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Abstract

Heat shock proteins (Hsp) are a family of stress-inducible molecular chaperones that play multiple roles in a wide variety of
animals. However, the roles of Hsps in parasitic nematodes remain largely unknown. To elucidate the roles of Hsps in the
survival and longevity of nematodes, particularly at the 2 most critical stages in their lifecycle, the infective-L3 stage and
adult stage, which is subjected to host-derived immunological pressure, we examined the temporal gene transcription
patterns of Hsp12.6, Hsp20, Hsp70, and Hsp90 throughout the developmental course of the nematode Nippostrongylus
brasiliensis by reverse transcriptase real-time PCR. Nb-Hsp70 and Nb-Hsp90 expression were observed throughout the
nematode’s lifecycle, while the expression of Nb-Hsp20 was restricted to adults. Interestingly, Nb-Hsp12.6 showed a biphasic
temporal expression pattern; i.e., it was expressed in infective-L3 larvae and in adults during worm expulsion from
immunocompetent rats. However, the activation of Nb-Hsp12.6 in adult worms was aborted when they infected permissive
athymic-rnu/rnu rats and was only marginal when they infected mast-cell-deficient Ws/Ws rats, which exhibited a low
response of rat mast cell protease (RMCP) II and resistin-like molecule (Relm)- b expression compared to those observed in
immunocompetent rats. Moreover, the activation of Nb-Hsp12.6 was reversed when adult worms were transplanted into the
naive rat intestine. These features of Nb-Hsp12.6, the expression of which is not only stage-specific in infective-L3, but is also
inducible by mucosal immunity in adults, have implications for the survival strategies of parasitic nematodes in deleterious
environmental conditions both outside and inside the host.
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Introduction

Worldwide, hundreds of millions of people are afflicted by infection

with intestinal nematodes, such as hookworms and Strongyloides spp.

For successful infection and lifecycle continuation, these soil-

transmitted nematodes must survive in two different environments:

outside and inside the host. The first critical stage for survival is the

infective-L3 stage, which must live in a harsh environment until they

find and successfully infect an appropriate host. It has been suggested

that infective-L3 larvae are analogous to dauer (L3) larvae, the

dormant survival stage of the free-living nematode Caenorhabditis

elegans, as dauer larvae are developmentally arrested, thin, and

resistant to harsh conditions, features that are shared by infective-L3

larvae, although infective-L3 stage is an obligatory stage of the

lifecycle while the C. elegans dauer stage is an alternative develop-

mental pathway, which is environmentally induced by food

limitation, unfavorable temperatures, and a high population density

[1,2]. A recent study showed that the dafachronic acid/DAF-12

receptor system is a conserved endocrine module, which controls

entry into the dauer stage of free-living nematodes and the infective-

L3 stage of parasitic nematodes such as Strongyloides papillosus [2].

After successful infection, parasitic nematodes not only have to

adapt to the physiological environment of the host, such as high

temperatures and low-oxygen pressure, but also have to endure

the threat from the host immune response. Studies in the last few

decades have shown that T-helper 2 (Th2) cells play a crucial role

in protection against nematode parasites [3,4]. Th2 cytokines

activate bone marrow-derived cells, such as eosinophils, mast cells,

and basophils, which then become involved in the expulsion of

nematodes from the intestine, such as Trichinella spiralis and

Strongyloides venezuelensis. On the other hand, protection against

certain intraluminal nematodes such as Nippostrongylus brasiliensis

has been suggested to be exerted not by bone marrow-derived

cells, but through the effects of Th2 cytokines on non-bone

marrow-derived cells, which may include changes in intestinal

epithelial function, increased intestinal mucus secretion, and

intestinal smooth muscle contractility [3–6]. However, little is

known about the molecular responses that intestinal nematodes

use to counteract host immunity.

In C. elegans, daf-2, insulin/insulin-like growth factor 1 receptor

(IGF-1R) signaling system is one of the principal components

affecting lifespan in C. elegans, and reduced IGF-1 signaling can
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lead to not only entry into larval diapause, but also a greater than

two-fold increase in lifespan [7,8]. The daf-16/forkhead tran-

scription factor acts downstream of the IGF-1R signaling system

and is negatively regulated by it. Interestingly, recent studies have

disclosed that parasitic nematode infective-L3 larvae, such as those

of Strongyloides stercoralis, ancylostomes, and Haemonchus contortus,

express the daf-16/forkhead transcription factor [9–12], suggest-

ing that parasitic nematodes exploit similar regulatory mechanisms

to C. elegans to ensure their survival. The components that are

important for enhanced longevity observed in C. elegans include the

alpha-crystallin family of small heat shock proteins (Hsp), such as

Hsp12.6, anti-reactive oxygen species (ROS) defense systems, and

cellular phase II detoxication [13]. In the dauer stage of C. elegans,

the expression levels of Hsp70 and Hsp90 are also upregulated,

although not necessarily in a dauer-specific manner [14,15]. In this

respect, it is of interest to know whether parasitic nematodes also

exploit Hsps to aid their survival in the two most critical stages of

their lifecycle, the infective-L3 larva stage and adult worms under

immunological pressure from the host.

Hsps are members of a highly conserved family of molecular

chaperones that play multiple roles in vivo. There are a number of

Hsps: large Hsps such as Hsp60, Hsp70, and Hsp90, as well as

small Hsps with molecular masses of 12–43 kDa [16,17]. Several

Hsps have been characterized in parasitic nematodes: Hsp20 in N.

brasiliensis [18]; Hsp20 and Hsp70 in Haemonchus contortus [19,20];

Hsp70 in Onchocerca volvulus and Parastrongyloides trichosuri [21,22];

and Hsp12.6, Hsp18, and Hsp90 in Brugia spp. [23–25]. Some of

these nematode Hsps show stage-specific expression, suggesting

that they play unique biological roles in certain stages of the

lifecycle; however, because different lifecycles are exploited by

different parasite species and rather few stages of their lifecycles

have been investigated, the role of Hsps in the nematode lifecycle

remains largely unknown. To overcome these problems, we

investigated the detailed temporal gene expression patterns of

4 Hsps, Hsp12.6, Hsp20, Hsp70, and Hsp90, throughout the

lifecycle of N. brasiliensis, including the worm expulsion stage. Nb-

FKB-3 is a homolog of C. elegans FKB-3, which has been suggested

to be involved in the synthesis of proline-rich cuticle collagens

through its peptidyl-prolyl cis-trans isomerase activity [26]. Thus,

the expression levels of Nb-FKB-3 were also determined as a

molecular marker of body development.

N. brasiliensis, a rodent intestinal parasite, is a suitable model for

studying clinically relevant hookworms because of their similar

habitats and life cycles [27]. The development of N. brasiliensis

proceeds through four larval stages (L1–L4) punctuated by molts to

reproductively mature adult worms. Stages L1 to L3 are preparasitic.

L3 is a critical stage during which development is arrested and then

reactivated after percutaneous infection of the larvae into the host.

After infection, the larvae migrate into the lungs and reach the

intestine by 2–3 days postinfection (PI). In the intestine, L4 larvae

quickly develop into adults. However, N. brasiliensis adults do not live

long in immunocompetent hosts, as infections are normally

terminated by 14 days PI by a T cell-dependent mechanism [3–6].

The present results showed that, among the Hsps examined, the

expression of Nb-Hsp12.6 was upregulated in infective-L3 larvae and

adults during the worm expulsion stage. Evidence suggested that Nb-

Hsp12.6 is sensitively induced by host immunity, shedding new light

on host-parasite interactions.

Results

Development of Nippostrongylus brasiliensis
To correlate the gene expression levels of Hsps with the

development of N. brasiliensis, we briefly describe the morpholog-

ical characteristics of worms in each stage of development, which

were then subjected to temporal gene expression studies. Worms

of the preparasitic stage (L1, L2, and infective-L3) were obtained

from fecal culture, and worms of the parasitic stage (lung stage-L3,

intestinal-stage L4, and adults) were obtained from experimentally

infected SD rats. Morphological characteristics of each develop-

mental stage are described in Table 1 and photographs are shown

in Figures S1, S2, and S3 (the first to third supporting information

figures). During the L1 and L2 stages, growth was rapid with body

length almost doubling within 24 hours at 26uC, while the

infective-L3 larvae were developmentally arrested (Figure 1A).

After percutaneous infection in SD rats, the L3 larvae migrated to

the lungs. The lung stage-L3 larvae recovered from the SD rats at

24 hours PI showed significant increases in body length (594 - 668

(mean: 638) mm vs 653–931 (mean: 780) mm for the infective-L3

and lung stage-L3 larvae, respectively), indicating that L3 larvae

development was reactivated shortly after infection (Figure 1A). In

the lungs, the third molt begins at about 32 hours, and most L4

larvae reach the intestine by the third day [28]. The L4 larvae

recovered from the intestine at 3 days PI showed early sexual

differentiation, which became more distinct together with the

rapid growth of internal reproductive organs at 4 days PI. The 4th

(final) molt begins from about 90–120 hours [29,30]. The majority

of worms recovered at 5 days PI showed almost fully developed

genital organs. Intrauterine eggs were observed in some female

worms obtained at 6 days PI and in virtually all female worms

obtained at 7 days PI. The 7 day-old adults were slightly larger

than the 5 day-old adults (Figure 1A), possibly due to the inclusion

of some slowly developing L4 worms in the latter population. The

worm burden in the small intestine of the SD rats started to decline

from day 8 PI, and the majority of worms had been expelled by 10

days PI (Figure 1B).

Table 1. Morphological characteristics of the worms in each developmental stage of N. brasiliensis.

Stage Morphological characters

L1 Cuticular annulation, indistinct; the esophagus, rhabditiform; the tail, gradually tapering and long (Figures S1 and S2).

L2 Cuticular annulation, distinct; the esophagus, rhabditiform; the tail, gradually tapering and long (Figures S1 and S2).

Infective L3 Cuticular annulation, distinct; the esophagus, tubular and slightly enlarged posteriorly; the tail, short and is provided with ventral
protuberance (Figures S1 and S2).

Lung-stage L3 Intestinal cells, deeply pigmented with brown granules; other characters are similar to those in infective L3 (Figures S1 and S2).

L4 Cephalic cuticular expansion, visible; sexual differentiation, notable with formation of primitive vulva in females and primitive
copulatory bursa in males; internal reproductive organs grow rapidly (Figure S3).

Adult Reproductive organs, fully developed; cuticle, pinkish in shade (Figure S3)

doi:10.1371/journal.pone.0018141.t001
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Hsps, FKB-3, and actin of Nippostrongylus brasiliensis
cDNA of the putative Nb-Hsp12.6, Nb-Hsp20, Nb-Hsp70, Nb-

Hsp90, Nb-FKB-3, and Nb-actin were amplified by PCR using the

primers listed in Table 2, and nucleotide sequences were

determined. Although the target sequences did not include the

entire coding region (except that of Nb-Hsp12.6), protein motif/

domain searches revealed that the translated amino acid sequences

of Nb-Hsp12.6, Nb-Hsp20, Nb-Hsp70, Nb-Hsp90, Nb-FKB-3, and

Nb-actin showed unambiguous matches to the respective protein

families (Table 3). Further, 3D models were constructed based on

the amino acid sequences of Nb-Hsp12.6 and Nb-FKB-3 and these

were compared with the 3D structure of C. elegans Hsp12.6 and

FKB-3 (Figure S4: the 4th supporting information figure). A

superpose analysis with the Molecular Operating Environment

(MOE) program showed the 3D structural difference (RMSD)

between N. brasiliensis and C. elegans to be 4.43 Å for Hsp12.6 and

7.34 Å for FKB-3 (Figure S5: the 5th supporting information

figure), indicating that Nb-Hsp12.6 and Nb-FKB-3 were very

similar to their C. elegans counterparts.

Temporal gene expression patterns of Nb-Hsps
throughout the lifecycle of Nippostrongylus brasiliensis

The transcription levels of Nb-Hsp12.6, Nb-Hsp20, Nb-Hsp70,

Nb-Hsp90, Nb-FKB-3, and Nb-actin were determined throughout

the lifecycle of N. brasiliensis by RT-real-time PCR. The worms

subjected to this study were the same as those described in the

above section, and the adult worms belonged to a mixed

population of males and females. The expression levels of Nb-

actin (normalized to the quantity of RNA) showed inter-stage

variations of 0.54- to 1.56-fold when the level observed at 7 days

PI was expressed as 1.0 (Figure 2a). To compare gene expression

levels between the different stages of the lifecycle, all gene

expression levels were normalized to those of Nb-actin.

Nb-FKB-3, a molecular marker of body development, was

expressed at high levels in the L1, L2, lung-stage L3, and L4

larvae, but was markedly downregulated in the infective-L3 and

mature adult worms, clearly showing that its expression was

restricted to stages in which worms grow rapidly (Figure 2b).

Nb-Hsp12.6 showed a unique biphasic temporal expression

pattern: its expression was upregulated in infective-L3 larvae as

well as in adult worms older than 8 days PI (Figure 2c). Its

expression in infective L3 larvae was quickly downregulated in the

lung stage-L3 larvae, when the worms had resumed their

development. In the intestinal stage, the expression of Nb-

Hsp12.6 was marginal until day 7 PI. However, as worm

expulsion proceeded from day 8 onward, Nb-Hsp12.6 expression

was upregulated over time.

Nb-Hsp20 expression has been shown to be restricted to adult N.

brasiliensis worms [18]. The present results confirmed those of the

previous report and further showed that Nb-Hsp20 is expressed not

only in adult worms, but also in the deposited eggs (Figure 2d). In

Table 2. Primers used in this study.

Target gene
F: Forward primer (59- - 39)
R: Reverse primer (59- - 39)

Product
size (bp)1 References2 Sequences3

Nb-actin F: CCGGATTTGCCGTCGATGA 435 EB390476 AB549202

R: GAAGGATAGCATGAGGAAGG

Nb-Hsp12.6 F1: ACCAAAGGAGATTGAGGTGAA 2474 EB185086 AB549204

F2: GCCCTTGGGTTTAATTACCC 4105 AB608024

R: ACGAAGCATTCATACAGCGTC

Nb-Hsp20 F: AAGAGGTGATCAACGACGAC
R: CCGTGATTGTCTAACTCGGT

183 X71663

Nb-Hsp70 F: AGGACAACAATCTGCTCGGA
R: TGCTCGAACTCGTCCTTCTC

390 BM278875
BM278839
BM278966

AB549205

Nb-Hsp90 F: AAGGCGTTCATGGAAGCTCT
R: TCTTCACGATCTCCTTGATGC

239 EB390876 AB549206

Nb-FKB-3 F: TTCACGTTCGTTCTTGGACG
R: CCTTCCATACCGATTTCCAT

382 EB391004 AB549203

1. Amplified product size excluding primer regions.
2. BM278875, BM278839, and BM278966 (Harcus Y, Maizels RM. Sequence survey of Nippostrongylus brasiliensis. 2001), and EB390476, EB185086, EB390876, and
EB391004 (Mitreva M, Fulton L, Becker M, Ronko I, Theising B, Martin J, Scott AL, McCarter JP, Wilson R. WashU Nematode EST Project. 2005).
3. Nucleotide sequences of the PCR products determined in the present study.
4. Product size using the F1-R primer set. For real-time PCR, this primer set was employed.
5. Product size using the F2-R primer set.
doi:10.1371/journal.pone.0018141.t002

Figure 1. Development of N. brasiliensis. A. Development of N.
brasiliensis. L1, 1st-stage larvae; L2, 2nd-stage larvae; L3, infective 3rd-
stage larvae; Lu, lung stage-L3 larvae; D5, young adult worms collected
at 5 days PI; D7, mature adult worms collected at 7 days PI. F, females;
M, males. Data shown are mean and SD of 10–20 worms. B. Number of
worms recovered from the intestine in the worm expulsion period.
doi:10.1371/journal.pone.0018141.g001
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contrast, Nb-Hsp70 and Nb-Hsp90 were expressed at readily

detectable levels in all developmental stages. In the larval stages,

the levels of Nb-Hsp70 and Nb-Hsp90 were higher in infective-L3

larvae than in other larval stages. The developmental stage that

showed the highest expression levels of Nb-Hsp70 and Nb-Hsp90

were the adults and eggs. The expression levels of Nb-Hsp20, Nb-

Hsp70, and Nb-Hsp90 did not change significantly during the

worm expulsion period (Figure 2d-f).

Table 3. Similarities of N. brasiliensis actin, Hsps, and FKB-3 to those of other nematodes.

Genes examined Protein family1 Similar to2 Amino acid sequence

Identities3 Positives4 E-value

Nb-actin (AB549202) Actin (PF00022) Bm actin (EDP36330) 100 100 7e-82

Nb-Hsp12.6 (AB608024) Acrystallin5 (PR00299) Ce Hsp12.6 (Z68342) 59.8 74.8 8e-31

Nb-Hsp20 (X71663) Heat shock protein 20 (IPR002068) Hc Hsp20 (AY130968) 73.0 85.1 4e-56

Nb-Hsp70 (AB549205) Heat shock protein 70 (IPR013126) Dm Hsp70 (HM125969) 91.5 97.7 1e-64

Nb-Hsp90 (AB549206) Heat shock protein 90 (IPR001404) Hc Hsp90 (FJ717747) 97.5 98.7 8e-38

Nb-FKB-3 (AB549203) Peptidyl-prolyl cis-trans isomerase,
FKBP-type (IPR001179)

Ce FKB-3 (NM_072434) 71.1 79.7 2e-44

1Protein family to which translated amino acid sequences of N. brasiliensis transcripts showed a ‘true’ match in the InterProScan sequence search.
2The most similar sequence found by the BLAST search of the UniProt protein databases. Bm, Brugia malayi; Ce, C. elegans; Dm, Dracunculus medinensis; Hc, Haemonchus

contortus.
3Percent sequence identity.
4Percent sequence similarity including changes at a specific position of an amino acid sequence that preserve the physico-chemical properties of the original residue.
5Alpha crystallin/heat shock protein.
doi:10.1371/journal.pone.0018141.t003

Figure 2. Temporal gene expression patterns during the lifecycle of N. brasiliensis. E, eggs; L1–L3, L1–L3 stage larvae in fecal culture; Lu,
lung stage-L3 larvae; 3–12, intestinal worms recovered at the indicated days after infection. The pre-parasitic stage data are shown as the mean and
SD of worm populations recovered from 3 batches of fecal cultures. The parasitic stage data are shown as the mean and SD of worm populations
recovered from 3 SD rats. Except Nb-actin (a), the levels of which were normalized to RNA quantities, all gene expression levels (b–f) were normalized
to those of Nb-actin. The values observed at 7 days PI are expressed as 1.0.
doi:10.1371/journal.pone.0018141.g002
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Gender differences of Nb-Hsps expression in adult worms
Gender differences in the gene expression levels of Nb-Hsps

were examined in adult worms that were recovered at 7- and 10-

days PI from SD rats. The expression of Nb-Hsp12.6 was

approximately 6-fold higher in males than in females in both the

7 day- and 10 day-old worms. It should be noted that Nb-Hsp12.6

expression was upregulated after 10 days of infection in both males

and females (Figure 3). In contrast, the expression levels of Nb-

Hsp20, Nb-Hsp70, and Nb-Hsp90 were significantly higher in the

female than the male worms. In particular, Nb-Hsp20 showed 17-

fold and 13-fold higher expression levels in adult females than in

males, at 7 and 10 days PI, respectively. As the eggs also expressed

high levels of Nb-Hsp20, Nb-Hsp70, and Nb-Hsp90, the female-

predominant expression of these Hsps may reflect, at least in part,

the possession of large numbers of intrauterine eggs in female

worms.

Expression of Nb-Hsps in adult worms in athymic rats and
mast cell-deficient Ws/Ws rats

Nb-Hsp12.6 expression showed progressive upregulation during

worm expulsion from the intestine of immunocompetent hosts. To

determine whether the upregulation of Nb-Hsp12.6 expression in

adult worms was associated with aging or was induced by host

immunological reactions, the expression levels of Nb-Hsp12.6 were

examined in adults that had infected athymic rnu/rnu rats and their

littermate euthymic rnu/+ rats with an F-344 background. Worm

rejection did not occur in the athymic rats until at least 21 days PI,

while in the euthymic rats, approximately 90% of the worms had

been expelled from the intestine by 10 days PI, and no worms were

recovered at 21 days PI (Figure 4A). Adult worms recovered from

the athymic rats at 10 and 21 days PI showed only marginal Nb-

Hsp12.6 expression, while those collected from euthymic rats at 10

days PI exhibited markedly upregulated Nb-Hsp12.6 expression

(Figure 4B). On the other hand, 10 day-old adult worms in

euthymic rats showed marked reductions in the levels of Nb-

Hsp20, Nb-Hsp70, and Nb-Hsp90 compared to those in the

athymic rats. The finding that the euthymic rnu/+ F-344 rats

induced markedly suppressed Nb-Hsp20, Nb-Hsp70, and Nb-

Hsp90 expression in worms in the terminal parasitic stage differed

from those observed in the SD rats, in which the expression levels

of the above genes did not change significantly (Figure 2). We also

determined Nb-Hsps levels normalized to Nb-globin b expression.

The results were comparable to those normalized to Nb-actin,

despite small differences (Figure S6, the 6th supporting informa-

tion figure).

To determine the relationship between mast cell activation and

Nb-Hsp12.6 expression, the expression levels of Nb-Hsps were

examined in worms that had infected mast cell-deficient Ws/Ws

rats and heterozygous Ws/+ rats, which have normal numbers of

mast cells. Due to the low yield (poor reproductivity) of these rats,

the experiment was conducted with a limited number of animals,

and data from individual animals are presented in Figure 5. Worm

expulsion was delayed in Ws/Ws rats compared with that in Ws/+
rats, in which the worms were expelled progressively from day 7 to

day 10 (Figure 5A). Nb-Hsp12.6 expression was upregulated in

both male and female worms during the worm expulsion period in

Ws/+ rats. In the Ws/Ws rats, a small increase in the level of Nb-

Hsp12.6 was also observed, especially at 9 and 10 days after

infection; however, the overall increase in Nb-Hsp12.6 expression

in male and female worms in Ws/Ws rats was lower than that in

Ws/+ rats (Figure 5B). It has been reported that a small but

significant number of mast cells develop in the small intestine of

Ws/Ws rats after N. brasiliensis infection [31]. To determine the

level of mast cell activation, the expression levels of mucosal mast

cell-specific rat mast cell protease (RMCP) II in the intestinal

mucosa of animals from which worms had been recovered were

examined. As shown in Figure 5C, markedly upregulated RMCP

II expression was observed in Ws/+ rats. In Ws/Ws rats, low level-

RMCP II expression was found in some of the animals after

infection. It should be noted that Ws/Ws rats that displayed

upregulated RMCP II expression (for instance, rats 12 and 16 in

Figure 5B) harbored worms that also showed upregulated Nb-

Hsp12.6 expression.

Relm-b is produced in and secreted from goblet cells [32,33].

The expression levels of Relm-b in the intestinal mucosa of Ws/+
rats showed marked upregulation as early as day 7 PI compared to

those in the uninfected controls, whereas, the levels of Relm-b in

the nematode-infected Ws/Ws rats were markedly lower than

those in the Ws/+ rats (Figure 5D). Nb-Hsp20, Nb-Hsp70, and Nb-

Hsp90 expression were also examined in adult worms recovered

from Ws/Ws and Ws/+ rats. There were no significant changes in

the levels of these Hsps between day 7 and day 10 PI in worms

recovered from Ws/Ws or Ws/+ rats (data not shown).

Expression of Nb-Hsps in adult worms transplanted into a
new host

If Nb-Hsp12.6 is inducible by host immunity or pathophysio-

logical changes, its expression may be reversible. To confirm this,

male and female worms (200 each) that had been recovered from

donor SD rats at 9 days PI were separately transplanted into the

Figure 3. Gender differences in the Hsp gene expression levels of N. brasiliensis adult worms. F, females; M, males; F+M, a mixture of the
same amounts of cDNA from males and females. The levels in the ‘F’ at 7 days PI are expressed as 1.0. Data shown are mean and SD of worms
recovered from 4 SD rats. *P,0.05.
doi:10.1371/journal.pone.0018141.g003
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intestine of naive SD rats via a gastric tube. Thirty - 45% of the

administered male worms and 45 - 60% of the administered

female worms had established themselves in the intestine of the

recipient rats at 24 hours after transplantation. The expression of

Nb-Hsp12.6 in the male worms was significantly downregulated at

24 hours after transplantation compared to the pre-transplanta-

tion levels, while that of Nb-Hsp12.6 in female worms was not

(Figure 6A). The expression levels of Nb-Hsp20, Nb-Hsp70, and

Nb-Hsp90 were not significantly altered after transplantation (data

not shown).

Figure 4. Hsp gene expression in adult worms in athymic rats. A. Worm burdens in the small intestine of athymic nude (rnu/rnu) (n = 3/group)
and euthymic rnu/+ rats (n = 3/group) after infection with 1,000 infective-L3 larvae. B, Hsp-gene expression levels of worms recovered from athymic
and euthymic rats. For day 21, as all worms had been expelled from rnu/+ rats, only data from rnu/rnu rats are shown. Gene expression levels were
normalized to those of Nb-actin. The levels in worms recovered from euthymic rats at 7 days PI are expressed as 1.0.
doi:10.1371/journal.pone.0018141.g004

Figure 5. Hsp gene expression in adult worms in mast cell-deficient rats. A. Mean worm burdens in the small intestine of mast cell-deficient
Ws/Ws and the control Ws/+ rats after infection with 2,000 infective-L3 larvae. B. Nb-Hsp12.6 gene expression levels in male and female worms
recovered from Ws/Ws and Ws/+ rats. Individual data are shown with rat ID numbers (1–16) beneath the columns. The expression level in the male
worms from rat No. 1 is shown as 1.0. C. Gene expression levels of RMCP II in the intestinal mucosa of Ws/Ws and Ws/+ rats. The expression level in
one of the uninfected Ws/+ rats (CNT) is shown as 1.0. D. Gene expression levels of Relm-b in the intestinal mucosa of Ws/Ws and Ws/+ rats. The level
in one of the uninfected Ws/+ rats (CNT) is shown as 1.0.
doi:10.1371/journal.pone.0018141.g005
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If specific immunity result in the upregulation of Nb-Hsp12.6

expression, it is expected to take some time, possibly .7 days after

infection, for Nb-Hsp12.6 to be upregulated. To clarify this, a

mixed population of approximately 400 male and 400 female

worms recovered from the donor SD rats at 7 days PI were

transplanted into the intestine of naive SD rats via a gastric tube.

Approximately 20–50% and 25–62% of the administered worms

had established infection in the small intestine of the recipient rats

at 1 and 4 days after transplantation, respectively, with

approximately the same sex ratio. Although no adult worms

showed significantly upregulated Nb-Hsp12.6 expression at 1 day

post-transplantation, the worms recovered at 4 days after

transplantation showed markedly upregulated Nb-Hsp12.6 expres-

sion (Figure 6B). These results suggested that fully-developed

acquired immunity is not necessarily required for the activation of

Nb-Hsp12.6.

Expression of Nb-Hsps in infective-L3 larvae
Infective-L3 larvae showed not only the potent upregulation of

Nb-Hsp12.6 expression, but also comparatively high expression

levels of Nb-Hsp70 and Nb-Hsp90. To further confirm these

results, we examined the expression of Nb-Hsps in the larvae

recovered at 4–7 days after the start of fecal culture, as well as

those recovered after 14 days of fecal culture. The development of

eggs into infective-L3 larvae generally takes 4 to 5 days [30]. As

shown in Figure 7A, Nb-FKB-3 showed a high expression level in 4

day-old larvae in fecal culture, but its expression was significantly

downregulated in larvae older than 5 days, suggesting that the 5

day-old larvae had almost completed their development.

The expression levels of Nb-Hsp12.6, Nb-Hsp70, and Nb-Hdp90

were significantly upregulated in the 5 day-old larvae compared to

those in the 4 day-old larvae, and the levels increased progressively

until day 7 (Figure 7A). These results suggested that the expression

Figure 6. Expression of Nb-Hsp12.6 in adult worms transplant-
ed into the intestine of a new host. A. Transplantation of 9 day-old
adult worms into the intestine of naive rats. Nine-day old (9 d PI) male
and female worms (200 each) recovered from donor SD rats were
transplanted into the intestine of naive SD rats (n = 3/group). The
worms were recovered at 24 hours post-transplantation (1 d PT). B.
Transplantation of 7 day-old adult worms into the intestine of naive
rats. Seven-day old adult worms (7 d PI) (a mixed population of males
and females) recovered from the donor rats were transplanted into the
intestine of naive SD rats (n = 3/group). The worms were recovered at 1
and 4 days after transplantation (1 d PT and 5 d PT, respectively). Nb-
Hsp12.6 expression levels in the 7 d PI male worms (A) and the mixed
population of 7 d PI male and female worms (B) are expressed as 1.0.
Data shown are the mean and SE of 3 rats.
doi:10.1371/journal.pone.0018141.g006

Figure 7. Hsp gene expression in the pre-parasitic stages of N. brasiliensis. A. Temporal gene expression patterns of larvae during 4 to 7 days
fecal culture at 26uC. Levels at 4 days fecal culture are expressed as 1.0. Data shown are the mean and SD of larval populations from 4 fecal cultures
derived from 4 host animal feces. *P,0.05 compared with the levels in 4 day-old fecal culture. B. Heat shock responses of infective L3 larvae.
Infective-L3 larvae in 7 day-old fecal culture (26uC) were incubated at 37 or 42uC for 1.5 or 6 hours. The expression levels in the larvae incubated at
26uC are expressed as 1.0. Data shown are the mean and SD of larvae from 4 fecal cultures derived from 4 host animal feces. *Significantly different
from the levels of larvae incubated at 26uC (P,0.05).
doi:10.1371/journal.pone.0018141.g007
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levels of Nb-Hsp12.6, Nb-Hsp70, and Nb-Hdp90 are developmen-

tally regulated, at least in part, because the fecal culture conditions

generally remain stable until at least day 7. However, the feces

gradually desiccate after 7 days. In the 14 day-old larvae, the

expression levels of Nb-Hsp12.6 were significantly lower than those

in the 7 day-old larvae, whereas the levels of Nb-Hsp70 and Nb-

Hsp90 were higher than those in the 7 day-old larvae, suggesting a

possible effect of fecal-culture deterioration on the expression of

these Nb-Hsps.

We further examined the heat responsiveness of Nb-Hsps in

infective-L3 larvae. When 7 day-old infective-L3 larvae, which

had been maintained at 26uC, were exposed to 37uC or 42uC, the

expression levels of Nb-Hsp12.6 decreased significantly, whereas

the expression levels of Nb-Hsp70 and Nb-Hsp90 showed

significant upregulation at 42uC, although at 37uC, the increases

in the levels of Nb-Hsp70 and Nb-Hsp90 were only marginal

(Figure 7B).

Discussion

The present studies clarified the detailed temporal expression

patterns of Nb-Hsps throughout the lifecycle of N. brasiliensis and

found that they are closely correlated with development, niche

transition, and worm expulsion. The most interesting Nb-Hsp

temporal expression patter was that of Nb-Hsp12.6: it was

upregulated in the infective-L3 larvae and the adult worms during

the worm expulsion period. The expression of Nb-Hsp12.6 during

the last stage of parasitism appeared to be specific to the worms

that were ready to be expelled from the small intestine, inasmuch

as the upregulation occurred in worms that had infected

immunocompetent hosts, but not in worms that had infected in

permissive-athymic rats. The worms recovered from the small

intestine during the worm expulsion period did not enter into an

irreversible dying process as they were able to reestablish

themselves when transplanted into uninfected rats. However,

previous studies showed that when expulsion phase and normal

worms (e.g. worms recovered at 7 days PI) were transplanted into a

new host, the former worms reestablished themselves less

efficiently and produced fewer eggs than the latter worms,

suggesting that the worms in the expulsion phase are somehow

‘damaged’ by immunity [27]. It is also known that male worms are

more tolerant to immune expulsion than female worms [27]. In

this respect, it is interesting to note that the male worms expressed

approximately 6-fold higher Nb-Hsp12.6 levels than the females.

The expression of Nb-Hsp12.6 in the ‘damaged’ male worms was

reversible in the new host, while that of the ‘damaged’ females was

not. The reason for this gender difference is not clear, but it

appears that the damaged female worms did not have the same

abilities to recover in the new host as the male worms.

The intestinal mucosa exhibits a number of immunopatholog-

ical changes following N. brasiliensis infection, including mucosal

mastocytosis, goblet cell hyperplasia, mucus hypersecretion,

secretion of non-mucus peptides such as Relm-b, alterations in

the sugar chains of intestinal epithelial membrane glycoproteins,

and increased smooth muscle contractility [3,5,34]. The key

effector molecule(s) that induce the termination of N. brasiliensis

parasitism are disputed, while recent reports indicated that Relm-

b, which is produced in and secreted from goblet cells, is most

likely to be the effector molecule responsible for protection against

lumen dwelling nematodes in mouse models [32,33]. The role of

mast cells in protection against intramucosal and/or intraepithelial

nematodes such as Trichinella spiralis and Strongyloides spp. has been

well documented [5]. However, mast cells are not essential for the

expulsion of N. brasiliensis at least in mouse models, despite that

significant intestinal mastocytosis occurs following N. brasiliensis

infection [3,5]. The present results showed a delay in the start of

worm expulsion in Ws/Ws rats compared to that in control Ws/+
rats, while too few animals were used to determine the significance

of differences. Nevertheless, the results showed striking correla-

tions between the levels of mucosal RMCP II and the levels of Nb-

Hsp12.6, as well as between those of Relm-b and Nb-Hsp12.6.

Athymic rats do not develop intestinal mastocytosis upon infection

with N. brasiliensis, and the response of Relm-b in athymic rats is

significantly lower than that in euthymic rats [35]. These results

suggest that pathophysiological changes in the intestinal niche,

including mast-cell activation and Relm-b secretion, initiated the

upregulation of Nb-Hsp12.6 expression. It was surprising that the

Ws/Ws rats showed a low (or slow) response of Relm-b expression

to nematode infection compared to that of Ws/+ rats because the

only reported mutation in Ws/Ws rats was a 12-base deletion in

the tyrosine kinase domain of the c-kit receptor, which is

indispensable for the induction of mast cells by stem cell factor

[36]. Recently, Lin- c-kit+ innate immune cell populations, such as

multi-potent progenitor type 2 (MPPtype2) cells and nuocytes, have

been identified. These cells are generated in response to helminth

infections and function as initiators of Th2 cytokine responses,

including the production of mucin by goblet cells [37–39]. In this

respect, it remains to be elucidated whether Ws/Ws rats with a

defective c-kit receptor have a deficiency in c-kit+ MPPtype2 cells or

c-kit+ nuocytes.

The transplantation of 7 day-old adult worms into the intestine

of naive rats induced the significant upregulation of Nb-Hsp12.6

expression as early as 4 days after transplantation, suggesting that

the activation of Nb-Hsp12.6 does not necessarily require acquired

immunity. After N. brasiliensis infection, RMCP II and Relm-b
expression were upregulated as early as 7 days PI in normal rats;

i.e., before acquired immunity had fully developed. Relm-b
expression is reported to be greatly increased in the small intestine

of N. brasiliensis-inoculated mice soon after the larvae had migrated

to that organ [33]. It has also been indicated that there are 2 types

of mucosal mast cell activation, prompt IL-18-dependent (innate

type-2) activation and late Th2 cell-dependent (acquired type-2)

activation [40]. Overall, it seems likely that some form of innate

immunity is also able to initiate the activation of Nb-Hsp12.6

expression.

Contrary to the immunity-responsive activation of Nb-Hsp12.6,

its expression in infective L3-larvae appeared to be regulated

developmentally, inasmuch as its expression levels started to

increase in coordination with the downregulation of Nb-FKB-3

expression, while the expression of Nb-Hsp12.6 was downregulated

within 24 hours of infection in rats together with the simultaneous

upregulation of Nb-FKB-3 expression. In C. elegans, the expression

of small Hsps is induced by reduced IGF-1R signaling, whereas

the expression of FKB-3 is positively regulated by signaling

through the IGF-1R pathway [41,42], suggesting that similar

regulatory mechanisms control the entry of larvae into the

infective-L3 stage. However, we have no direct evidence that the

IGF-1R pathway controls the activation of Nb-Hsp12.6 expression

in infective-L3 larvae and/or adult worms in the last stage of

parasitism, and other pathways could well be critical.

Small Hsps, which range in size from 12 to 43 kDa, constitute a

diverse family and are less conserved between organisms than

other heat shock protein genes, but they share a common domain,

a-crystalline, which is found in the vertebrate lens protein [43,44].

Small Hsps have been reported to exist in several parasitic

nematodes: Brugia malayi-Hsp18 in L4 larvae and adult worms but

not in microfilariae; and H. contortus-Hsp20 in L3, L4, and adult

worms [20,23]. A common feature of small Hsps is their formation
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of large oligomeric complexes and their ability to prevent the

aggregation of proteins [17,45]. Some small Hsps appear to bind to

actin and intermediate filaments [46]. Interestingly, Hsp27 and alpha-

crystallin have been reported to enhance the survival of cells by

conferring increased stability to actin fibers [47,48]. In C. elegans,

Hsp12.6 and 12.3 were expressed in dauers but not in non-dauer L3

control, and in long-lived daf-2 mutant adults in higher levels than in

control adults, and the overexpression of small Hsps conferred lifespan

extension in C. elegans, although small Hsps are only one of several

components of the longevity system of C. elegans [13–15,49]. These

features of small Hsps suggest that Nb-Hsp12.6 also functions as a

molecular chaperone that helps N. brasiliensis to survive deleterious

environmental conditions both outside and inside of the host.

Nb-Hsp20 was expressed in both adult worms and eggs. It is

possible that immunity against adult worms triggered its

expression. However, its expression levels did not change when

9 day-old adults or 7 day-old adults were transplanted into a new

host. Thus, the expression of Nb-Hsp20 appears to be regulated

according to a strict developmental program, independently of a

variety of stress stimuli, as suggested previously [18]. Nb-Hsp70

and Nb-Hsp90 were expressed throughout the nematode’s life-

cycle, suggesting that they play indispensable roles in cell

maintenance at all stages of development. In infective-L3 larvae,

not only Nb-Hsp12.6, but also Nb-Hsp70 and Nb-Hsp90 were

upregulated, which was similar to findings in C. elegans [14,15]. Nb-

Hsp70 and Nb-Hsp90 showed further upregulation in aged

infective-L3 larvae and under heat stresses, suggesting their

involvement in the survival of infective-L3 larvae in harsh

environments. Contrary to the finding for Nb-Hsp12.6, host

immunity did not markedly affect the expression of Nb-Hsp70 or

Nb-Hsp90 in worms that had infected SD rats, whereas marked

reductions in their expression levels were found in 10 day-old

worms in euthymic rnu/+ F-344 rats. Although the reason for this

discrepancy is unclear, one possible explanation is that the

immune reactions of rnu/+ F-344 rats affected the viability of

the worms more severely than those of the SD rats. This possibility

is in accordance with earlier observations that F-344 rats rejected

all worms from the intestine after a certain period of time, while in

other rat strains such as SD and BN, a small proportion of worms

escaped rejection and persisted for a long period of time [50].

In conclusion, we showed that different Hsps are uniquely

expressed at different stages of the lifecycle of N. brasiliensis and

might play diverse roles in nematode survival under various kinds

of stress. In particular, Nb-Hsp12.6 responded to immune stress,

highlighting a new aspect of host-parasite interactions.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in Guidelines for Proper Conduct of Animal

Experiments of the Science Council of Japan. The protocol was

approval by the Animal Experiment Committee of Kyoto

Prefectural University of Medicine (Permit Number: M22-7).

Euthanasia was performed by an overdose of pentobarbital, and

all efforts were made to minimize suffering.

Nematode and infection
The strain of N. brasiliensis used in the present study has been

maintained in our laboratory by passage in Sprague-Dawley (SD)

rats via the subcutaneous inoculation of 2000 L3 larvae every 2

weeks. Ten - 12 week-old male SD rats were purchased from

Shimizu Laboratory Supplies Co., Ltd., Kyoto, Japan, and 8-

week-old female rnu/rnu (F344/N Jcl-rnu/rnu) rats and their

littermate rnu/+ rats (F344/NJcl-rnu/+) were obtained from Clea

Japan Inc., Tokyo. Male and female Ws/Ws rats and their

littermate Ws/+ rats were produced in our laboratory as described

previously [51]. For experimental infection, 2,000 L3 larvae were

subcutaneously injected into SD, Ws/Ws, and Ws/+ rats, and

1,000 L3 larvae were injected into rnu/rnu and rnu/+ rats.

Collection of preparasitic-stage larvae
Feces collected from SD rats at 7 days PI were subjected to fecal

culture using the filter paper test tube method at 26uC. L1-

predominant and L2-predominant larval populations were

recovered from 32 hour- and 56 hour-fecal cultures, respectively,

and infective-L3 larvae were obtained from 7 day-old fecal

cultures. In some experiments, larvae were recovered at different

time intervals. For the larvae collection, test tubes containing filter

paper covered with a fecal smear were filled with distilled water at

32C to allow the larvae in the feces to enter the water. After 60

seconds, the larvae in the water were collected and washed 3 times

with distilled water. Then, 10,000–20,000 larvae/batch were

subjected to RNA extraction. The L1 stage-predominant larval

population consisted of worms measuring 207–396 mm in length

and 10–21 mm in width (mean: 302615 mm, n = 20), possibly

reflecting uncoordinated egg-hatching time in fecal cultures. A few

larvae with a body length of .350 mm were ensheathed,

indicating an approaching molting. The L2 stage-predominant

larval population consisted of worms measuring 347–673 mm by

19–32 mm (mean: 560627 mm, n = 20). Within this larval

population, some small larvae with body lengths of about

,400 mm and large larvae of .600 mm were ensheathed, while

the majority of larvae between 400 and 600 mm were not

ensheathed. These and other morphological characteristics

described in Table 1 indicated that the majority of this population

was composed of stage L2 larvae. The infective-L3 larvae

measured 594–668 by 25–31 mm (mean: 638628 mm, n = 20).

Collection of parasitic-stage larvae and adults
To minimize stresses during sampling, all procedures were

carried out as quickly as possible, including the saline incubation

method, which was minimized to 20 minutes. The worms were

immersed in cold Trizol reagent (Life Technologies, Rockville,

MD) within 30 min of the start of sampling, except when the male

and female worms were separated under a stereoscopic micro-

scope, which took an additional 30 minutes. Lung-stage L3 larvae

were recovered from the lungs of SD rats at 24 hours after

infection. The lungs removed from the animals were cut into

approximately 1 mm cubic blocks and subjected to incubation in

saline at 37uC. The recovered larvae measured 653–931 mm by

25–37 mm (mean: 780631 mm, n = 10), and none of them were

ensheathed. Twohy [28] described that the third molt begins in

the lungs at about 32 hours and that there is no further growth

until the larvae migrate into the intestine, with mean lengths of

0.943 mm and 0.957 mm at 32 and 41 hours after infection,

respectively. From the size of the larvae and other characteristics

described in Table 1, we concluded that the majority of larvae

recovered from the lungs after 24 hours belonged to the L3 stage.

Intestinal-stage worms were collected from SD rats daily from 3 to

10 days PI. In brief, a small intestinal segment at 0–40 cm from

the pyloric ring, where the majority of worms parasitize, was

removed, cut longitudinally, and subjected to saline incubation at

37uC. From 9 to 12 days PI, when worms are gradually expelled

from the intestine, the intestinal segment at 0–60 cm from the

pyloric ring was used for worm collection. Except in some

experiments, the recovered adult worms were not separated into

males and females. In the SD rats, approximately 400–800, 1,000–
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1,500, and 50–800 worms were collected from day 3 to day 4, day

5 to day 8, and day 9 to day 10 PI, respectively.

Collection of eggs
Eggs were collected via the cultivation of adult female worms in

vitro. In brief, approximately 800 female worms recovered 7 days

after infection were incubated in 10 ml of phosphate buffered

saline with 100 U/ml penicillin and 100 mg/ml streptomycin in a

25 square cm tissue-culture flask for 24 hours at 37uC, during

which large numbers of eggs were laid. The medium containing

the deposited eggs was sieved through a # 120 mesh, and eggs

were collected by centrifugation. The majority of the eggs

collected belonged to the morula stage.

Adult worm transplantation
In the first experiment, 9 day-old worms were recovered from the

intestine of 3 donor rats, and 200 male and 200 female worms were

separately transferred into the intestine of 3 naive SD rats using a

gastric tube. The transplanted worms were recovered from the

intestine of the recipient rats 24 hours later. Approximately 60, 80, and

90 male worms were recovered from 3 rats, and 90, 100, and 120

female worms were recovered from 3 rats. In the second experiment,

adult worms, which were recovered from 6 donor rats at 7 days PI,

were transplanted into the intestine of 6 naive SD rats (a mixed

population of 400 males and 400 females/rat) using a gastric tube. The

recipient animals were autopsied at 1 and 4 days after transplantation.

Approximately 160, 300, and 400 worms were recovered from 3 rats at

24 hours after transplantation, and 200, 400, and 500 worms were

recovered from 3 rats at 4 days after transplantation. The sex ratio of

the worms recovered from the recipient rats was approximately equal.

Heat shock treatment of N. brasiliensis L3-stage larvae
Seven day-old fecal culture test tubes, which were kept at 26uC

and contained infective-L3 larvae, were transferred to and

maintained in incubators at 37uC or 42uC. After 1.5 or 5 hours,

infective-L3 larvae were recovered.

RNA extraction and cDNA synthesis
Total RNA was extracted with TRIZOL reagent (Life

Technologies, Rockville, MD) according to the standard protocol

provided by the manufacturer. cDNA synthesis was carried out

using 0.1-mg aliquots of RNA from the eggs and L1-stage larvae,

0.2-mg aliquots of RNA from the lung-stage larvae, and 2-mg

aliquots of RNA from all other worm stages in 20 ml of reverse

transcription buffer containing 5 mM MgCl2, 1 mM of each

deoxynucleoside triphosphate, 1 U of RNase inhibitor per ml, 0.25

U of avian myeloblastosis virus reverse transcriptase per ml, and

0.125 mM oligo(dT) primer (Takara RNA LA PCR kit; Takara

Biomedicals, Osaka, Japan) at 42uC for 50 min.

PCR amplification and sequencing
PCR was carried out using the primers described in Table 2.

These primers were designed based on nucleotide sequences in

public DNA databases. Both strands of the PCR amplicons were

directly sequenced, and the nucleotide sequences were deposited

in DNA databases under the accession numbers indicated in

Table 2. The translated amino acid sequences were subjected to

protein pattern and motif searches using InterProScan, Finger-

PrintScan, and Prosite.

Homology Modeling of Nb-HSP-12.6 and Nb-FKB-3
The X-ray structure of template proteins was obtained from the

RCSB Protein Data Bank: PDB ID 2 bol and 1q6h, for a small

heat shock protein and a cis/trans peptidyl-prolyl isomerase,

respectively. Sequence alignments were conducted using the

ClustalW program. Following the alignments, 3D-models of Nb-

HSP12.6 and Nb-FKB-3 were generated with MODELLER 9v8

software [52] using default parameters. The predicted 3D

structures were deposited in the Protein Model Database

(PMDB) with accession numbers PM0077219 and PM0077220.

The model structures were soaked into water molecules and

subjected to a molecular mechanics (MM) calculation with the

AMBER99 force field until the root mean square (RMS)

gradient was 0.01 kcal/mol/Å. Then, 100 ps molecular dynam-

ics (MD) simulations at 300 K were performed. MM and MD

simulations were performed using the Molecular Operating

Environment (MOE) program, Version 2010.10 (Chemical

Computing Group Inc., Montreal, Quebec, Canada). The

resulting structures of Nb-Hsp12.6 and Nb-FKB-3 were com-

pared with C. elegans HSP-12.6 (ModBase model id: 85be06e-

d48338ef7f27bad71c2223a16) or C. elegans FKB-3 (ModBase

model id: ac47f3238b9ebb90bbb0c6fc85eb7a02) by the super-

pose function of the MOE.

Real-time PCR
One-microliter aliquots of the synthesized cDNA were mixed

with Sybr Green PCR master mix (Applied Biosystems, Foster

City, CA) and appropriate primers and were subjected to

amplification using a real-time PCR system 7300 (Applied

Biosystems). The primers used are shown in Table 2. The

specificity of each amplified product was confirmed by dissociation

analysis, which produced a single sharp dissociation peak, the

absence of the amplified product without reverse transcription,

and the appearance of a band of the expected size on

electrophoresis of the amplified product. For quantification, a

standard curve of the amplification threshold cycle (Ct) for each

gene against log ng total RNA was created by serially diluting the

cDNA sample with the highest Ct value in undiluted conditions.

The Ct value for each sample was then converted to an RNA

quantity by referring to the corresponding standard curve. All

quantified values were normalized to those of Nb-actin (quantified

value for the target gene/quantified value for Nb-actin). As an

alternative house keeping gene, levels of Nb-globin b, which is

expressed only during the parasitic stages of the lifecycle of N.

brasiliensis [53], were also determined by real-time PCR using 59-

CTTCTGCTCTCAGTCCACAT-39 and 59-TGCTGGCATT-

CGTCGTTGAA-39.

Real-time PCR for RMCP II and Relm-b
Mucosal scrape specimens were obtained from the small

intestine of Ws/Ws and Ws/+ rats with or without infection with

2,000 infective-L3 larvae. Total RNA was extracted with

TRIZOL reagent, and cDNA was synthesized as described above.

The expression levels of RMCP II and Relm-b were determined

by real-time PCR using the primers 59-TCCTACCTCGTATA-

CACTGA-39 and 59- TTGCATCTGGATGCCCATAA-39 for

RMCP II, and 59- TTCCTTCTCTCGCTGATGGT-39 and 59-

GCAGTGGCAAGTAGTTCCAT-39 for Relm-b. The quantified

values as described above were normalized to those of Gapdh,

which was also determined by real-time PCR using the primers 59-

CATCATCCCTGCATCCACTG-39 and 59-CAAAGGTGGA-

GGAATGGGAG-39.

Statistical analyses
The Student’s t test was employed to determine statistical

significance. P values of ,0.05 were considered significant.
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Supporting Information

Figure S1 Anterior body of L1 (A), L2, (B), infective L3 (C), and

lung-stage L3 (D) larvae of N. brasiliensis. Arrows indicate the

esophageal-intestinal junction.

(TIF)

Figure S2 Posterior body of L1 (A), L2 (B), infective L3 (C), and

lung-stage L3 (D) larvae of N. brasiliensis. Arrowheads, anus;

arrows, small protuberance.

(TIF)

Figure S3 L4 larvae (A–C) and adult worms (D, E) of N.

brasiliensis. L4 larvae were those at 3 days PI and adult worms were

those at 6 days PI. A, anterior body, showing the cephalic cuticular

expansion (ce). B, posterior end of a female worm, showing the

primitive vulva (pv) and anus (a). C, posterior end of a male worm,

showing the primitive copulatory bursa (pcb). D. middle of a

female body, showing intrauterine eggs. E, posterior end of a male

worm, showing copulatory spicules (s) and copulatory bursa (cb).

(TIF)

Figure S4 3D structure of Hsp12.6 and FKB-3.

(TIF)

Figure S5 Structural superpositions of N. brasiliensis HSP12.6

and C. elegans HSP12.6 (A) and N. brasiliensis FKB-3 and C. elegans

FKB-3 (B). RMSD, the distance between the backbones of

superimposed proteins. Total RMSD, the average RMSD for all

molecules. The position of motifs analyzed by Prosite is indicated

by bars. 1Hsp20 family, which includes a variety of small Hsps.
2FKBP-type peptidyl-prolyl cis-trans isomerase domain.

(TIF)

Figure S6 Hsp-gene expression levels of N. brasiliensis recovered

from rnu/rnu rats (open columns) and rnu/+ rats (closed columns).

At 21 days PI, as all worms had been expelled from rnu/+ rats,

only data from rnu/rnu rats are shown. Gene expression levels are

normalized to those of Nb-globin b. The levels in worms recovered

from rnu/+ rats at 7 days PI are expressed as 1.0.

(TIF)
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