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Abstract

Background: Web applications that employ natural language processing technologies to support systematic
reviewers during abstract screening have become more common. The goal of our project was to conduct a case
study to explore a screening approach that temporarily replaces a human screener with a semi-automated
screening tool.

Methods: We evaluated the accuracy of the approach using DistillerAI as a semi-automated screening tool. A
published comparative effectiveness review served as the reference standard. Five teams of professional systematic
reviewers screened the same 2472 abstracts in parallel. Each team trained DistillerAI with 300 randomly selected
abstracts that the team screened dually. For all remaining abstracts, DistillerAI replaced one human screener and
provided predictions about the relevance of records. A single reviewer also screened all remaining abstracts. A
second human screener resolved conflicts between the single reviewer and DistillerAI. We compared the decisions
of the machine-assisted approach, single-reviewer screening, and screening with DistillerAI alone against the
reference standard.

Results: The combined sensitivity of the machine-assisted screening approach across the five screening teams was
78% (95% confidence interval [CI], 66 to 90%), and the combined specificity was 95% (95% CI, 92 to 97%). By
comparison, the sensitivity of single-reviewer screening was similar (78%; 95% CI, 66 to 89%); however, the
sensitivity of DistillerAI alone was substantially worse (14%; 95% CI, 0 to 31%) than that of the machine-assisted
screening approach. Specificities for single-reviewer screening and DistillerAI were 94% (95% CI, 91 to 97%) and
98% (95% CI, 97 to 100%), respectively. Machine-assisted screening and single-reviewer screening had similar areas
under the curve (0.87 and 0.86, respectively); by contrast, the area under the curve for DistillerAI alone was just
slightly better than chance (0.56). The interrater agreement between human screeners and DistillerAI with a
prevalence-adjusted kappa was 0.85 (95% CI, 0.84 to 0.86%).

Conclusions: The accuracy of DistillerAI is not yet adequate to replace a human screener temporarily during
abstract screening for systematic reviews. Rapid reviews, which do not require detecting the totality of the relevant
evidence, may find semi-automation tools to have greater utility than traditional systematic reviews.
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Background
A crucial step in any systematic review is the selection
of relevant abstracts. To reduce the risk of falsely ex-
cluding relevant studies, methodological guidance rec-
ommends a dual-screening process [1, 2]. Two reviewers
independently determine the eligibility of each record
based on a predetermined list of inclusion and exclusion
criteria. In its landmark document Finding What Works
in Healthcare: Standards in Systematic Reviews, the US
Institute of Medicine explicitly favors high sensitivity of
literature searches and literature screening over high
specificity [3].
Screening titles and abstracts, however, is a lengthy

and labor-intensive process. Systematic reviewers often
need to screen thousands of irrelevant abstracts to iden-
tify a few relevant studies. A cost-effectiveness analysis
estimated that screening 5000 references takes 83 to
125 h per reviewer at a cost of approximately £13,000
(2013 prices; about 17,000 $US) [4].
In recent years, web applications that employ natural

language processing technologies to support systematic
reviewers during abstract screening have become more
user-friendly and more common. In 2015, a systematic re-
view by O’Mara-Eves and colleagues identified 44 studies
addressing the use of text mining to reduce the screening
workload in systematic reviews [5]. Commonly used tools
that systematic reviewers can use without additional pro-
gramming include Abstrackr [6], DistillerAI [7], EPPI (Evi-
dence for Policy and Practice Information) Reviewer [8],
RobotAnalyst [9], Rayyan [10], and/or SWIFT (SciOme
Workbench for Interactive computer-Facilitated Text-
mining)-Review [11]. These text-mining approaches use
pattern recognition algorithms to predict the probabilities
of record relevance or irrelevance. Text mining describes
the process of filtering knowledge from unstructured data
such as text. In the context of abstract screening, text
mining is combined with text classification, which is the
decision about the inclusion or exclusion of a given record
[12, 13]. Applications that combine text mining with
machine learning have the advantage of improving the
system’s performance continuously. Consequently, the
machine continuously adapts its decision rules based on
human screeners’ decisions.
Such semi-automated screening tools can increase effi-

ciency by reducing the number of abstracts needed to
screen or by replacing one screener after adequately train-
ing the algorithm of the machine [14]. Savings in workload
between 30 and 70% might be possible with the use of
text-mining tools in systematic reviews [5]. The downside
of the use of such tools, however, is that none of these
tools has perfect sensitivity and a reduction in workload
might be accompanied by missing relevant studies [5].
To date, several semi-automated screening tools have

been validated [9, 11, 15–17]. Most research publications

on this topic, however, have been produced by computer
scientists and experts in medical informatics and artifi-
cial intelligence. Often studies have been conducted
under highly controlled conditions using artificial biblio-
graphic datasets. Furthermore, validation studies mostly
used decisions about inclusion or exclusion at an ab-
stract screening stage as a reference standard. Human
decisions during abstract screening, however, vary and
are an imperfect reference standard.
The goal of our project was to conduct a case study to

explore a screening approach that temporarily replaces a
human screener with a semi-automated screening tool.
We were also interested in comparing the performance
of this approach with that of single-reviewer screening
and screening of abstracts by a semi-automated screen-
ing tool without human involvement after training the
tool. Table 1 summarizes commonly used terms in this
manuscript.

Methods
The objective of our study was to assess the accuracy of
an abstract screening approach that temporarily replaces
one human screener with a semi-automated screening
tool. To address our objective, we employed a diagnostic
framework approach with a reference (gold) standard
comparator group.
We chose DistillerAI as a semi-automated screening

tool for our project. DistillerAI is a natural language pro-
cessing tool within DistillerSR (www.evidencepartners.
com/products/distillersr-systematic-review-software), a

Table 1 Definitions of commonly used terms

Accuracy: the proportion of correctly classified records:
ðTPþTNÞ

ðTPþFPþTNþFNÞ
False negatives (FNs): the number of records incorrectly classified as
excludes. Also referred to as “missed studies.”

False positives (FPs): the number of records incorrectly classified as
includes.

Prediction: a forecast of whether a record is relevant (include) or
irrelevant (exclude) for a given systematic review.

Semi-automated screening tool: any web-based application that em-
ploys a combination of text mining and text classification to assist sys-
tematic reviewers during the title and abstract screening process.

Sensitivity: the ability of a screening tool to correctly classify relevant
records as includes: TP

ðTPþFNÞ
Specificity: the ability of a screening tool to correctly classify irrelevant
records as excludes: TN

ðTNþFPÞ
Text classification: a standard machine-learning process in which the
aim is to categorize texts into groups of interest [18].

Text mining: the process of discovering knowledge and structure from
unstructured data.

True negatives (TNs): the number of records correctly identified as
excludes.

True positives (TPs): the number of records correctly identified as
includes.
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specialized, commercially available web-based software
to conduct systematic reviews. DistillerAI offers a naïve
Bayesian approach or a support vector machine classifier
to screen abstracts after learning from manual screening.
The naïve Bayesian approach provides probabilistic pre-
diction scores regarding the inclusion or exclusion of
records (0.5 is an inconclusive score). Prediction scores
larger than 0.5 indicate a greater probability of a record
being relevant rather than irrelevant; scores smaller than
0.5 indicate the opposite.
The support vector machine classifier offers nonprob-

abilistic, binary classifications (include, exclude, or cannot
decide). It uses data from the training set to build a model
that classifies new records as relevant or irrelevant. We
chose DistillerAI as a screening tool for our project be-
cause it provides optimal flexibility regarding data import
and export and an efficient technical helpline.

Reference standard
We used data from an Agency of Healthcare Research
and Quality (AHRQ) systematic review on pharmaco-
logical and nonpharmacological interventions for the
treatment of depression as the reference standard [19].
For the purpose of this project, we focused on a single
Key Question, which included 42 randomized controlled
trials (RCTs). Because the scope was narrower than that
of the original review, we replicated a targeted literature
search with a focus on the Key Question of interest
(comparative effectiveness). We searched PubMed and
Embase because we knew from a bibliographic analysis

that the 42 RCTs included in the report are indexed in
these databases. We adapted the original search strategy
of the AHRQ report and limited searches to the same
period that the report had covered (1995 to 2015).

Outline of general approach
Figure 1 depicts the screening approach in which the
semi-automated screening tool temporarily replaced one
human screener. Five independent teams applied this ap-
proach in parallel on the same topic. Teams consisted of
professional systematic reviewers with extensive experi-
ence in literature screening and evidence syntheses.
Stage 1 mimicked a regular dual-reviewer abstract

screening process. After a pilot phase with 50 records to
calibrate screeners, 2 reviewers independently screened
abstracts based on predefined inclusion and exclusion
criteria. They resolved conflicts by discussing the issues
and reaching consensus or by involving a third, senior
reviewer. In this stage, reviewers dually and independ-
ently screened 300 records that we randomly selected
from our literature searches. The dually agreed upon in-
clusions and exclusions served as the training set for
DistillerAI.
During stage 2, DistillerAI replaced one human screener

and provided prediction scores about inclusions or exclu-
sions for all remaining records. The second human re-
viewer was not aware of predictions and screened the
remaining abstracts. In stage 3, a second human reviewer
resolved conflicts in decisions between the human screener
and DistillerAI.

Fig. 1 Graphical presentation of the study flow
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Training DistillerAI
For each of the five screening teams, we randomly se-
lected 300 abstracts as training sets from the database of
our literature searches. Decisions about inclusions or
exclusions of records in the training sets served as infor-
mation for DistillerAI to build an algorithm for predictions.
The manual for DistillerAI recommends 300 records as the
optimal size for training sets based on internal simulation
studies.
To reduce the risk of not having any included RCTs in

the training set by chance, we employed weighted sam-
pling to ensure that each training set included at least 5
of the 42 relevant studies of the AHRQ report.
After screeners had completed the training sets, we

employed DistillerAI’s test function. The test function
randomly selects records from the training set to deter-
mine the accuracy of predictions by comparing predic-
tion scores to decisions about inclusion or exclusion in
the training set. For each training set, we used the test
function 5 times at a ratio of 80 to 20 (i.e., DistillerAI
learns from 80% of the training set and predicts the ran-
domly selected 20%). For all five training sets, Distiller-
AI’s naïve Bayesian approach provided better predictions
than the support vector machine classifier. The mean ac-
curacy score across the five training sets for the naive
Bayesian approach was 87.9% compared with 47.6% for
the support vector machine classifier. Consequently, we
used DistillerAI’s naïve Bayesian approach for predictions
for all five screening teams. Abstracts with prediction
scores of 0.5 or greater were included; abstracts with pre-
diction scores below 0.5 were excluded. A prediction score
of 0.5 reflects a neutral prediction (i.e., DistillerAI cannot
decide whether inclusion or exclusion is more likely). We
chose a prediction score of 0.5 as a conservative threshold
that would guarantee high sensitivity.

Outcomes
We assessed three outcomes:

� Proportion of included abstracts. This outcome
provides information about the number of full texts
that need to be retrieved and reviewed, which has a
substantial impact on the subsequent workload
during the full-text review stage. We used the
number of unscreened records (n = 2172) after
completion of the training set as a denominator for
all calculations; in other words, we did not include
results of the training sets in any of the metrics.

� Proportion of conflicts and interrater agreement
between human reviewers and DistillerAI. This
outcome summarizes the agreement and the
number of conflicts between human reviewers and
DistillerAI, which had to be resolved by a second
human reviewer. The number of unscreened records

(n = 2172) served as the denominator for all
calculations. We also determined the interrater
agreement (prevalence-adjusted bias-adjusted kappa)
between human screeners and DistillerAI.

� Accuracy of correctly classifying relevant and
irrelevant studies. We determined sensitivities in
identifying the 42 included studies of the reference
standard as relevant. We also calculated specificities
and areas under the receiver operating
characteristics (ROC) curve.

Comparisons and quantitative analyses
We assessed the above-mentioned outcomes for three
abstract screening approaches:

1. The machine-assisted screening approach
(as outlined in Fig. 1),

2. Single-reviewer screening (i.e., no DistillerAI
involvement), and

3. Screening with DistillerAI alone (i.e., no human
screener involvement after training DistillerAI).

For measures of accuracy, we organized results in 2 × 2 ta-
bles to determine true-positive, false-positive, true-negative,
and false-negative decisions. We calculated sensitivities,
specificities, and areas under the ROC curve with their 95%
confidence intervals. For DistillerAI, we also calculated the
ROC curve in an exploratory analysis using different predic-
tion scores as thresholds. We conducted all quantitative
analyses with Stata 13.1 (Stata Corporation, College Station,
TX, USA).

Results
Literature searches rendered 2472 references after dedupli-
cation. The 42 relevant randomized controlled trials (RCTs)
of the reference standard compared second-generation an-
tidepressants with nonpharmacological treatment options
during acute-phase treatment of a major depressive dis-
order. Nonpharmacological interventions included various
psychotherapies, acupuncture, St. John’s wort, omega-3-
fatty acid, physical exercise, and S-adenosyl-L-methionine.
Many of the available trials had serious methodological lim-
itations. Authors of the reference report rated 16 of the 42
trials as high risk of bias and only 4 as low risk of bias [19].
As described in the “Methods” section, each of the five

teams dually screened 300 randomly selected records to
provide training sets for DistillerAI. The number of in-
cluded studies (true positives) sampled into the training
sets ranged from 10 to 16. In the following sections, we
present results of the machine-assisted screening ap-
proach (as outlined in Fig. 1) and contrast them with
single-reviewer screening (i.e., no DistillerAI involve-
ment) or screening with DistillerAI only (no human
screener involvement after training DistillerAI).
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Table 2 provides a summary of various performance
measures. Denominators for calculations of performance
measures in the table vary by screening team because
they discount for relevant studies that had been sampled
into the training sets.

Proportion of included abstracts
On average, the five screening teams using the machine-
assisted approach included 8% (n = 174) of screened ab-
stracts (range 4 to 11% [n = 87 to 239]). Single-reviewer
screening, on average, included a similar proportion of
abstracts as the machine-assisted approach (7% [n =
152]; range 5 to 10% [n = 109 to 217]). By comparison,
DistillerAI, on average, rated only 2% (n = 43; range 1 to
3% [n = 22 to 65]) of screened abstracts as relevant for
inclusion. The reference standard systematic review in-
cluded 10% of screened abstracts.

Proportion of conflicts and interrater agreement between
human screeners and DistillerAI
Across the five screening teams, decisions about inclusion
or exclusion resulted in conflicts between the human
screeners and DistillerAI in 8% (n = 174; range 5 to 10%
[n = 109 to 217]) of screened abstracts. In the majority of
cases, the second human reviewers who resolved these
conflicts confirmed the decisions of the human screeners.
The interrater agreement between human screeners and
DistillerAI with a prevalence-adjusted kappa was 0.85
(95% confidence interval [CI], 0.84 to 0.86).

Accuracy of correctly classifying relevant and irrelevant
studies
The most important outcome for the assessment of the
performance of the machine-assisted screening approach
is the sensitivity to identify correctly the 42 included
studies of the reference standard review. The combined
sensitivity of the machine-assisted screening approach
was 78% (95% CI, 66 to 90%). In other words, the
machine-assisted screening approach missed, on average,
22% of relevant studies. Of the 42 included studies of
the reference standard review, the machine-assisted
screening teams collectively missed 23 studies at least
once (false-negative decisions; see Additional file 1).
Figure 2 contrasts the sensitivity and specificity of the
machine-assisted screening approach with the sensitiv-
ities and specificities of single-reviewer screening and
screening with DistillerAI without human involvement.
Overall, sensitivities of the machine-assisted approach
and single-reviewer screening were substantially higher
than the sensitivity of DistillerAI (78% vs. 78% vs. 14%;
Fig. 2 and Table 2). On average, the machine-assisted
screening approach and single-reviewer screening missed
22% of relevant studies compared with 86% of relevant
studies that DistillerAI missed.

The specificity of the machine-assisted screening ap-
proach was 95% (95% CI, 92 to 97%). Specificities were
similar between the machine-assisted approach, single-
reviewer screening, and DistillerAI (95% vs. 94% vs. 98%;
Fig. 2).
Table 2 also presents the areas under the curve, which

summarizes the discriminative abilities of the approaches
to distinguish relevant from irrelevant records. Machine-
assisted screening and single-reviewer screening had simi-
lar areas under the curve (0.87 and 0.86, respectively); by
contrast, DistillerAI was just slightly better than chance
(0.56).

Performance of DistillerAI for different prediction
thresholds
Because of the poor performance of DistillerAI with a
threshold of 0.5, we further explored the accuracy of
DistillerAI for thresholds below 0.5. Prediction scores
below 0.5 indicate a greater probability that a record is
irrelevant than relevant. Figure 3 presents the receiver
operating characteristics (ROC) curve for DistillerAI for
prediction scores between 0.5 and 0.45. To achieve a
sensitivity close to 100%, the specificity would have to be
reduced to 35% using a prediction score of 0.45. In other
words, based on our sample, DistillerAI would have to
include 65% of all abstracts to detect all relevant studies
that were included in the reference standard review.

Discussion
The objective of our methods study was to assess the
accuracy of a machine-assisted abstract screening ap-
proach that temporarily replaces a human reviewer with
a semi-automated screening tool (DistillerAI). The re-
sults of our project rendered a mean sensitivity of 78%
and a mean specificity of 95% for this approach. The
area under the ROC curve was 0.87.
Although the area under the ROC curve indicates

adequate discriminative ability, the performance of the
machine-assisted abstract screening approach is less
than optimal for use in systematic reviews. During an
abstract screening in systematic reviews, false-negative
decisions (i.e., excluding relevant records) are more con-
sequential than false-positive decisions (i.e., including
irrelevant records). The subsequent full-text review will
rectify false-positive decisions without consequences for
the validity of a systematic review. By contrast, false-
negative decisions might cause relevant records to be
omitted, which could affect the validity of a systematic
review. A machine-assisted screening approach that mis-
ses 22% of relevant studies, therefore, is not adequate for
systematic reviews.
Several factors might have contributed to the poor

sensitivity of the machine-assisted screening approach in
our study. First, the choice of the topic probably had a
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substantial impact on the performance of the approach.
The comparative effectiveness of pharmacological and non-
pharmacological treatments comprises a wide spectrum of
interventions, particularly of nonpharmacological interven-
tions. The Cochrane Common Mental Disorders group, for
example, lists more than 80 psychological interventions for
the treatment of depression. A less complex topic might
have led to a better performance of DistillerAI and different
conclusions. Systematic reviews, however, are often multi-
faceted and complex. Using an unrealistically simple topic
or an artificially clean dataset might have overestimated the
performance under real-world conditions. Second, many of
the published studies, particularly on complementary and
alternative treatments, were conducted in countries where
English is not the native language. Some of these abstracts
were difficult to understand and interpret, which was also a
contributing factor to the screening teams dually and falsely
excluding five relevant studies during the screening of
training sets. A partially incorrect training set is not an
optimal precondition for testing the performance of
machine-assisted abstract screening but might reflect real-

life conditions. Nevertheless, incorrect decisions of human
screeners had no apparent impact on the sensitivity of
DistillerAI. For example, the team with the highest sensitiv-
ity of DistillerAI (team 4: 0.32) falsely excluded two out of
14 relevant studies in the training set. In screening teams
without false-negative decisions in the training set, sensitiv-
ities ranged from 0.03 to 0.23 (see Table 2). Third, we
adhered to DistillerAI’s recommendation regarding the op-
timal sample size for training sets (n = 300). This recom-
mendation is based on simulation studies and might have
been too small to adequately train DistillerAI for our topic.
The small training sets might also explain why the naïve
Bayesian approach consistently provided better results than
the support vector machine classifier.
Taken together, these issues might have contributed to

a machine-learning phenomenon called “hasty generaliza-
tions.” This term describes situations in which the training
set is not fully representative of the remaining records [5].
Given the broad and complex topic, hasty generalizations
might have played a role despite the attempt to ensure the
generalizability of the training sets with random sampling.

Fig. 2 Sensitivities and specificities of machine-assisted screening, single-reviewer screening, and screening with DistillerAI alone
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The performance of DistillerAI, in general, was disap-
pointing. The average sensitivity was 0.14; in one case
DistillerAI missed all relevant studies. Adding DistillerAI
to single-reviewer screening did not provide additional
gains in accuracy but instead created conflicts between
human screeners and DistillerAI in 5 to 10% of records.
These conflicts had to be resolved by a second human
screener, which required effort without a gain in accur-
acy. In other words, DistillerAI did not improve the pro-
portion of incorrect decisions that human screeners
made when they screened abstracts. The ROC curve of
DistillerAI implies that lowering the prediction threshold
to 0.45 would have achieved a sensitivity close to 100%.
With a prediction score of 0.45, however, the specificity
would have decreased to 35%, which in turn would have
caused a substantial increase in the number of conflicts
between human screeners and Distiller AI because Dis-
tillerAI would have included about 65% of abstracts.
Our study has several strengths and weaknesses. A

strength is that we used five teams who screened the
same abstracts in parallel. Using five screening teams
mitigated errors and subjective decisions of individual
screeners, as well as the influence of screening experi-
ence and content expertise on results. Another strength
of our study is that we mimicked a real-world abstract
screening situation, including unintended incorrect deci-
sions that human screeners made when they reviewed
the training sets. To minimize selection bias, we ran-
domly selected records for the training sets. Such an
approach reflects real-world conditions under which

machine-assisted screening would take place. We pur-
posely did not use decisions from the reference standard
dataset to train DistillerAI. The final included and ex-
cluded studies of a systematic review are the results of a
process that leverages more than the decisions of two
screeners. The final body of evidence is also a result of
feedback from the review team, review of reference lists
of other systematic reviews, and comments from exter-
nal peer reviewers. Finally, the choice of our reference
standard is also a strength of our study. Our reference
standards were the final included and excluded studies
and not decisions during the title and abstract screening of
the reference review. Decisions during abstract screening
are an insufficient reference standard because screening de-
cisions among screening teams can vary substantially. It is
conceivable that a semi-automated screening tool makes
more precise screening decisions than human screeners
make but would end up with inferior accuracy because of
the imperfect reference standard.
A weakness of our study is that we employed a fo-

cused, stepwise literature search to recreate the evidence
base for one Key Question of a systematic review. In
other words, we knew from the outset which studies
were relevant for the topic and tailored the searches ac-
cordingly. Our searches, therefore, presumably produced
less noise than a regular systematic literature search.
The spectrum and the ratio of relevant and irrelevant re-
cords were most likely different than those in a de novo
regular systematic literature search. An additional weak-
ness of our study is the complex topic. The results of

Fig. 3 Receiver operating characteristics curve for DistillerAI
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our study are also not generalizable to other semi-
automated literature screening tools. Furthermore, when
we calculated accuracy measures, we assumed that falsely
excluded studies would be missed by the review. In reality,
a systematic review has subsequent processes in place that
can detect incorrectly excluded records later during the
review process, such as review of reference lists of other
systematic reviews or external peer review. It is conceivable
that some of the studies missed during abstract screening
would ultimately still be included in the final systematic
review. Finally, although our outcome measures provide a
comprehensive picture of the accuracy and the perform-
ance of the machine-assisted screening approach, they also
have limitations. We do not know whether falsely excluded
studies would change the conclusions of the systematic re-
view. This is particularly relevant for users of rapid reviews
who are willing to accept that the review misses relevant
studies. For them, it is more important whether conclusions
would change because of missed studies. A recent inter-
national survey showed that decision-makers are willing to
accept up to 10% of incorrect wrong conclusions in ex-
change for a rapid evidence product [20].
In a recent commentary, O’Connor and colleagues ex-

plored reasons for the slow adoption of automation tools
[21]. They argue that the adoption of such tools requires
credible evidence that automation tools are non-inferior
or even superior in accuracy compared with standard
practice. Our study provides evidence that non-inferiority
is clearly not the case yet for DistillerAI. Few other studies
have assessed semi-automated screening tools under real-
world conditions [5, 15, 16]. The results of these studies
are consistent with our findings that semi-automated
screening tools have the potential for expediting reviews
but that the accuracy is still limited [15, 16].
Future studies need to explore whether semi-automated

screening tools could prove useful in identifying records
that are clearly not relevant, which is a different approach
than we took in our study. Future studies also need to as-
sess the comparative accuracy of different screening tools
under pragmatic, real-world screening situations. A still
unanswered question is also how semi-automated screening
tools perform when used with abbreviated literature
searches that have a higher specificity than compre-
hensive systematic literature searches. Waffenschmidt
et al., for example, proposed an abbreviated search
strategy for RCT randomized controlled trials [22].
This approach combines a simple-structured Boolean
search in PubMed with searches using the “similar ar-
ticles” function in PubMed. In a case study, this
approach reduced the number of abstracts that needed
to be screened by up to 90% without missing studies
that would have changed conclusions [23]. It is
conceivable that such a targeted literature search
approach could improve the performance of semi-

automated screening tools because they would have to
deal with less noise.

Conclusions
Systematic reviews require substantial human effort for
often repetitive and labor-intensive tasks. Automation to
assist reviewers during systematic reviews becomes in-
creasingly viable. The findings of our study imply that
the accuracy of DistillerAI is not yet adequate to replace
a human screener temporarily during abstract screening.
The approach that we tested missed too many relevant
studies and created too many conflicts between human
screeners and DistillerAI. Rapid reviews, which do not
require detecting the totality of the relevant evidence,
may find semi-automation tools to have greater utility
than traditional reviews.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13643-019-1221-3.

Additional file 1. Characteristics of studies that machine-assisted
screening teams missed at least once.

Abbreviations
AHRQ: Agency for Healthcare Research and Quality; CI: Confidence interval;
RCT: Randomized controlled trial; ROC: Receiver operating characteristics

Acknowledgements
We would like to thank Loraine Monroe for formatting and Sharon Barrell for
editing the manuscript.

Authors’ contributions
GG and MV conceived the study design and screened abstracts. LL
conducted literature searches and screened abstracts. GW set up DistillerAI
and screened abstracts. AK, AD, and LA screened abstracts. GG analyzed the
data and drafted the first version of the manuscript. All authors critically
reviewed the manuscript and contributed to the final version. All authors
read and approved the final manuscript.

Funding
This project was funded under contract no. 290-2015-00011-I from the
Agency for Healthcare Research and Quality, US Department of Health and
Human Services. The authors of this report are responsible for its content.
Statements in the report should not be construed as an endorsement by the
Agency for Healthcare Research and Quality or the US Department of Health
and Human Services.

Availability of data and materials
The datasets analyzed during the current study are available from the
corresponding author on reasonable request.

Ethics approval and consent to participate
None required

Consent for publication
All authors agree with the publication of this manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1RTI International–University of North Carolina Evidence-based Practice
Center, Research Triangle Park, NC, USA. 2Department for Evidence-based

Gartlehner et al. Systematic Reviews           (2019) 8:277 Page 9 of 10

https://doi.org/10.1186/s13643-019-1221-3
https://doi.org/10.1186/s13643-019-1221-3


Medicine and Evaluation, Danube University Krems, Krems, Austria.
3Department of Family Medicine, Care and Public Health Research Institute
(CAPHRI), Maastricht University, Maastricht, The Netherlands.

Received: 16 August 2019 Accepted: 5 November 2019

References
1. Effective Health Care Program. Methods guide for effectiveness and

comparative effectiveness reviews. Rockville: Agency for Healthcare
Research and Quality; 2014. Report No.: AHRQ publication no. 10(14)-
EHC063-EF Contract No.: October 1

2. Methods Group of the Campbell Collaboration. Methodological
expectations of Campbell Collaboration intervention reviews: conduct
standards. Campbell Policies and Guidelines Series No. 3 Oslo,
Norway: Campbell Collaboration; 2017 [Available from: https://www.
campbellcollaboration.org/library/campbell-methods-conduct-
standards.html]. Accessed 11 Nov 2019.

3. Institute of Medicine of the National Academies. Finding what works in
health care: standards for systematic reviews. Washington, DC: Institute of
Medicine of the National Academies; 2011.

4. Shemilt I, Khan N, Park S, Thomas J. Use of cost-effectiveness analysis to
compare the efficiency of study identification methods in systematic
reviews. Syst Rev. 2016;5(1):140.

5. O’ Mara-Eves A, Thomas J, McNaught J, Miwa M, Ananiadou S. Using text
mining for study identification in systematic reviews: a systematic review of
current approaches. Systematic Reviews. 2015;4:5.

6. Wallace BC, Small K, Brodley CE, Lau J, Trikalinos TA. Deploying an
interactive machine learning system in an evidence-based practice center:
Abstrackr. Proceedings of the ACM International Health Informatics
Symposium (IHI)2012. p. 819–24.

7. Evidence Partners. Meet your new assistant Ottawa, Ontario: Systematic Review
and Literature Review Software by Evidence Partners; 2012 [Available from:
https://www.evidencepartners.com/distiller-ai/]. Accessed 11 Nov 2019.

8. EPPI-Centre Software. EPPI-reviewer 4.0. software for research synthesis
London: EPPI-Centre Software, Social Science Research Unit, Institute of
Education; 2017 [Available from: https://eppi.ioe.ac.uk/cms/Default.
aspx?tabid=2947]. Accessed 11 Nov 2019.

9. Kontonatsios G, Brockmeier AJ, Przybyla P, McNaught J, Mu T, Goulermas JY,
et al. A semi-supervised approach using label propagation to support
citation screening. J Biomed Inform. 2017;72:67–76.

10. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and
mobile app for systematic reviews Qatar: Qatar Computing Research
Institute; 2016 [5:210:[Available from: https://rayyan.qcri.org/welcome].
Accessed 11 Nov 2019.

11. Howard BE, Phillips J, Miller K, Tandon A, Mav D, Shah MR, et al. SWIFT-
review: a text-mining workbench for systematic review. Syst Rev. 2016;5:87.

12. Ananiadou S, McNaught J. Text mining for biology and biomedicine.
Boston/London: Artech House; 2006.

13. Hearst M. Untangling text data mining. Proceedings of the 37th annual
meeting of the association for computational linguistics (ACL 1999);
1999. p. 3–10.

14. Hempel S, Shetty KD, Shekelle PG, Rubenstein LV, Danz MS, Johnsen B, et al.
Machine learning methods in systematic reviews: identifying quality
improvement intervention evaluations. Rockville, MD: Research White Paper
(Prepared by the Southern California Evidence-based Practice Center under
Contract No. 290–2007-10062-I); 2012 September. Report No.: AHRQ
Publication No. 12-EHC125-EF.

15. Rathbone J, Hoffmann T, Glasziou P. Faster title and abstract screening?
Evaluating Abstrackr, a semi-automated online screening program for
systematic reviewers. Syst Rev. 2015;4:80.

16. Przybyla P, Brockmeier AJ, Kontonatsios G, Le Pogam MA, McNaught J, von
Elm E, et al. Prioritising references for systematic reviews with RobotAnalyst:
a user study. Res Synth Methods. 2018;9(3):470–88.

17. Shemilt I, Simon A, Hollands GJ, Marteau TM, Ogilvie D, O’Mara-Eves A, et al.
Pinpointing needles in giant haystacks: use of text mining to reduce
impractical screening workload in extremely large scoping reviews. Res
Synth Methods. 2014;5(1):31–49.

18. Thomas J, Noel-Storr A, Marshall I, Wallace B, McDonald S, Mavergames C,
et al. Living systematic reviews: 2. Combining human and machine effort. J
Clin Epidemiol. 2017;91:31–7.

19. Gartlehner G, Gaynes B, Amick H, Asher G, Morgan LC, Coker-Schwimmer E,
et al. Nonpharmacological versus pharmacological treatments for adult
patients with major depressive disorder. Rockville, MD: Comparative
Effectiveness Review No. 161. (Prepared by the RTI-UNC Evidence-based
Practice Center under Contract No. 290–2012-00008I.) 2015 December.
Report No.: AHRQ Publication No. 15(16)-EHC031-EF.

20. Wagner G, Nussbaumer-Streit B, Greimel J, Ciapponi A, Gartlehner G.
Trading certainty for speed - how much uncertainty are decisionmakers and
guideline developers willing to accept when using rapid reviews: an
international survey. BMC Med Res Methodol. 2017;17(1):121.

21. O'Connor AM, Tsafnat G, Thomas J, Glasziou P, Gilbert SB, Hutton B. A
question of trust: can we build an evidence base to gain trust in systematic
review automation technologies? Syst Rev. 2019;8(1):143.

22. Waffenschmidt S, Janzen T, Hausner E, Kaiser T. Simple search techniques in
PubMed are potentially suitable for evaluating the completeness of
systematic reviews. J Clin Epidemiol. 2013;66(6):660–5.

23. Affengruber L, Wagner G, Waffenschmidt S, Lhachimi, Nussbaumer-Streit B,
Thaler K, et al. Combining abbreviated searches with single-reviewer
screening– three case studies of rapid reviews. BMC Med Res Methodol.
Submitted for publication.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Gartlehner et al. Systematic Reviews           (2019) 8:277 Page 10 of 10

https://www.campbellcollaboration.org/library/campbell-methods-conduct-standards.html
https://www.campbellcollaboration.org/library/campbell-methods-conduct-standards.html
https://www.campbellcollaboration.org/library/campbell-methods-conduct-standards.html
https://www.evidencepartners.com/distiller-ai/
https://eppi.ioe.ac.uk/cms/Default.aspx?tabid=2947
https://eppi.ioe.ac.uk/cms/Default.aspx?tabid=2947
https://rayyan.qcri.org/welcome

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Reference standard
	Outline of general approach
	Training DistillerAI
	Outcomes
	Comparisons and quantitative analyses

	Results
	Proportion of included abstracts
	Proportion of conflicts and interrater agreement between human screeners and DistillerAI
	Accuracy of correctly classifying relevant and irrelevant studies
	Performance of DistillerAI for different prediction thresholds

	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

