
correlation function [24,25]. The correlation coefficient matrix of different time delays is
ρ(τ):

ρ(τ) = Py(n, τ)y(n, τ)T P

=


ρ11(τ1, τ1) ρ12(τ1, τ2) . . . ρ1N(τ1, τN)
ρ21(τ2, τ1) ρ22(τ2, τ2) . . . ρ2N(τ2, τN)

. . . . . . . . . . . .
ρN1(τN , τ1) ρN2(τN , τ2) . . . ρNN(τN , τN)

 (5)

where

P =


1
σ1

1
σ2

. . .
1

σN

 (6)

ρij(τ) is the correlation coefficient between the i-th and the j-th alignment signal, which
can be expressed as:

ρij(τi, τj) =
xi(n−τi)·xj(n−τj)

σiσj

=
α′ is′ i(n−τi)·α′ jsj(n−τj)

σiσj
+

α′ is′ i(n−τi)·vj(n−τj)
σiσj

+
α′ js′ j(n−τi)·vi(n−τi)

σiσj
+

v′ i(n−τi)·vj(n−τj)
σiσj

= rij + rivj + rjvi + rvivj

(7)

where σi = ∑ x2
i is the energy of the i-th signal and · indicates the inner product. Observing

Equation (7), it can be deduced that rij is the correlation coefficient between the i-th signal
and the j-th signal. rivj represents the correlation coefficient between the i-th signal and the
j-th noise, and rjvi

is the correlation coefficient between the j-th signal and the i-th noise.
rvivj is expressed as the correlation coefficient between the i-th noise and the j-th noise. It
can be seen that when s′ i(n− τi) = s′ j(n− τj), rij has the maximum value. The hDW(τ)
is constructed by using redundant information of the MCCC. hDW(τ) is calculated from
the correlation coefficient matrix, which is directly related to the signal itself, and it can be
represented as:

hDW(τ) =
N

∏
i=1

i

∏
j=1

ρij(τi, τj) (8)

2.3. Weighted Beamforming

The weighted beamforming process of a single array after obtaining the hDW(τ) is
shown in Figure 3. First, the compensation time delay τ′ i (i = 1, 2 . . . . . . N) is performed
on the signals xi(t) received by the array iA (iA = 1, 2 . . . . . . M) to obtain the compensation
signals xi(t− τ′ i). Then, the weighted signals hDW(τ)xi(t− τ′ i) are calculated by multi-
plying xi(t− τ′ i) and hDW(τ). Subsequently, the spatial integration of hDW(τ)xi(t− τ′ i)
at the same instant is performed, and the time integration of all signals at different times
is operated. Finally, DiA(θ) (beam output of array iA) is calculated. Since hDW(τ) con-
tains spatial information, it can enhance the incoming wave direction and suppress the
non-incoming wave direction, which can improve the directional ability of DiA(θ).
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DiA(θ) can be expressed as:

DiA(θ) = ∑
∣∣∣hTy(n, τ)

∣∣∣2 (9)

where hT = hDW(τ)[1 1 . . . 1], τ = d1 sin θ
c and c is the speed of sound in the environ-

ment. When θ = θ0, DiA(θ) has a maximum value; at this time, θ0 is the direction of the
sound source.

The frequency domain expression can be written as:

DiA(θ) =
1

2π

N

∏
j=1

j

∏
i=1

∫ π

−π
ρij(τi, τj)Xi(ejω)Xj

∗(ejω)ejω(τi−τj)dω (10)

where Xi
(
ejω) and Xj

(
ejω) represent the Fourier transforms of the signals xi(t) and xj(t),

respectively.
As the number of arrays is M, the coordinates (x, y) of the sound source can be

obtained by the following equation:

Dall =
M
∑

iA=1
DiA( fiA(x, y))

(x, y) = argmax
(x,y)

Dall
(11)

where f iA
(x, y) = θiA represents the direction of the source coordinate (x, y) relative to

the normal direction of the array iA. fiA(x, y) represents a mapping from coordinate space
to direction space. When Dall is maximized, the corresponding (x0, y0) is the maximum
probability of the sound source.

3. Simulation Analysis

We used two sets of equally spaced linear arrays to simulate the sound source localiza-
tion. The coordinates of the i-th microphone of the array I are ((i − 1) × d, 0) (i = 1, 2, 3...16),
and the coordinates of the i-th microphone of the array II are ((i − 1) × d, 10). d is the
distance between two adjacent microphones and d = 0.043 m. D is the distance between the
array I and array II angle and D = 10 m. The sound source and array locations are shown in
Figure 4. θ1 and θ2 are sound source directions relative to array I and array II, respectively.
Assuming that the normal array is the beginning edge and the incoming wave direction is
the end edge, θ1 and θ2 are positive counterclockwise and are negative clockwise. Moreover,
θ1 and θ2 ∈ [−90◦, 90◦). The center of the array is used as a reference point, and the sound
source coordinates (x, y) can be calculated by the following:

y
x−7.5d = tan(θ1 + 90◦)
y−D

x−7.5d = tan(θ2 − 90◦)
(12)
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Figure 5 shows the direction estimation results of the SRP-PHAT and the SRP-MCCC
when the source signal is a 600 Hz sine signal with source coordinates (14, 4) and the SNR
is −5 dB. The brightness of a point represents the probability that the point is the location
of the sound source. Figure 6 shows the location estimation results of the SRP-PHAT and
the SRP-MCCC when the SNR is −5 dB.
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From Figures 5 and 6, we can observe that the SRP-MCCC has a superior localization
convergence capability and can improve the localization accuracy by aggregating the
localization results into smaller areas and improving spatial pointing. To further explore
the advantages of this method, simulation analyses of SRP-PHAT and the SRP-MCCC were
conducted under different SNR conditions, and the results are shown in Table 1.

Table 1. Simulation results for different SNR conditions (600 Hz, (14, 4)).

SNR/dB

SRP-PHAT SRP-MCCC

Position/m Directional
Deviation/◦

Distance
Error/% Position/m Directional

Deviation/◦
Distance
Error/%

10 (14.25, 3.94) (−0.36, 0.12) 1.77 (13.96, 4.00) (0.04, −0.08) 0.27
0 (14.27, 3.86) (−0.46, −0.28) 2.09 (14.19, 3.96) (−0.26, −0.03) 1.33
−5 (15.24, 3.84) (−1.76, 1.12) 8.59 (13.78, 3.90) (−0.11, −0.83) 1.66
−10 (12.59, 4.10) (1.59, −2.03) 9.71 (14.31, 4.13) (0.24, 0.87) 2.31
−15 (15.61, 4.06) (−1.33, 2.29) 11.06 (13.48, 4.10) (1.01, −0.46) 3.64
−20 (16.14, 4.07) (−1.76, 3.02) 14.71 (14.57, 4.26) (0.49, 1.57) 4.30

As shown in Table 1, when the SNR is high, the localization errors of both methods are
comparatively insignificant. As the SNR decreases, the localization error of the SRP-PHAT
increases significantly, while that of the SRP-MCCC remains at a low level. When the SNR
is reduced from 10 dB to −20 dB, the position error of the SRP-PHAT increases from 1.77%
to 14.71%, and the error of the SRP-MCCC only increases from 0.27% to 4.30%. Simulation
experiments show that the SRP-MCCC is feasible. The localization effect is excellent, and
the robustness is outstanding.

To further explore the method proposed in this paper, the single-frequency signal at
different source positions and the mixed-frequency signals at the same coordinate were
simulated when SNR = −10 dB. The results are shown in Tables 2 and 3, respectively.
We can infer that the average error of the single-frequency signal at different coordinates
decreased by 5.69%, and that of the mixed-frequency signals decreased by 5.77% at the
same coordinate.

Table 2. Simulation results for different source locations (SNR = −10 dB, 600 Hz).

Source
Location/m

SRP-PHAT SRP-MCCC

Position/m Directional
Deviation/◦

Distance
Error/% Position/m Directional

Deviation/◦
Distance
Error/%

(12, 7) (10.96, 6.62) (1.28, −3.53) 8.81 (12.22, 6.79) (−0.96, −0.84) 2.19
(15, 6) (16.26, 6.18) (1.41, 1.11) 7.88 (15.52, 6.03) (−0.46, 0.51) 3.22

(17, 4.5) (18.27, 4.04) (−2.34, −0.23) 7.51 (17.47, 4.60) (−0.02, 0.85) 2.73
(19, 6.5) (20.99, 6.84) (0.78, 1.87) 10.05 (19.81, 6.92) (0.46, 1.58) 4.05
(21, 5) (21.21, 4.15) (1.08, −0.63) 8.83 (21.52, 4.90) (−0.62, 0.50) 2.45

Table 3. Simulation results for different frequencies (SNR = −10 dB, (15, 5)).

Frequency/Hz
SRP-PHAT SRP-MCCC

Position/m Directional
Deviation/◦

Distance
Error/% Position/m Directional

Deviation/◦
Distance
Error/%

600 (13.59, 5.09) (2.21, −1.52) 8.93 (14.61, 5.09) (0.81, −0.16) 2.53
600, 900 (16.17, 5.21) (−0.62, 2.00) 7.52 (15.41, 5.13) (−0.03, 0.92) 2.72

600, 900, 1500 (13.68, 5.08) (2.03, −1.42) 8.36 (14.73, 5.23) (1.15, 0.50) 2.24

4. Experiment

To verify the feasibility of the SRP-MCCC, a field localization experiment was con-
ducted, as shown in Figure 7. The array structure and the sound source frequency are
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consistent with the simulation during the experiment, as shown in Figure 4. This paper
presents an experimental comparison between the SRP-PHAT and the SRP-MCCC.

Micromachines 2022,13,x FOR PEER REVIEW 8 of 11 
 

 

(15, 6)  (16.26, 6.18) (1.41, 1.11) 7.88 (15.52, 6.03) (−0.46, 0.51) 3.22 
(17, 4.5) (18.27, 4.04) (−2.34, −0.23) 7.51 (17.47, 4.60) (−0.02, 0.85) 2.73 
(19, 6.5) (20.99, 6.84) (0.78, 1.87) 10.05 (19.81, 6.92)  (0.46, 1.58) 4.05 
(21, 5) (21.21, 4.15) (1.08, −0.63) 8.83 (21.52, 4.90) (−0.62, 0.50) 2.45 

Table 3. Simulation results for different frequencies (SNR = −10 dB, (15, 5)). 

Fre-
quency/Hz 

SRP-PHAT SRP-MCCC 

Position/m 
Directional 
Deviation/° 

Distance Er-
ror/% 

Position/m 
Directional 
Deviation/° 

Distance Er-
ror/% 

600 (13.59, 5.09)   (2.21, −1.52) 8.93 (14.61, 5.09)  (0.81, −0.16) 2.53  
600, 900 (16.17, 5.21) (−0.62, 2.00) 7.52 (15.41, 5.13) (−0.03, 0.92) 2.72 
600, 900, 

1500 
(13.68, 5.08) (2.03, −1.42) 8.36 (14.73, 5.23) (1.15, 0.50) 2.24 

4. Experiment 
To verify the feasibility of the SRP-MCCC, a field localization experiment was con-

ducted, as shown in Figure 7. The array structure and the sound source frequency are 
consistent with the simulation during the experiment, as shown in Figure 4. This paper 
presents an experimental comparison between the SRP-PHAT and the SRP-MCCC. 

 
(a) (b) 

Figure 7. (a) Experimental scene. (b) Experimental equipment. 

The direction estimation and position estimation results of SRP-PHAT and SRP-
MCCC when the sound source coordinate is (10, 5) are shown in Figures 8 and 9, respec-
tively. From Figures 8 and 9, it can be found that the spot size of the SRP-MCCC, in both 
angle and position, is smaller than SRP-PHAT. Therefore, the SRP-MCCC has a stronger 
angular resolution and can control the beam width in a smaller range, which can lead to 
more accurate direction and position estimation. 

Figure 7. (a) Experimental scene. (b) Experimental equipment.

The direction estimation and position estimation results of SRP-PHAT and SRP-MCCC
when the sound source coordinate is (10, 5) are shown in Figures 8 and 9, respectively.
From Figures 8 and 9, it can be found that the spot size of the SRP-MCCC, in both angle
and position, is smaller than SRP-PHAT. Therefore, the SRP-MCCC has a stronger angular
resolution and can control the beam width in a smaller range, which can lead to more
accurate direction and position estimation.
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Figure 8. The direction estimation experimental results of (a) SRP-PHAT and (b) SRP-MCCC when
the sound source coordinate is (10, 5).

Subsequently, localization experiments were conducted for the sound source coordi-
nates of (11, 2) and (12, 7.5), and the experimental results are shown in Table 4. Compared
with the SRP-PHAT, the SRP-MCCC has higher accuracy in both direction and position
estimation, and the average error is reduced by 8.14%. Therefore, SRP-MCCC has a better
localization effect, which is in line with the expected results and verifies the feasibility and
superiority of the SRP-MCCC.
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Figure 9. The location estimation experimental results of (a) SRP-PHAT and (b) SRP-MCCC when
the sound source coordinate is (10, 5).

Table 4. Localization results of SRP-PHAT and MCCC-SRP at different coordinates.

Source
Location/m

(θ1, θ2)/◦
SRP-PHAT SRP-MCCC

Direction/◦ Position/m Error/% Direction/◦ Position/m Error/%

(10, 5) (−64.16,
64.16)

(−65.60,
66.08) (11.14, 4.80) 10.35 (−64.99,

64.18) (10.20, 4.91) 1.96

(11, 2) (−79.98,
54.76)

(−81.94,
55.73) (11.83, 1.72) 7.83 (−79.11,

54.75) (10.81, 2.13) 2.06

(12, 7.5) (−58.67,
78.53)

(−61.77,
79.12) (13.39, 7.36) 12.62 (−59.52,

78.26) (12.24, 7.39) 2.36

5. Conclusions

A new high-precision beamforming algorithm (SRP-MCCC) is proposed to improve
the positioning accuracy by combining SPR and MCCC. A detailed theoretical analysis of
the method is presented here, and the simulations and experiments verify its feasibility. The
results show that the method has the advantages of strong robustness and high localization
accuracy. Furthermore, the SRP-MCCC has better spatial resolution and localization capa-
bility than the SRP-PHAT. Both the simulations and experiments verify the effectiveness of
the method. These results provide a new idea for the weighted beamforming algorithm,
which is essential for researching high-precision sound source localization in complex
environments.
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