
entropy

Article

Permutation Entropy and Statistical Complexity
Analysis of Brazilian Agricultural Commodities

Fernando Henrique Antunes de Araujo 1, Lucian Bejan 1, Osvaldo A. Rosso 2,3 and
Tatijana Stosic 1,*

1 Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Rua Dom Manoel
de Medeiros s/n, Dois Irmãos, Recife, PE 52171-900, Brazil; fhenrique14@gmail.com (F.H.A.d.A.);
lucianbb@gmail.com (L.B.)

2 Instituto de Física, Universidade Federal de Alagoas (UFAL). Avenida Lourival Melo Mota s/n, Tabuleiro do
Martins, Maceió, AL CEP 57072-900, Brazil; oarosso@gmail.com

3 Instituto de Medicina Traslacional e Ingeniería Biomedica, Hospital Italiano de Buenos Aires & CONICET.
Tte. Gral. Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires C1199ABB, Argentina

* Correspondence: tastosic@gmail.com

Received: 27 October 2019; Accepted: 10 December 2019; Published: 14 December 2019
����������
�������

Abstract: Agricultural commodities are considered perhaps the most important commodities, as any
abrupt increase in food prices has serious consequences on food security and welfare, especially in
developing countries. In this work, we analyze predictability of Brazilian agricultural commodity
prices during the period after 2007/2008 food crisis. We use information theory based method
Complexity/Entropy causality plane (CECP) that was shown to be successful in the analysis of
market efficiency and predictability. By estimating information quantifiers permutation entropy
and statistical complexity, we associate to each commodity the position in CECP and compare
their efficiency (lack of predictability) using the deviation from a random process. Coffee market
shows highest efficiency (lowest predictability) while pork market shows lowest efficiency (highest
predictability). By analyzing temporal evolution of commodities in the complexity–entropy causality
plane, we observe that during the analyzed period (after 2007/2008 crisis) the efficiency of cotton, rice,
and cattle markets increases, the soybeans market shows the decrease in efficiency until 2012, followed
by the lower predictability and the increase of efficiency, while most commodities (8 out of total 12)
exhibit relatively stable efficiency, indicating increased market integration in post-crisis period.

Keywords: permutation entropy; statistical complexity; agricultural commodities; food crisis

1. Introduction

Agricultural commodity markets have been drawing increased attention over the last decades, both
in the scope of mainstream agricultural economics [1–4] and related fields such as econophysics [5–11].
The reason for this increased interest is concerns related to the increase of prices of food commodities
over the last decades, beginning with the price growth in 2001, followed by the sharp increase during
the food crisis of 2007/2008, and subsequently by a new increase in 2010/2011 [12]. The factors that
most affected food commodities price spikes over the last decades are increase in biofuel production,
which contributed to the food commodity price spike of 2007/2008, the depreciation of U.S. dollar
relative to major world currencies, speculations, bad weather in key grain-producing regions, increase in
production cost due to high energy prices, and stagnation in productivity growth due to less investment
in technology and infrastructure. Finally, trade policies such as export bans on grains by some Asian
countries, and import tariffs on non-grain biofuels, such as U.S. tariffs on sugar cane ethanol from
Brazil, also contributed to food commodity price spike of 2007/2008 and of 2010/2011 (see e.g., [12] and
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references therein). Serious consequences of price spikes on food security, especially in developing
countries where millions of people were pushed into hunger and poverty [13], often followed by social
unrest, political instability, and socio-political conflicts [14], are the major concerns of governments
and international organizations [15]. In this sense, every new empirical evidence about agricultural
commodities behavior on global and/or local scale provides valuable contribution to worldwide efforts
in establishing reliable scientific base to serve as an aid for developing and testing new prediction models
that will include different aspects of this extremely complex phenomenon. Our work is designed as a
contribution in this direction. Brazil is the world’s third-biggest exporter (after European Union and the
United States) of agricultural commodities [16], and it is one of the top producers of agricultural goods
including sugar, orange juice, soybeans, coffee, broilers, beef, pork, corn, and cotton [17]. Agricultural
markets show a high level of integration, through price transmission and volatility spillover, and Brazil’s
agricultural commodities prices were studied within this context. Ceballos et al. [18] analyzed food
price volatility transmission (corn, rice, sorghum, and wheat) from the international market to markets
of developing countries and found that international price volatility is most likely to be transmitted to
markets in South America. Balcombe et al. [19] verified price transmission of wheat, corn, and soybean
between the U.S., Argentina, and Brazil during the end of 1980s and beginning of 1990s, generally with
causality flowing from the U.S. and Argentina toward Brazil. Agricultural crops have also been used for
the production of biofuels. The impact of biofuel programs that were introduced in the United States,
Brazil, the European Union, and other countries and the relationship between the food and energy
markets have become major topics of economic research [20]. Recently, special attention was given
to the relationship between biofuel and its feedstock, such as ethanol and corn in the United States,
ethanol and sugar in Brazil, and biodiesel and rapeseed in the European Union [21,22]. Agricultural
markets have also been receiving increased attention of researchers from other related fields such as
econophysics, providing a new understanding of stochastic processes that govern price dynamics,
such as multifractal properties [5–7,23], information content [9,10], and network structure [11,24,25].
Previous studies on Brazilian agricultural commodities based on econophysics methods include
long-term autocorrelations [8] and long-term cross-correlations between ethanol and sugar [26]. In this
work, we analyze predictability of Brazilian agricultural commodity prices during the period after
2007/2008 food crisis. We use information theory based method of Permutation Entropy/Statistical
complexity with its representation space called Complexity/Entropy causality plane, which was shown
to be successful in the analysis of market efficiency and predictability [10,27–30].

This paper is organized as follows. In the next section, we present the methodology, then we
present data and analysis together with accompanying discussion and, finally, we draw the conclusions.

2. Methodology

2.1. Permutation Entropy

Permutation entropy (PE) is a method introduced by Bandt and Pompe [31] as Shannon entropy of
ordinal patterns of words of a given size (embedding dimension) d, obtained by taking into account the
local ordering of consecutive values observed within each word. This method has been widely applied
(both in its original form and in its variants) in physiology [32,33], engineering [34,35], geophysics [36],
climatology [37,38], hydrology [39], and finances [40,41]. Permutation entropy algorithm proceeds as
follows [31].

For a given time series xt, t = 1, . . . , T, first T − (d− 1) overlapping segments (words) Xt =

(xt, xt+1, . . . , xt+d−1) of length d are extracted, and within each segment, the values are sorted in
increasing xt+r0 ≤ xt+r1 ≤ . . . ≤ xt+rd−1 , yielding the set of indices r0, r1, . . . , rd−1. The index sequences
π = r0, r1, . . . , rd−1 may assume any of the d! possible permutations of the set {0, 1, . . . , d− 1} and are
symbolic representatives of the original segments. Relative frequencies of permutations π define the
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empirical probability distribution p(π), and permutation entropy of order d ≥ 2 is now defined as a
Shannon entropy

H(d) = −
∑
{π}

p(π) log p(π) (1)

where {π} denotes summation over all the d! possible permutations of order d, and logarithm is taken
with a base of 2 so that entropy is measured in bits. It follows that H(d) can assume values in the range
0 ≤ H(d) ≤ log d!, where the lower bound corresponds to strictly increasing or decreasing series (only a
single permutation appears), and the upper bound corresponds to a completely random series where
all the d! possible permutations have the same probability. The optimal value of embedding dimension
d strongly depends on the observed phenomenon, but in order to guarantee good statistics, the typical
convention [42] is to use maximum d that satisfies condition T > 5d!.

2.2. Complexity Entropy Causality Plane

The complexity–entropy causality plane (CECP) was introduced by Rosso et al. [43] as a tool
to jointly quantify both information content and structural complexity in a temporal series. It was
shown that CECP is useful for distinguishing between stochastic noise and deterministic chaotic
behavior [43], leading to many applications in data analysis such as in physiology [44], physics [45,46],
oceanography [47], ecology [48], hydrology [49–51], and finances [27–30]. In CECP representation,
the horizontal axis is the Permutation entropy, and the vertical axis is a statistical complexity measure,
also calculated using Bandt–Pompe probability distribution P. The complexity measure is defined as

C[P] =
J[P, U]

Jmax
Hs[P] (2)

where Hs[P] = H[P]/ log d! is normalized permutation entropy, J[P, U] is the Jensen–Shannon divergence

J[P, U] =

{
H
[
(P + U)

2

]
−

H[P]
2
−

H[U]

2

}
(3)

which quantifies the distance of the Bandt–Pompe probability distribution P from the uniform
distribution U, and Jmax is the maximum possible value of J[P, U], obtained when one of the components
of P is equal to unity, while all the others are equal to zero

Jmax = −
1
2

[
d! + 1

d!
log(d! + 1) − 2 log(2d!) + log(d!)

]
(4)

The definition of statistical complexity (2) guarantees that both strictly increasing or decreasing
series (for which Hs[P] = 0) and completely random series (for which J[P, U] = 0) have zero complexity.
For each given value of the normalized permutation entropy Hs ∈ [0, 1] there is a range of possible
values of complexity, Cmin ≤ C ≤ Cmax, which gives the lower and upper envelopes in CECP [52].

Permutation entropy and structural complexity yield information on two distinct properties of
a data set. Permutation entropy quantifies the degree of inherent randomness: more predictable
signals that show a tendency to repeat just a few ordinal patterns have lower permutation entropy
than less predictable signals that contain many ordinal patterns. For a given permutation entropy
value, the statistical complexity quantifies the degree to which there exist privileged ordinal patterns.
More precisely, higher complexity for a given permutation entropy value corresponds to larger
distance from the uniform distribution, meaning that there are some (privileged) ordinal patterns that
appear more often. By calculating these quantities for a given time series, both randomness and the
degree of correlational structure in the fluctuations of the system are simultaneously quantified [43].
In the case of financial time series, the localization in CECP provides information about market
inefficiency, as an efficient market should be located close to the vertex (Hs[P] = 1, C[P] = 0) that
corresponds to a completely random series. The distance from this vertex indicates the degree of market
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inefficiency (predictability) and was used to compare among stock markets [27] commodities [10] and
cryptocurrencies [29].

3. Data and Analysis

The data used in this work are daily prices of Brazilian agricultural commodities obtained from the
Center for Advanced Studies in Applied Economics/Luiz de Queiroz College of Agriculture/University
of São Paulo — CEPEA/ESALQ / USP [53]. We analyzed 11 agricultural commodities and also included
ethanol, whose price variation is directly related to sugar prices (both commodities are produced
from sugarcane) and indirectly (trough relation to energy prices) to other commodities (Table 1).
All commodities are analyzed during the same period 01/2010-07/2018, with 2120 data points.

Table 1. List of agricultural commodities with a price in Brazilian reals (R$) per unit of measurement.

Name Currency (Brazilian Real–R$)/ Unit of Measure

Sugar R$/bag of 50 kg
Cotton R$/pound (0.453597 kg)

Rice R$/bag of 50 kg
Calves R$/head
Cattle R$/15 kg
Coffee R$/bag of 60 kg

Ethanol R$/liter
Broilers R$/Kg

Corn R$/bag of 60 kg
Soybeans R$/bag of 60 kg

Pork R$/Kg
Wheat R$/Ton

Following Zunino et al. [10] we analyzed daily commodities prices that are shown in Figure 1.
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Figure 1. Time series of prices of agricultural commodities recorded daily for the period January 04,
2010, to July 03, 2018.
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Taking into account that each of the analyzed commodity time series contains T = 2120 data
points, we chose embedding dimension d = 4 and d = 5 (satisfying the condition T > 5d!) to calculate
CECP information quantifiers permutation entropy Hs[P] and statistical complexity C[P]. The locations
of the analyzed commodities in the complexity–entropy causality plane for embedding dimension
d = 4 and d = 5 together with locations of corresponding randomized series are shown in Figures 2
and 3. Inclusion of points corresponding to randomized series in these figures serves to demonstrate
the fact that shuffling moves these points close to the vertex (Hs [P] = 1,C[P] = 0) that corresponds to
completely random series (efficient market) and, therefore, the order of values of the original series is
far from being random. It can be seen that for both d = 4 (Figure 2) and d = 5 (Figure 3), some specific
pairs of commodities ethanol/sugar, soybeans/corn, and cattle/calves have similar positions in CECP.
Ethanol and sugar markets are strongly interconnected, as both commodities are produced from the
same agricultural crop (sugarcane) and are influenced by global factors (crude oil prices) and specific
local features of Brazilian economic development (government policies and technological advances
such as flex plants which can easily switch the production from ethanol to sugar, and vice versa) [26,54].
The increase in the price of ethanol (sugar) leads to increased production from sugarcane and, therefore,
a lower production of sugar (ethanol), which leads to a long-term imbalance between demand and
supply (demand greater than supply) and higher sugar (ethanol) prices. So, it is expected that the
two commodities have similar predictability of price variations, which results in their similar position
in the CECP plane. In the case of soybeans/corn, one reason for such result could be the fact that in
Brazil (which is among the largest producers and consumers of chicken meat) broiler feed is based
primarily on corn and soybean meal, which supplies the majority of energy and protein in the diet [55].
Live cattle and calves belong to productivity chain of beef meat and also show similar predictability
(position in CECP). Among meat commodities, pork and broilers showed higher predictability (lower
entropy) than calf and cattle, while among grains wheat showed lowest predictability (highest entropy).
Non-food commodity cotton showed relatively high predictability (low entropy) losing only to pork
meat. The Euclidean distance to the CPEP right vertex (Hs = 1, C = 0) representing result for completely
randomized series can be used as a measure of market inefficiency [10]. The ranking of efficiency of
agricultural commodities (ordered by decreasing distance of position in CECP from the right vertex
(1,0) that represents an efficient market whose prices follow a random walk) is shown on Table 2,
where it is seen that the most efficient (least predictable) is coffee market, and the least efficient (most
predictable) is pork meat commodity market. The identical commodity ranking (with exception of
cattle and calves) is obtained with different embedding dimensions.
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Table 2. Commodities ranking by decreasing efficiency. Values of permutation entropy Hs, and statistical
complexity C and distance from vertex (1,0) are calculated for d = 4 and d = 5.

d = 4 d = 5

Position Commodities PE CP Dist. to (1,0) Commodities PE CP Dist. to (1,0)

1. Coffee 0.950 0.058 0.076 Coffee 0.926 0.109 0.132
2. Wheat 0.946 0.060 0.081 Wheat 0.916 0.114 0.142
3. Calves 0.923 0.088 0.117 Cattle 0.884 0.139 0.181
4. Cattle 0.915 0.088 0.122 Calves 0.891 0.155 0.189
5. Rice 0.901 0.106 0.144 Rice 0.862 0.176 0.224
6. Sugar 0.854 0.140 0.202 Sugar 0.803 0.213 0.290
7. Corn 0.850 0.146 0.209 Corn 0.798 0.219 0.298
8. Soybeans 0.822 0.160 0.240 Soybeans 0.780 0.226 0.316
9. Ethanol 0.820 0.161 0.241 Ethanol 0.766 0.227 0.326

10. Broilers 0.744 0.214 0.334 Broilers 0.703 0.289 0.414
11. Cotton 0.716 0.217 0.357 Cotton 0.657 0.267 0.434
12. Pork 0.638 0.253 0.441 Pork 0.570 0.312 0.531

In order to see how the efficiency of commodities changes over time, we applied CECP analysis in
sliding windows of size of 1000 data (around four business years) width a step of 20 data (around
one business month), and in each window we calculated the distance of CECP position from the
right vertex (1,0). We chose the window size of four business years with a step of one business
month in order to be able to compare our results with those from previous studies [10] and to provide
sufficiently long time series for permutation entropy calculations. The time evolution of this distance
(inefficiency measure) is shown on Figure 4 from which we can observe that 8 out of 12 markets
(broilers, pork, ethanol, corn, sugar, calves, wheat, and coffee) exhibit relatively stable inefficiency
during the analyzed period, with pork showing the highest inefficiency and wheat and coffee the
lowest inefficiency. The inefficiency of cotton, rice, and cattle market decreases, but overall cattle and
rice markets are less inefficient than cotton market (indicated by lower values of the inefficiency index).
The soybeans market shows the increase in inefficiency (higher predictability) until 2012, followed
by the decrease of inefficiency (lower predictability) for the rest of the studied period. This pattern
coincides with the variation of soybeans prices that were lower and more predictable during the period
2010–2012, followed by the period of higher prices and lower market inefficiency.
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Figure 4. Time evolution of inefficiency measure (distance from complexity–entropy causality plane
(CECP) point Hs = 1, C = 0) for commodities series for embedding dimension d = 5. The points on the
graph correspond to the beginning of the corresponding 1000 data point windows.

4. Conclusions and Discussion

During the last decade, commodities became included in portfolio diversification. Commodity
financialization (increase in investments in commodities through financial instruments), which took
effect between 2004 and 2005, has generated an increase in integration within commodity markets and,
in particular, in the agricultural commodity sector [56]. Differently than other types of commodities,
agricultural commodities exhibited unexpected extreme fluctuations, especially during the period
2007–2009, which makes market participants such as producers, consumers, and investors to be
seriously concerned about the movements of agricultural commodities as well as their co-movements
on both single market level and among different markets. In this work, we investigate price variations
in the Brazilian agricultural market, specifically predictability of Brazilian agricultural commodities
for the period after the 2007/2008 food crisis. We use the complexity–entropy causality plane (CECP)
method, which is a model-free tool to jointly quantify information content and structural complexity
in temporal series. The main results of this work are: (i) specific pairs of commodities ethanol/sugar,
soybeans/corn, and cattle/calves have similar positions in CECP, reflecting their interconnection within
Brazilian agricultural market; (ii) comparing the deviation from the right end of CECP (that corresponds
to a completely random process) reveals that the most efficient (least predictable) is the coffee market
and the least efficient (most predictable) is the pork meat market; (iii) by analyzing temporal evolution
of commodity prices in the complexity–entropy causality plane, we observed that during the post-crisis
period the efficiency of cotton, rice, and cattle market increases, the soy market shows the decrease in
efficiency (higher predictability) until 2012, followed by the increase of efficiency (lower predictability),
while other commodities exhibit relatively stable efficiency (with pork market showing the lowest
efficiency, and wheat and coffee markets the highest efficiency). Zunino et al. [10] analyzed predictability
of international commodity market including several agricultural commodities, which comparing
with our results on Brazilian agricultural commodities showed higher market efficiency. However,
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the analyzed period in Reference [10] was 1991–2009, before and during 2007/2008 food crisis and
our results from 2010–2018 data reveal the post-crisis market efficiency evolution. The decrease in
agricultural market efficiency after the crisis was also reported in other studies. Ceballos et al. [18]
analyzed food price volatility transmission (corn, rice, sorghum, and wheat) from international market
to markets of developing countries and found that international price volatility is most likely to be
transmitted to markets in South America. They also found that except for sorghum, which showed
only a moderate increase, volatility for the rest of the commodities increased by more than 30% after
the crisis, indicating lower market efficiency.

Comparing our results with those of Zunino et al. [10], we observed that agricultural markets
become less efficient (more predictable) after 2007/2008 food crisis, which is in agreement with the
results of some recent studies [18]. Although the importance of understanding price variations of
agricultural commodities and its contributing factors were widely recognized, yielding a large number
of results in agricultural economics, in econophysics literature, most studies concentrate on behavior
of stock market indices and prices of individual stocks, while commodities markets are much less
explored. Our results contribute to a better understanding of agricultural commodities as complex
systems, by providing the information (extracted from CECP) about both randomness and the degree
of correlational structure in the price fluctuations. For the particular case of the Brazilian market,
we identify intervals of increasing and decreasing efficiency (lower and higher predictability) in the
commodity dynamics during the post-crisis period. The information extracted from CECP reveals
that some commodities behave in a similar way (exhibit similar values of information quantifiers),
which may be valuable for investors and policymakers for investigating anomalous market movements
such as bubbles or speculations. Future studies should focus on differences and similarities with
agricultural markets in other countries that have strong trade with Brazil, as well as the influence of
other financial variables from domestic and international markets.
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