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There are many organochlorine pollutants in the environment, which can be directly or
indirectly exposed to by mothers, and as estrogen endocrine disruptors can cause
damage to the lactation capacity of the mammary gland. In addition, because breast milk
contains a lot of nutrients, it is the most important food source for new-born babies. If
mothers are exposed to organochlorine pesticides (OCPs), the lipophilic organochlorine
contaminants can accumulate in breast milk fat and be passed to the infant through breast
milk. Therefore, it is necessary to investigate organochlorine contaminants in human milk
to estimate the health risks of these contaminants to breastfed infants. In addition, toxic
substances in the mother can also be passed to the fetus through the placenta, which is
also something we need to pay attention to. This article introduces several types of OCPs,
such as d ich lo rod ipheny l t r i ch lo roethane (DDT) , methoxych lo r (MXC) ,
hexachlorocyclohexane (HCH), endosulfan, chlordane, heptachlorand and
hexachlorobenzene (HCB), mainly expounds their effects on women’s lactation ability
and infant health, and provides reference for maternal and infant health. In addition, some
measures and methods for the control of organochlorine pollutants are also
described here.

Keywords: organochlorine pesticides, breast milk, lactation, infant, estrogen endocrine disruptors
INTRODUCTION

Pesticides are one of the most widely used chemicals in the world and are divided into four chemical
groups: organochlorine, organophosphate, carbamate and pyrethroid (1, 2). However,
approximately 95% of pesticides may adversely affect non-target organisms during the
application process (3). Organochlorine pesticides (OCPs) and their me7olites have toxic effects
on higher organisms due to the presence of chlorine atoms in the compounds, as well as their low
solubility and a tendency to preferentially partition into the lipophilic phase (4). Although some
persistent organic pollutants (POPs) were banned or restricted decades ago (5), they are still often
found in humans. They are resistant to microbial degradation, and their half-life ranges from several
months to several years. They can be transported over long distances, and their presence can even be
detected in the Arctic (6). They can biomagnify throughout the food chain and cause high
n.org June 2022 | Volume 13 | Article 8903071
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concentrations in top predators including humans (7). OCPs are
considered to be endocrine disrupting chemicals (EDCs) that can
work at very low doses and are compounds that change
hormones and homeostasis systems (8). They interfere with
important life processes, such as sexual development, growth
and reproduction, and the development of live fetuses (9).

OCPs can enter the human body through the absorption of
the respiratory system, digestive system, skin and eyes (10). They
are distributed throughout the body through metabolism,
excretion and storage processes (11). Human exposure to
OCPs, even at low exposure levels, can cause a variety of
diseases. In addition to carcinogenic risks, neurotoxicity and
genotoxicity, it can also have destructive effects on the endocrine,
reproductive and immune systems (3, 12). Due to its lipophilicity
and high persistence, OCPs accumulate in lipophilic human
body parts, especially in fatty tissues and other lipid-rich
tissues (13).

The breast is a hormone-dependent tissue. Its growth and
differentiation require many hormones including estradiol,
progesterone, and prolactin to coordinate (14–16). During
pregnancy and lactation, breasts mainly secrete and store
breast milk in response to the complex effects of hormones
such as estrogen, progesterone and prolactin. OCPs can cause
damage to the mammary glands and also affect the lactation
ability of lactating women.

Breast milk provides almost all the necessary nutrients for
babies under 6 months of age. It is a complete food that can
improve and promote the growth and development of babies
(17). About 60% of the lipids in breast milk come from the
mother’s adipose tissue. Some OCPs stored in the mother’s
adipose tissue will accumulate in breast milk and transfected to
the baby through breastfeeding, which brings hidden dangers to
the health of the baby (18). In addition, the developing fetus is at
risk from OCPs via placental transfer (19). Therefore, breast milk
is best used to represent the baby’s exposure to OCPs after birth.
OCPs may affect infant anthropometric development (20), gut
microbial function (21), and early childhood behaviour (22).
OCPs exposure has a negative impact on infants’ neurological
function (23). In addition, it has also been found that the OCPs
in breast milk are closely related to cryptorchidism in male
children (23). Compared with the after milk, the foremilk has a
lower fat content. Compared with maternal serum, the content of
DDT and HCH in post-milk is 80% higher (23). The lipid-
adjusted concentration of OCPs will not continue to decrease
during lactation, and there is no significant difference between
the organochlorine content in colostrum and the organochlorine
content in mature milk samples (24, 25). The residual level of
persistent organic pollutants in breast milk may reflect the
mother’s physical burden (26–28) and can be used to further
examine the relationship between OCPs and maternal health and
the possible health risks to breastfeeding offspring (29). Thus, the
residue levels of POPs in breast milk and their related health
consequences on infants are of high concern (30, 31).

This article reviews several main OCPs in the body fluids of
pregnant women, such as dichlorodiphenyltrichloroethane
(DDT), methoxychlor (MXC), hexachlorocyclohexane (HCH),
Frontiers in Endocrinology | www.frontiersin.org 2
endosulfan, chlordane, heptachlorand and hexachlorobenzene
(HCB). On the one hand, it starts with the effect of estrogen
endocrine disruptors on the mammary glands. On the other
hand, it will provide some references for preventing maternal
and infant diseases caused by OCPs.
MAIN TYPES OF OCPS

Here we divided OCPs into 4 main sub-groups of OCPs viz:
DDT and its analogues, HCH and its isomers, cyclodienes and
HCB. Most OCPs can accumulate in breast milk. DDT, HCH
and HCB are the main OCPs found in breast milk (32). The
following is an introduction to several major OCPs (Table 1).

Dichlorodiphenyltrichloroethane and
Its Analogues
DDT and Its Isomers
Dichlorodiphenyltrichloroethane (DDT, 1,1,1-trichloro-2,2-bis
(r-chlorophenyl) ethane), is a synthetic pesticide widely used
for disease-vector control and agriculture. This compound can
stimulate the release of gonadotropin-releasing hormones in a
manner similar to that induced by estrogen interaction with
estrogen receptors (ERs) (56, 57). DDT products usually consist
of a mixture with 77% p, p’-isomers, 15% o, p’-isomers and traces
of o,o′-DDT. The o, p’-DDT isomer is deemed to be the more
estrogenic isomer and has a 100 times higher binding affinity for
ERa than p, p’ -DDT (33). Dichlorodiphenyldichloroethylene
(DDE) is the main metabolite of DDT and can be considered as
an environmental contaminant (58). The half-life of DDT and its
main metabolite (DDE) in humans is at least 5 years, the longest
can even reach 10 years (34, 35). Humans are primarily exposed
to p,p’-DDT and o,p’-DDT through direct exposure to pesticide
application and dietary exposure, whereas the source of p,p’-
DDE exposure depends on whether p,p’-DDT exposure is
effective. In addition, p,p’-DDE can also be directly exposed
through diet and other aspects. The higher detectability and
levels of p,p’-DDE in humans may be due to the longer half-life
o f t h i s c om p o u n d i n t h e e n v i r o nm e n t ( 3 6 ) .
Dichlorodiphenyldichloroethane (DDD) is also an important
metabolite, and DDT can also be reductively dechlorinated to
DDD under reducing conditions (59). Reductive dechlorination
(RD) is also the main mechanism by which microorganisms
convert o,p’-DDT and p,p’-DDT isomers to DDD (4). Effects of
DDT include liver and central nervous system toxicity,
estrogenic and antiandrogenic effects, and possible
carcinogenicity (60). Some epidemiological evidence suggests
that DDT and its metabolites exposure increases preterm and
small-for-gestational-age births and shortens lactation (61, 62).

(DDT, 1,1,1-trichloro-2,2-bis(r‑chlorophenyl) ethane)
Because DDT was banned long ago, MXC emerged as an
alternative to DDT (63). MXC, a structural analogy of DDT,
has been found in human tissue samples and breast milk (23). Its
half-life is shorter than that of DDT, about half a year (38). MXC
has a chlorinated double ring structure. It can bind to ER. The
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TABLE 1 | Structure, physicochemical properties and biological effects of several organochlorine pesticides.

gens Effects on Infant Health References

Ra, cause weight loss; affect
neurodevelopment

(23, 33–38)

tivity cause weight loss; affect
neurodevelopment

(34, 36–38)

affect neurodevelopment (37, 38)

act as cause abnormal reproductive
development

(23, 33,
38–43)

cause slow growth; affects the
gut microbiome

(38, 44–47)

cryptorchidism in male infants (23, 38,
48–50)

tivity affect neurodevelopment (23, 38, 51)

tivity decreased testosterone levels (23, 38, 52)

lead to overweight;
cryptorchidism in male infants

(42, 47, 50,
53–55)
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Name structure Mol.
Wt

Water solubil-
ity (mg/L)

LogKow Half-life
(days)

Detection rate in
breast milk

Role as xenoestro

Dichlorodiphenyltrichloroethane
(DDT)

354.5 0.025 6.91 1460-
3650

100% (Taiwan,
China)

high binding affinity to
ERb and GPER

Dichlorodiphenyldichloroethylene
(DDE)

318.0 0.12 6.51 2064.8 nd has weak estrogenic a

Dichlorodiphenyldichloroethane
(DDD)

320.1 0.09 6.02 3800 nd nd

Methoxychlor (MXC) 345.6 0.04 5.08 180 <50% (Taiwan,
China)

bind to ESR1 and ERb
an antagonist of AR

Hexachlorocyclohexane (HCH) 290.8 100 3.8 9490 36.4% (Jinhua,
China)

has weak estrogenic
activity

Endosulfan 406.9 0.32 4.7 50-1095 <50% (Taiwan,
China)

higher affinity with ERa

Chlordane 409.8 1 6.16 37-7300 nd has weak estrogenic a

Heptachlor 373.32 0.18 5.44 250 100% (Tiawan,
China)

has weak estrogenic a

Hexachlorobenzene (HCB) 284.8 0.005 6.41 156-1563 83.6% (Jinhua,
China)

activates AhR

“nd” means “not determined; ERa, estrogen receptor a;ERb, estrogen receptor b; GPER, G-protein coupled estrogen receptor; AhR, aryl hydrocarbon receptor; AR, androge
E
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purity of MXC has an effect on its binding ability on ER, and
there are obvious differences in the binding of MXC with
different purities on ER. 95% MXC has a weak affinity for ER,
while 99% MXC has no competitive effect on ER (39). Its
metabolite (2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane)
(HPTE) can bind to ESR1 (Estrogen Receptor 1) and ERb and
has antiestrogenic activity. Also acts as an antagonist of androgen
receptor (AR) (40, 41). It adversely affects female fertility, early
pregnancy and uterine development (63).

Hexachlorocyclohexane and Its Isomers
Industrial grade HCH is highly stable and resistant to
degradation, and has been used to kill parasites such as
mosquitoes for malaria or typhoid control for a long time (64,
65). Although these compounds were banned in the 1990s, they
are still used in some developing countries. The production of
such saturated cyclic compounds leads to the production of
several isomers with different spatial arrangements of chlorine
atoms around the cyclohexane ring. There are five stable isomers,
including a: 60%-70%, b: 5%-12%, g: 10%-12%, d: 6%-10% and ϵ:
3%-4% (66). HCH can persist in the environment for a long time,
for example, the predicted half-life of g-HCH in water is 191 days
(44). The average half-life of g- and a-HCH around the Great
Lakes region is about 3 to 4 years (38). It was later found that
only g-HCH (also known as lindane) has insecticidal activity
(67). Lindane production process is very inefficient, producing 1
ton of lindane produces about 8-12 tons of HCH waste
consisting of a-, b-, d- and ϵ-isomers (68). Although only the
g-HCH is insecticidal, industrial grade HCH is widely used as an
inexpensive and effective insecticide in developing countries (67).

In the environment, some bacteria can slowly isomerize
lindane into a-, b- and d-HCH, mainly under anaerobic
conditions (69). The a-, b- and d- isomers are in many ways
more problematic than lindane itself. Of all isomers, b-HCH was
noted most commonly, which is a result of its high stability and
persistence. The b-isomer is usually present in higher
concentrations than those of a- and g-HCH, which metabolize
into b-HCH in the human body (66). Among the isomeric forms
of HCH, b-HCH has a more stubborn chemical structure, which
makes it more resistant to biodegradation. Once ingested or
inhaled, it leaves the body very slowly due to its higher
lipophilicity. Therefore, in the case of long-term exposure, b-
HCH is more toxic than the other isomers and has a significant
adverse effect on fetal growth (70).

Cyclodienes
Endosulfan
Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9ahexahydro-6,9-
methano-2,4,3-benzodioxathiepin-3-oxide) consists of a- and b-
isomers in a ratio of approximately 7:3 (42, 71). This insecticide is
used to control pests on fruits, vegetables and tea, as well as non-
food crops such as tobacco and cotton. It is also used as a wood
preservative. Because of its high efficiency, low cost and
environmental stability, it is widely used mainly in developing
countries (71). Endosulfan is semi-volatile and relatively
persistent. It has a half-life of 6 years. Once endosulfan is released
into the environment, it undergoes a transformation process that
Frontiers in Endocrinology | www.frontiersin.org 4
regulates its presence in soil, sediment, water, and biota (48). In
addition, he also has a higher affinity with ERa (49), long-term
effects on female fertility and differentiation of uterine function in
early pregnancy (71).

Chlordane
Chlordane is a cyclopentadiene-derived insecticide that was once
used to control termites and borers. Industrial chlordane is a
complex mixture of structurally related chemicals, including cis-
chlordane, trans-chlordane, and heptachlor (72). Due to its
toxicity and persistence, it can remain in the soil for up to 20
years, so chlordane and its related compounds can still be
detected in the environment (51). Chlordane initially
accumulates in the liver and kidneys and then redistributes to
adipose tissue (73). Chlordane has toxic effects on the nervous
system, causing headaches, confusion, convulsions, and even
fatal symptoms (74).

Many cyclopentadiene pesticides are chiral and exist as non-
superimposable mirror-image pairs of enantiomers (72, 75).
Chlordane mixtures are racemic (they contain two pairs of
each chiral component 1:1 mixture of enantiomers). Chiral
organochlorine compounds can cause enantioselective and
even enantiospecific biological effects (76, 77).

Heptachlor
Chlorinated cyclodiene heptachlor was registered in 1952 as an
agricultural and household insecticide, mainly for the control of
termites and fire ants (78). In vivo studies have shown that
heptachloro epoxide is the major metabolite. In just a few hours,
about 20% of the heptachlor in the body is degraded to epoxy
heptachlor. Formed as a product of a mixed-function oxidase
system, 1-hydroxychloride is the major soil metabolite (78). In
breast milk, higher levels of heptachlor residues are present.
Heptachlor was detected in 100% of 55 breast milk samples in a
study in southern Taiwan (23). Heptachlor exposure has been
found to be associated with neurodegenerative and
neurobehavioral disorders such as Parkinson’s disease (79) and
depression (80).

Hexachlorobenzene
HCBs are widely present in the environment around us, mainly
used as a fungicide. At present, HCB is no longer used as a
fungicide, but it is a by-product produced in the commercial
chlorination process (81). It adheres strongly to soil and degrades
very slowly (53). It is poorly soluble in water, and once there, it
accumulates in sediments (54). Its half-life is about 2 years in air
and 6 years in water and sediments (82). The main route of
exposure of the general population to HCB is through foods such
as fatty fish. HCB is a hormone disruptor as a weak ligand for
dioxin-like compounds and the aryl hydrocarbon receptor (AhR)
(83). At the molecular level, HCB first activates the AhR.
Subsequently, AhR will form heterodimerization with AhR
nuclear transporter (ARNt) and bind to specific gene
regulatory sequences of xenobiotic response element (XRE)
(42, 84). There are many adverse effects of long-term exposure
to HCB, including neurological symptoms, immune disorders
and thyroid dysfunction (82).
June 2022 | Volume 13 | Article 890307
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FACTORS INFLUENCING THE LEVEL OF
ORGANOCHLORINE PESTICIDES IN
BREAST MILK

The pollution rate of humans mainly depends on individual
exposure and accumulation, and is affected by local soil and air
pollution, diet, exposure duration, age, metabolic elimination
ability, and breast milk production (13, 85) (Figure 1).

Food
Eating habit is an important factor that affects the level of OCPs in
breast milk and women’s related risks. Dietary exposure accounts
for more than 90% of the total body burden of organochlorines (32).
OCPs tend to slowly bioaccumulate in the food chain, such that they
are eventually ingested by women and enriched in adipose tissues;
in these tissues, OCPs can persist for a long period of time (86). The
highest residues of these compounds are found in fish, meat,
poultry, eggs, milk and dairy products, as well as vegetable oils,
nuts, avocados, sesame or olives (87–89). For example, fruits and
grains are the main sources of DDE (90). The level of DDT in breast
milk is closely related to the consumption of animal-derived food
and aquatic food (91). Of these, bioaccumulation of organic
compounds in fish and other animals and their products (meat
and dairy) contributes to substantial exposure to OCPs in humans
through ingestion due to their high fat solubility (92). It has been
observed that vegetarians (i.e. those who consume vegetables, fruits
and grains without animal products) have significantly lower levels
of oral contraceptives compared to those who consume animal
products (93). However, it is not to say that vegetables do not cause
the accumulation of OCPs. In one study, food preferences in
vegetables were found to be correlated with HCB, HCHs
(SHCHs, b-HCH, g-HCH), p,p’-DDE and heptachlor (S
heptachlor and trans-heptachlor epoxides) in breast milk
concentrations were significantly positively correlated (94). In
addition to contamination of dairy products through the animals
themselves, a major source of dairy contamination may be the
Frontiers in Endocrinology | www.frontiersin.org 5
presence of OCPs such as HCH and DDT in dry and green feeds
(19).Untreated agricultural wastewater (including pesticides, etc.)
released into the water may cause the accumulation of
organochlorines, leading to pollution of the aquatic ecosystem
(95). At the same time, it also led to the pollution of aquatic
organisms such as fish and shrimp. Humans feed on these, and as
the food chain accumulates, they are ultimately the most harmed by
OCPs. Fish consumption has been found to be an important factor
leading to elevated OCP levels in human breast milk. b-HCH, d-
HCH, p’-DDT, p’-endosulfan, HCB, p,p’-DDT, cis-chlordane and
methoxychlor in breast milk of fish-eating mothers are generally
higher than that of mothers who do not eat fish (32). Studies have
also found that heat treatment of fish, especially grilling, can reduce
the level of OCPs residues in fish (95). The reason for this may be
that the heat treatment causes changes in the lipid content of fish
meat, which eventually leads to a decrease in OCP levels.

Region
Residents of developed countries (North America and Western
Europe) have lower levels of OCPs in breast milk than those of
developing countries, which may reflect differences in exposure
(96). The reason for this may be that OCPs have long been
banned in most developed countries, but they are still widely
used in many third world countries because they are cheap and
readily available. Or the time of ban in developing countries is
later than that in developed countries. It was found heptachlor-
epoxide isomer B in breast milk collected between the second
and eighth weeks of lactation in samples from rural and urban
Australia. The average lipid of samples from rural areas was 16.7
ng/g lipids, while the average in samples from urban areas was
2.21 ng/g lipids (69, 97). This may be related to the use of
pesticides in rural areas. In two surveys of the levels of persistent
OCPs in breast milk of Chinese mothers, significant differences
were found between rural and urban areas in 1998, while the
results in 2011 showed little difference. Presumably due to the
rapid urbanization and industrialization of rural areas, this
FIGURE 1 | Mothers before and after pregnancy can be directly or indirectly exposed to OCPs, which are passed to the fetus/infants through the placenta/breast
milk, causing damage to the growth and development of the babies. OCPs, organochlorine pesticides.
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difference has been reduced (98, 99). However, some studies have
found that the place of residence has nothing to do with the
concentration of DDT or HCH in breast milk (69). Studies have
also found that mothers who work or live near industrial plants
or where factories used to be more susceptible to
contamination (100).

Physiological Factors
Some studies have found that the concentration of OCPs (DDT,
diphenylether, HCB, bHCH, dieldrin and MXC, etc) in breast
milk increases with the mother’s age (30, 101), but some studies
have not found this situation (69). Older mothers, who have
longer lifetime exposures, may transfer more OCPs to their first
infants through breastfeeding than mothers of younger maternal
age. Therefore, first births from older mothers may be at higher
risk for OCPs (102). The increase in the concentration of OCPs
with age may be caused by eating habits. On the other hand,
pesticides are resistant to metabolic processes in the body, and
they will bioaccumulate with age (103, 104). And this lack of
correlation may be due to the short exposure period or the
disappearance of these organics in the environment (69). Because
the breast milk of prenatally exposed mothers may have higher
levels of organochlorine, prenatal exposure is probably the most
critical window of exposure, more critical than any other period
of postnatal life (105). Studies have found that women’s weight
before and after pregnancy affects changes in the concentration
of organochlorines in breast milk (101, 106), residues in breast
milk are due to accumulation of fat. A study found that women
with low gestational weight gain retained higher levels of
contaminants in their colostrum (107). This is because
increases in body weight and fat have the effect of diluting
OCPs concentrations (107). In addition, insufficient levels of
maternal fat may lead to higher rates of mobilization of maternal
fat stores in the last trimester of pregnancy (107), which may
trigger the release of oral contraceptives into the bloodstream
and ultimately into colostrum and breast milk. The colostrum of
low gestational weight mothers transmits more contaminants to
the baby (108). Some OCPs, such as cis- Chlordane and g-HCH,
are also related to menstrual characteristics, hormone intake, and
treatment of infertility (109). Women with irregular menstrual
cycles have observed higher levels of dioxins and polybrominated
diphenyl ethers (110, 111). This also shows that OCPs may
interfere with hormonal balance, thereby destroying menstrual
characteristics. Due to differences in metabolism between
individuals, large inter-individual differences in pesticide
concentrations in breast milk were also found (50).
THE HEALTH EFFECT OF OCPS ON
MOTHER AND BABY

The Effect of OCPs on Lactation
OCPs, including DDE, interfere with the mother’s ability to lactate,
possibly because of its estrogenic properties (112). In women, the
endocrine system is responsible for hormonal balance and
reproductive potential; chemicals that share similar structures
Frontiers in Endocrinology | www.frontiersin.org 6
with estrogen, act as agonists/antagonists of ERs, or induce ER-
mediated signalling can be considered estrogen endocrine
disruptors (EEDs, also called xenoestrogens). The expression of
ERa and ERb was found in both mammary epithelial cells and
mesenchymal cells. ERa is essential for mammary gland
development and lactation; ERb is more involved in lobular
acinar development (113). Because of its aromatic A ring and C3-
hydroxyl that provide properties of both hydrogen-bond donor and
acceptor, 17b-estradiol (E2) can interact with Arg394 and Glu353 in
ERa or with Arg346 and Glu305 in ERb (114, 115). Moreover,
unlike testosterone, E2 lacks a C19 methyl group, which ensures
that the interface between ring A and B is flat, resulting in closer
contact with ERs. The C17-hydroxyl on the D ring is of equal
importance during binding of E2 to ERs; it exhibits stable contact
with His524 in ERa and His475 in Erb (114, 116, 117). Presumably,
chemicals containing two rings properly spaced (i.e., in the manner
present in E2) can bind to ERs and disrupt normal estrogenic
physiology. But in most cases the relative binding affinity (RBA) was
at least 1000-fold lower than that of E2 (118). While most OCPs are
generally classified as “weak” estrogens, they act “additively” to
endogenous estrogens, and when ingested in sufficient quantities,
they can affect the endocrine system (119, 120). OCPs can act as
estrogen ligands and cause damage to female reproductive
physiology, especially lactation. During early pregnancy, the
ductal system dilates into adipose tissue in response to an
increase in estrogen. Estrogen also stimulates the pituitary gland,
leading to increased prolactin levels (121).. Later in pregnancy, the
mammary glands are fully developed to produce milk due to
prolactin stimulation. High levels of circulating prolactin and
estrogen can increase the surface area of the glands and ducts in
the breast, impairing milk synthesis. Only at term, and when
estrogen begins to decline, does prolactin begin to boost milk
synthesis. Weak but persistent estrogen analogs like OCPs such as
DDE interfere with milk synthesis, causing early weaning (122). In
addition, OCPs can compete for prolactin receptors (PRLR),
thereby inhibiting the lactation effect of PRL.

Prolactin (PRL) is generally regarded as a pituitary hormone that
stimulates and maintains milk secretion (123). Specifically, PRL
induces cell proliferation by activating the cyclin D1 promoter
through the JAK2/STAT pathway, promoting cell growth and
differentiation of alveolar cells in the mammary gland (124). The
secretion of PRL is also related to cell proliferation, cellular immune
response and hormonal regulation of parental behavior (125–127).
Excessive stimulation or inappropriate stimulation at the
developmental stage or reproductive cycle stage may inhibit the
secretion of PRL, thereby destroying normal reproductive function
(128). The rapid response to EED involves the mobilization of
various second messengers, such as cyclic adenosine
monophosphate (cAMP) and calcium ions (Ca2+), and G-protein
coupled estrogen receptor (GPER) can mediate these rapid effects to
activate various signaling cascades (129). The response of Ca2+ to
extracellular stimuli can lead to cell movement, intracellular and
extracellular signal transduction processes, and rapid secretion of
hormones through exocytosis, among which prolactin can be
secreted in this way (130) Studies have found that several OCPs,
including DDE and endosulfan, can quickly induce Ca2+ influx at
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very low concentrations (picomolar to nanomolar), leading to PRL
secretion and undermining endocrine function (128). Studies have
found that HCB treatment significantly reduces plasma prolactin
concentrations, which may lead to reproductive changes. But it
cannot be determined whether HCB directly affects the glands or
reduces the release of prolactin from the pituitary gland by changing
the concentration of dopamine (131). In addition, the level of
oxytocin has a certain effect on new-born babies. Some studies
have also found that new-borns with lower levels of prolactin in
cord blood have an increased risk of respiratory distress syndrome
than new-borns with higher levels of prolactin (132, 133).

Gonadotropin-releasing hormone (GnRh) is a neurohormone
secreted by the hypothalamus that regulates reproduction in
both sexes through the secretion of pituitary gonadotropins.
Expression of GnRH and its receptors has also been found in
various peripheral tissues (134). GnRH can promote the pituitary
gland to secrete luteinizing hormone (LH), follicle-stimulating
hormone (FSH) and prolactin (PRL). Prolactin acts on the
mammary gland to promote mammary gland development
and milk production. ANXA5 is a member of the annexin
family of proteins, grouped by its structural similarity and
affinity to calcium and phospholipids (135, 136). ANXA5 is
thought to be involved in GnRH receptor signaling (136), and
reduction of PRL increases GnRH in breast tissue, leading to
ANXA5 expression, which enhances epithelial cell apoptosis and
reduces milk production and weight (135).

Another target pathway by which OCPs affect lactation is
through activation of the AhR. Activation of AhR, an
environment-aware transcription factor, leads to severely impaired
mammary gland differentiation during pregnancy, including
reduced ductal branching, poor alveolar structure formation,
blocked milk protein expression, and impaired lactation capacity
(137). E-cadherin is a cell adhesionmolecule that is directly involved
in the development and differentiation of epithelial cells in various
tissues including the mammary gland (138). In late pregnancy,
activation of AhR reduces the expression level of E-cadherin in
mammary cells, thereby affecting mammary gland development.
Defects in mammary gland differentiation and lactogenesis result
from direct effects on mammary epithelial cells (MECs). AhR-
mediated reduction of cyclin D1 provides a possible mechanism for
reducing pregnancy-related MEC proliferation (137) (Figure 2).
Effects of OCPs in Breast Milk on Infants
Some evidence suggests that fetuses and infants may be more
sensitive to OCPs than adults (139). Because children’s metabolic
pathways are immature, their detoxification is much poorer than in
adults, especially during the fetal period and the first year of life.
Additionally, developmental processes during these periods are also
more susceptible to disruption due to their higher body surface area
relative to their body size (140). In general, OCPs with molecular
weight <800 D present in plasma enter breast tissue by passive
transport (141). Early life exposure through breastfeeding
significantly increases the physical burden of oral contraceptives
in children and is thought to be a major determinant of blood levels
in children before age 7 years (25, 142) (Figure 1).
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Effects on Neonatal Growth and Development
Breastfeeding is very important for the health effects of
postpartum exposure to infants. OCPs will affect the growth
and development of babies. In Norway, there is an association
between an increase in HCB in breast milk and a decrease in
birth weight (BW), crown heel length (CHL) and head
circumference (HC) (143). There is a correlation between
higher b-HCH in female breast milk and lower bio-organic
weight (144), Early exposure to b-HCH is also associated with
slower growth (45). In addition, residual DDT in breast milk also
has a significant impact on fetal growth (BW, CHL, HC and CC)
(20). OCPs are associated with lipogenesis and weight gain, and
they may increase the risk of childhood obesity (145). Prenatal
exposure to HCB increases the risk of being overweight in
children under the age of 6 (55). OCPs in breast milk were
positively associated with rapid growth and obesity in the first 6
months of life (146). However, studies have also found that o,p’-
DDT and p,p’-DDE are associated with decreased birth weight at
a given p,p’-DDT exposure level (36).
Effects on the Development of the Nervous System
Exposure to OCPs in breast milk negatively affects infants’
neurological function. At present, the exact mechanism of the
negative effects of EDCs such as OCPs on the neurodevelopment
of infants and young children is unclear. However, several possible
mechanisms can be proposed. First, the neurotransmitter g-
aminobutyric acid (GABA) is a key mediator of neural
development. It acts on all neuron types through GABA receptors
located on adjacent neurons to promote neurogenesis, neuronal
FIGURE 2 | OCPs can act as estrogen endocrine disruptors and impair
lactation. OCPs, organochlorine pesticides; ERa, estrogen receptors a; ERb,
estrogen receptors b; GPER, G-protein coupled estrogen receptor; AhR, aryl
hydrocarbon receptor; GnRhR, Gonadotropin-releasing hormone receptor;
GnRh, Gonadotropin-releasing hormone; PRL, Prolactin.
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migration, and synapse formation, among others (147). The
primary goal of OCPs such as endosulfan is to inhibit GABA
receptors, which can affect multiple aspects of neuronal circuits in
the frontal cortex, resulting in impaired cognitive function and
behavioral deficits (148). In addition, OCPs exposure disrupts
thyroid hormones with adverse consequences on developing brain
nerves (149). Finally, disruption of calcium signalling, activation of
peroxisome proliferator-activated receptors (PPARs), and lipid
metabolism can also be used to explain the adverse
neurodevelopmental effects of some OCPs (150). DDT and its
metabolites DDE and DDD will pass through the placenta and
contaminate breast milk, causing toxicity related to infant
neurodevelopment (37). Studies have found in samples of breast
milk consumed by 18-month-old infants that high levels of
chlordecone can cause neuronal damage, such as poor fine motor
scores in boys (151). After adjusting for confounding factors such as
maternal age, pre-pregnancy body mass index (BMI), and baby
gender, Kao et al. (23) used a logistic regression model and found
that the breast milk levels of 4,4′-DDT were associated with
cognition and language, while trans-Chlordane were associated
with socioemotional scores. Significantly negative correlation. In
addition, the amount and duration of breastfeeding may be a
covariate related to infant neurodevelopment when breastfed
infants are exposed to OCPs postpartum (23). studies have shown
that exposure to heptachlor is associated with disruption of the
dopamine system (152). A study in Japan also found a significant
negative association between low prenatal exposure to cis-
heptachloroepoxide and Mental Development Index (MDI) at 18
months of age (153). In addition, heptachloroepoxide had the
highest negative correlation with the adaptive behavior scale (23).

Effects on the Gut Microbiome
The gut microbiota (GM) is essential for the development and
maturation of the gastrointestinal tract (154, 155). Early
disruption of microbial communities may have lifelong health
consequences. The developing infant’s gut microbiome is directly
exposed to OCPs-contaminated breast milk. There are many
studies on whether OCPs in breast milk affect the composition
and function of the infant’s gut microbiome (21, 156). HCH
alters the colonization of the infant gut by altering the microbial
composition in human colostrum (46). In addition, studies
investigating whether environmental pollutants (including
organochlorines) in breast milk affect the homeostasis of the
infant gut microbiota at one month revealed differences in the
abundance of some Firmicutes strains (21).

Effects on Reproductive System Development
As an endocrine disruptor, OCPs can adversely affect the
reproductive system of infants, which has been demonstrated in
many studies (157, 158). Breast tissue is not fully developed at birth,
so hormones are critical for its development at this stage (159).
Furthermore, cells are in a state of rapid growth and differentiation
during this period. Exposure to OCPs at this stage may increase
breast cancer incidence (160). Early exposure to OCPs also affected
normal prostate function and structure, with a notable combination
being DDT and its metabolite DDE. Low amounts of DDTwere able
to inhibit PSA at the mRNA and protein levels (161). Congenital
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cryptorchidism is a genital malformation disorder that occurs in
newborn boys and is associated with decreased semen quality and an
increased risk of testicular cancer (162). There is an association
between congenital cryptorchidism and some persistent OCPs(p,p
′-DDT, p,p′-DDE, p,p′-DDD, o,p′-DDT, HCH (a, b, g), HCB, a
-endosulfan)present in the mother’s breast milk, which can
adversely affect testicular descent in boys (50, 163).
Effects of OCP on the Baby Through
the Placenta
Fetal exposure to OCPs and other POPs is primarily through
placental transfusion (99). The placenta is an important barrier
for fetal protection during pregnancy. The placenta produces
human chorionic gonadotropin (hCG), which is involved in the
exchange of gases, nutrients, and waste between mother and
fetus (164). Estimated levels of OCPs in breast milk, placenta,
and fetal tissue were 16.7, 10.1, and 5.3 (ng/kg lipid) (66, 165).
Despite the lower burden, transplacental exposure of the
developing fetus remains important for the child’s physical
development and cognitive functions, even more so than
postpartum exposure through breast milk (166). Organic
chloride pollutants have high affinity for hydrocarbon (Ah)
receptors (167). A combination of strongly induced
cytochrome P4501A1 (CYP1A1) genes encoding cytochrome
P-450 1A1 enzymes involved in the metabolism of
organochlorines (168). The metabolism of organochlorine in
the body produces a large amount of reactive oxygen species, and
the antioxidant system cannot eliminate these reactive oxygen
species, thereby damaging the DNA chain and affecting
mitochondrial function. CYP1A1 is involved in human
placental metabolism; abnormal expression of this enzyme may
disrupt placental detoxification mechanisms (164, 169). During
pregnancy, OCPs can enter the maternal circulation and reach
the placenta (170). These substances can interfere with the
placenta, such as the production and release of hormones and
enzymes, the transport of nutrients, and the production of waste,
and then disrupt fetal development and the final stages of
placental life (171). Higher concentrations of b-HCH in cord
blood increase the risk of preterm birth. In addition, researchers
noted that serum g-HCH levels were positively associated with
habitual miscarriage in women (172, 173). MXC is thought to be
a testosterone trigger, and exposure to OCPs during pregnancy
may disrupt maternal hormones that regulate offspring sex,
resulting in higher rates of boy production (2, 174).
Furthermore, MXC crosses the placenta and induces abnormal
reproductive development (43). Prenatal exposure to alpha
endosulfan and heptachlor increases estradiol and sex
hormone binding globulin (SHBG), thereby reducing
testosterone levels in infants at birth (52).
THE METHOD OF PREVENTION

Overall, in the past 30 years, OCPs in breast milk have decreased
in many countries. For example, in the case of DDT, since the
1990s, lipids have dropped from 2000-32,000 ng/g lipid to 0.1 ng/
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g lipid (69). However, the harm of OCPs to mothers and babies is
still very serious, and it is very necessary to find suitable
prevention methods.

At present, although most countries and regions have
explicitly banned the use of OCPs, in some developing
countries, such as African, Asian and Latin American
countries, there is no or only partial control , and
polychlorinated biphenyls and other chemicals can still be
found. Concentrations are high (175). The use of pesticides
can be dealt with from a socio-economic perspective, and an
explicit prohibition can be made, if necessary, which is the most
fundamental means to solve the problem of OCPs pollution.
Since OCPs are difficult to degrade, they still circulate in water,
sediment and soil, affecting the health and safety of humans,
especially mothers and infants.

The governance of OCPs in environments such as water and
soil is necessary. Numerous techniques are available to treat
existing organochlorine compounds in the environment,
involving physical, chemical, and biological methods such as
adsorption, oxidation, catalytic degradation, membrane
filtration, and biological treatment (38). Biological treatment is
an ideal approach, but due to the stubborn structure of OCPs,
few specific bacterial and fungal species can degrade them, and
finding them is cumbersome (176, 177). Currently, many
researchers focus on the development and integration of
electrochemical oxidation techniques. The main advantages of
this approach are that no chemicals or other products need to be
added, and the process can be easily connected to renewable
energy sources (178). However, when dealing with large volumes
of wastewater, the size of equipment and devices increases with
energy consumption and waste generation, in addition to
unavoidable side reactions and mass transfer limitations (179,
180). The use of nanoparticles to remove this type of
contaminant has also been well studied (38). Lindane was
removed from aqueous solutions using FeS nanoparticles
stabil ized by biopolymers (181). In addition, most
nanomaterials are semiconductive in nature and can easily
photocatalyzed the degradation of OCPs. The conditions of the
photodegradation process simulate real environmental
conditions and can be applied to soils on a large scale.

Soybean isoflavones are a kind of plant estrogen, extracted in
soybean, mainly including genistein and daidzein. There is an
interaction effect between OCPs and isoflavones (182). Several
studies suggest that flavonoids such as soy may be added to
infant supplements as protective molecules to counteract the
effects of OCPs in infants (161). However, studies have found
that genistein mixed with common pollutants (DDT,
DDE, endosulfan) can affect the mammary gland (183).
Conversely, prepubertal exposure to genistein prevents the
development of breast tumors (184). Melatonin (N-acetyl-5-
methoxytryptamine), which protects against cellular damage
caused by reactive oxygen species (185), has some preventive
functions. Studies have found that melatonin reduces lesions in
epithelial compartments, tubular atrophy and vascular
congestion (186), and has a protective function in the prostate.
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Green tea is a non-oxidized and non-fermented form of tea that
contains several polyphenols, including green tea catechins. In
preclinical studies, green tea extract and polyphenols have been
shown to reduce the toxicity of DDT (187).

In addition, several studies have shown that cooking food in
different forms can effectively reduce the content of
organochlorine. Research on animal meat samples such as
cows, goats and chickens. Among the raw meats, beef samples
were found to have the highest levels of contamination and
chicken samples to have the lowest levels of contamination.
Subsequent decontamination studies have shown that cooking is
the best option for reducing pesticide levels in raw meat samples.
Cooked chicken is the safest food to eat (188). Heat-treated fish
can also effectively reduce the level of OCPs residues (95). Milk is
an ideal solvent for fat-soluble OCPs. Comparing the levels of
OCPs in fresh raw milk and pasteurized milk, the levels found in
raw milk were higher than pasteurized milk, and the results
verified the efficient effect of heat treatment on the degradation of
OCPs (189).

Finally, Information and education can be provided to the
public to minimize exposure to possible OCPs, educate and
awareness among farmers about the harmful effects of OCPs and
how to handle them properly, and use less harmful or non-
hazardous alternatives where possible.
CONCLUSION

This review details several OCPs, including DDT, HCH, HCB,
Cyclodienes, etc. Today, people can be directly or indirectly
exposed to OCP through a variety of routes including skin, eyes,
nose, mouth, and more. Among them, diet is the most important
influencing factor. The negative impact of OCPs toxicity on
maternal and infant health is a serious issue that must be
addressed. First, OCPs is a type of EED with weak estrogenic
activity, and mothers exposed to OCPs before and after
pregnancy will cause their accumulation in the body and affect
lactation. In addition, OCPs can affect fetal development through
the placenta. OCPs can also accumulate in the fat-rich mammary
gland, and breast milk is the main source of nutrition for
newborns. Transfection of OCPs to infants through
breastfeeding brings hidden dangers to the health of infants,
including: effects on their height, weight, Effects on the
development of the nervous system, effects on the composition
of the intestinal flora, effects on the development of the
reproductive system, etc. As the most important developmental
stage in life, babies should be protected from all toxic and
harmful substances. The effects of OCPs on the mother
through the mammary gland and on the infant/fetus through
breast milk/placenta may raise concerns about how to reduce the
health damage of OCPs during pregnancy and the postpartum
period and encourage early preventive measures. At present,
many methods have been studied for the treatment of OCPs,
including the treatment of residual OCPs in water, soil and other
environments through various physical, chemical and biological
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methods. It is also possible to relieve residual OCPs in the body
by eating some beneficial foods. Food is the main way that
mothers/infants are exposed to OCPs, and heat treatment of
them can help reduce the harm of OCPs. However, these
methods have their own advantages and disadvantages, and
more perfect methods need to be explored to solve this
problem. Also, I think public awareness should be raised about
the harmful effects of OCPs and how to properly handle them,
and where possible use less harmful or harmless alternatives,
especially in some developing countries. Further research on
OCPs is currently underway, but there are still many unknowns
about the mechanism of action of OCPs. We hope this brief
review will inform mothers and children health and disease and
how to properly manage OCPs.
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