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Alzheimer’s disease (AD) is the most common condition in patients with dementia and
affects a large population worldwide. The incidence of AD is expected to increase
in future owing to the rapid expansion of the aged population globally. Researchers
have shown that women are twice more likely to be affected by AD than men. This
phenomenon has been attributed to the postmenopausal state, during which the level
of estrogen declines significantly. Estrogen is known to alleviate neurotoxicity in the
brain and protect neurons. While the effects of estrogen have been investigated in
AD models, to our knowledge, they have not been investigated in a stem cell-based
three-dimensional in vitro system. Here, we designed a new model for AD using
induced pluripotent stem cells (iPSCs) in a three-dimensional, in vitro culture system.
We used 5xFAD mice to confirm the potential of estrogen in alleviating the effects of AD
pathogenesis. Next, we confirmed a similar trend in an AD model developed using iPSC-
derived cerebral organoids, in which the key characteristics of AD were recapitulated.
The findings emphasized the potential of estrogen as a treatment agent for AD and also
showed the suitability of AD-recapitulating cerebral organoids as a reliable platform for
disease modeling and drug screening.

Keywords: Alzheimer’s disease, induced pluripotent stem cells, cerebral organoid, estrogen, amyloid-beta

INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegenerative disorder characterized by the
gradual loss of cognitive function, leading to progressive disruptions in basic functions such
as walking, swallowing, memory, and attention (Goedert and Spillantini, 2006; Montine et al.,
2012; Dubois et al., 2016) primarily characterized by extracellular accumulation of amyloid-
beta (Aβ) peptides and formation of neurofibrillary tangles from the intraneuronal accumulation
of hyperphosphorylated proteins (Bancher et al., 1989; Montine et al., 2012; Penney et al.,
2020). The aggregation of Aβ proteins increases under oxidative stress (Cho et al., 2016),
thereby promoting proinflammatory responses (Yang et al., 2015), inducing non-functional
synaptic plasticity, deregulating intracellular signaling pathways, and initiating neuronal apoptosis
(Roberts et al., 1994; Zheng et al., 2017).
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According to the Alzheimer’s Association, two of three people
diagnosed with AD are women (Alzheimer’s Association, 20171).
Such could be simply attributable to women’s longer expected life
span when compared to men (Alzheimer’s Association, 20161) as
well as decreased level of estrogen in postmenopausal women.
A decrease in the level of estrogen, neuroactive steroid hormones
associated with memory, cognition, and sexual conduct, in the
postmenopausal state is associated with a heightened disease
risk (Hojo et al., 2008; Wharton et al., 2011). They are some of
the most important contributors to cognitive function through
hippocampal neurogenesis (Sager et al., 2018). The level of
estradiol, the most common form of estrogen, declines in
the postmenopausal state, and eventually becomes lower than
that in men (Khosla et al., 2001). Estrogen deficiency in
postmenopausal women has been linked to the pathogenesis of
AD (Barnes et al., 2005).

Estrogen exerts neuroprotective effects by decreasing Aβ

and glutamate toxicities (Xu et al., 1998) and suppressing tau
protein hyperphosphorylation (Goodenough et al., 2005; Zhang
et al., 2008; Lee et al., 2014). Estrogen also improves synaptic
plasticity, helps maintain the neurotrophic components, and
reduces inflammation in the brain (Correia et al., 2010; Pompili
et al., 2012). While certain studies could not confirm the
abovementioned positive effects of estrogen (Henderson, 2014),
other studies provided experimental evidence that women who
undergo hormone replacement therapy are at a lower risk of AD
(Tang et al., 1996; Daniel and Bohacek, 2010).

Many studies have conducted in vitro and in vivo experiments
on AD and provided methods for curing the disease; however,
the effectiveness has not been confirmed in clinical trials (Zahs
and Ashe, 2010). The modeling platforms used have certain
limitations, the most important one being that the transgenic
mice commonly used to study AD do not completely recapitulate
AD pathogenesis. Hence, alternative disease modeling platforms,
such as those developed using induced pluripotent stem cell
(iPSC)-derived organoids, are necessary to study the pathological
mechanisms of AD that involve central lesions. While there are
primarily three methods used for modeling AD using cerebral
organoids (Koch et al., 2012; Vazin et al., 2014; Huang et al., 2017;
Pavoni et al., 2018), these models exhibit low reproducibility
and homogeneity, and thereby fail to accurately mimic AD
pathogenesis (Papaspyropoulos et al., 2020).

Since their introduction in 2006, iPSCs have been used in
different fields of science and medicine. Cerebral organoids,
which recapitulate different parts of the brain, have been
widely used to study different neurodevelopmental and
neurodegenerative disorders since their introduction in 2013.

In this study, we first confirmed the effect of estrogen in
an ovariectomized mouse model of AD. Next, we generated
healthy iPSC-derived cerebral organoids (iCOs) and treated
them with Aβ peptides to effectively induce a controlled AD-
like environment. The relationship between estrogen and iPSC-
derived neurons has been investigated using a two-dimensional
platform (Shum et al., 2015). However, to the best of our
knowledge, experiments investigating the effects of estrogen on
neurons have not been performed using a three-dimensional

1http://www.alz.org

platform. Additionally, to evaluate the effect of estrogen on
AD-like iCOs, we administered relatively low and high doses
of estradiol and investigated its dose-dependent effects. Our
findings showed the potential of Aβ-treated iCOs as a reliable
disease modeling and drug screening platform for studying
AD and suggested the suitability of estrogen as a therapeutic
candidate for AD.

MATERIALS AND METHODS

Ethics statement
All procedures involving experimental animals were performed
in accordance with the Laboratory Animals Welfare Act, the
Guide for the Care and Use of Laboratory Animals, and the
Guidelines and Policies for Rodent Experiments provided by
the Institutional Animal Care and Use Committee of the School
of Medicine, The Catholic University of Korea. The study was
approved by the Institutional Review Board of The Catholic
University of Korea (CUMC 2020-0296-04).

Animals and Treatment
Female 5xFAD mice (10 mice, weight 20–30 g, 4 to 5 weeks of
age) and female C57BL/6 mice (5 mice, weight 20–30 g, 5 weeks
of age) were maintained in a pathogen-free, strictly controlled
environment. In this study, three groups of mice were studied:
one control group consisted of five female C57BL/6 mice, one
disease control group consisted of five female 5xFAD mice, and
one experimental group consisted of five female 5xFAD mice. The
body weight of each mouse was monitored weekly. The mice were
housed individually, had free access to food and water, and were
maintained under the abovementioned conditions until 9 weeks
of age, after which ovariectomy was performed. All surgical
manipulations were conducted under anesthetization (isoflurane,
2–5% via inhalation). The mice were allowed to recover for
2 weeks and injected with gentamicin (5 mg/kg, subcutaneous
injection) and ketoprofen (5 mg/kg, subcutaneous injection)
daily for 1 week to prevent infection and alleviate pain. When
aged 11 weeks, the mice were injected with estrogen (Merck,
Darmstadt, Germany, Cat# E8875) 10 µg/kg/day, 5 days/week,
6 weeks). When aged 17 weeks, the mice were made to
perform the Barnes Maze test; thereafter, the mice were sacrificed
under 1.5∼4.5% isoflurane, and their tissues were used for
histological analyses.

Barnes Maze Test
The Barnes maze test was conducted to assess the spatial learning
and memory of the AD mice. The paradigm comprised a large,
92 cm-wide circular board with 18 holes, with one of them as the
“target.” The “target” contained the food (sweet flavored chips)
from the cage in which the mice were housed.

During the two pre-training trials, the mice were placed
in the middle of the maze inside a transparent beaker for
1 min. This allowed the mice to familiarize themselves with their
surroundings, including three signs on the wall. After 1 min, the
mice were guided to the target and allowed to remain in the target
for 2 min. The pre-trial training was conducted two times over
2 days before the trial.
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At the beginning of the trial, the mice were placed in the
middle of the maze and allowed to locate the target for 3 min.
The process was recorded using SMART3.0 (Panlab, Harvard
Apparatus). After the final trial was complete, the data collected
from each trial were summarized. We have collected three types
of data: the time it takes for the mice to make their first entry
to the target (first entry to target), the distance the mice walked
within the target (distance in target), and the time spent outside
of the target (time in error).

Induced Pluripotent Stem Cells Culture
Peripheral blood mononuclear cell-derived hiPSCs were
generated and characterized in our previous studies (Kim et al.,
2016). The blood was collected from PBMC-derived hiPSCs
(female, age 30-35, passage 18-25) were seeded on vitronectin
(Gibco, Carlsbad, CA, United States, Cat #A14700) coated dishes
in a 10% CO2 environment at 37◦C. The cells were cultured in
Essential 8 medium (Gibco Cat #A1517001) that was replaced
each day until differentiation was induced.

Induced Pluripotent Stem Cells-Derived
Cerebral Organoid Differentiation
To induce the differentiation of iPSCs into iCOs, we adapted a
protocol reported by Lancaster and Knoblich (2014). The iPSCs
were initially suspended in low-bFGF hESC medium composed
of 40 mL of DMEM-F12 (Gibco Cat #11320023), 10 mL of
knock-out serum (Gibco Cat #10828010), 1.5 mL of fetal bovine
serum (Gibco Cat #10437028), 0.5 mL of GlutaMax (Gibco Cat
#35050061), 0.5 mL of MEM-NEAA (Gibco Cat #11140050),
and 3.5 µL of 2-mercaptoethanol (Sigma Aldrich, St. Louis,
MO, United States). bFGF (R&D systems, Minneapolis, MN,
United States) was added at a final concentration of 4 ng/mL,
and ROCK inhibitor (Peprotech, Rocky Hill, NJ, United States)
was added at a final concentration of 50 µM. The formation of
embryonic bodies (EBs) was induced in the suspended iPSCs by
culturing in an untreated U-shaped 96-well plate. Approximately
9 × 103 cells were dispensed in each well and centrifuged. The
day of seeding was considered as day 0. The medium from
each well was aspirated gently on days 2 and 4 and replaced

with 150 µL of fresh low-bFGF hESC medium. From day 0,
the EBs were incubated at 37◦C in 5% CO2. On day 6, each
EB was transferred to an untreated 24-well plate containing
500 µL of neural induction medium consisted of DMEM-F12
with 1% N2 supplement (Gibco Cat #17502001), 1% GlutaMax,
and 1% MEM-NEAA. Five hundred microliters of media were
added on day 8. On day 11, the EBs were embedded in Matrigel
(Corning, Corning, NY, United States, Cat #356234). Matrigel
with the embedded EBs was hardened at 37◦C in 5% CO2 for
2–30 min. The EBs embedded in Matrigel were cultured in
cerebral organoid differentiation media without vitamin A until
day 15. From day 15, the EBs were cultured in cerebral organoid
differentiation media containing vitamin A in untreated 6-well
plates (VWR, Radnor, PA, United States, Cat #10062-892) on
a rocker at 37◦C in 5% CO2. The organoids were cultured in
fresh differentiation media every 3 days until they were harvested
on day 60. From day 61, organoids were treated with estrogen
(Merck, Darmstadt, Germany, Cat# E8875) every three days in
different concentrations (1nM and 10nM) for 30 days.

Real-Time RT-PCR
Samples were collected and stored at −80◦C until use. mRNA
was extracted from the samples using TRIzol reagent (Life
Technologies, Carlsbad, CA, United States). Two micrograms
of extracted mRNA were used to synthesize cDNA using the
RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher
Scientific, Carlsbad, CA, United States, Cat #K1622). The
PowerSYBR Green PCR Master Mix (Applied Biosystems,
Waltham, MA, United States, Cat #436759) was used to measure
gene expression using the StepOnePlus Real-Time PCR System
(Applied Biosystems). Total of 40 cycles were used per trial:
15 seconds in 95◦C, then 30 s in 60◦C, followed by 45 s in 72◦C.
The relative mRNA levels were normalized to those of GAPDH.
The primers used are listed in Table 1.

Sample Preparation for Cerebral
Organoids and Mouse Brains
The harvested samples were stored overnight in 4%
paraformaldehyde (Tech & Innovation, Chuncheon, Republic

TABLE 1 | List of primers used for quantitative real-time polymerase chain reaction (human).

Gene Organism Forward Primer Reverse Primer

GAPDH Human CTGTTGCTGTAGCCAAATTCGT ACCCACTCCTCCACCTTTGA

OCT4 Human ACCCCTGGTGCCGTGAA GGCTGAATACCTTCCCAAATA

FOXG1 Human AGGAGGGCGAGAAGAAGAAC TCACGAAGCACTTGTTGAGG

TBR1 Human GGGCTCACTGGATGCGCCAAG TCCGTGCCGTCCTCGTTCACT

PROX1 Human GCAGTAGTTTCCTCCTGACCG TCTCTGTGTTGGTGCCGCC

FZD9 Human AAAGTCAAATGTACTCCGCAAGC CTGGGAAATTATGGTTGCTCCT

MAP2 Human GGAGACAGAGATGAGAATTCC GAATTGGCTCTGACCTGGT

NeuN Human GCGGCTACACGTCTCCAACAT ATCGTCCCATTCAGCTTCTCCC

TUJ1 Human GGCCTTTGGACATCTCTTCA ATACTCCTCACGACCTTGC

vGlut1 Human CCATGACTAAGCACA AGATGACACCTCCATAGTGC

Nestin Human ACCAAGAGACATTCAGACTCC CCTCATCCTCATTTTCCACTCC

APP Human AACCCTACGAAGAAGCCACA TTCTCATCCCCAGGTGTCTC

ADAM10 Human AATTCTGCTCCTCTCCTGGGC TATGTCCAGTGTAAATATGAGAGG
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of Korea, Cat #BPP-9004) at 4◦C and dehydrated by overnight
immersion in 15% sucrose and then in 30% sucrose at 4◦C.
After dehydration, the samples were immersed overnight in
OCT compound (Sakura Finetek United States, Torrance, CA,
United States, Cat #4583) and gradually frozen. The frozen
samples were stored at −80◦C until use. The samples were
sectioned using a Cryo Microtome (Leica Biosystems, Wetzlar,
Germany), and the slides were stored at−20◦C until staining.

Hematoxylin and Eosin (H&E) Staining
The sample slides were dried overnight at room temperature
(22◦C) before fixation in cold acetone for 10 min. The slides were
incubated in filtered Harris’ hematoxylin (Sigma Aldrich, Cat
#HHS32-1L) for 15 min, dipped in 1% HCl-EtOH, neutralized
with 0.2% ammonia water, and then dipped in eosin three times
for counterstaining.

Immunohistochemical Staining
The sample slides were dried overnight at room temperature
before fixation in cold acetone for 10 min. Endogenous
peroxidase activity was blocked by treating with 0.3% hydrogen
peroxide. Since the antibodies used were isolated from a mouse
host, the Mouse on Mouse (M.O.M) Immunodetection Kit
(Vector Laboratories, Burlingame, CA, United States, Cat #BMK-
2202) was used. The slides were initially blocked with the
M.O.M Mouse IgG Blocking Reagent diluted in 1% of bovine
serum albumin (BSA) in 1% phosphate buffered saline (1%
PBA) for 1 h, which was followed by protein blocking with
the M.O.M. Protein Concentrate diluted in 1% phosphate-
buffered saline (PBS) for 5 min. The primary antibodies were
diluted in the protein concentrate dilutant used for protein
blocking, and the slides were treated overnight with the primary
antibodies at 4◦C. The next day, the slides were incubated for
10 min in a 0.5% biotinylated secondary antibody solution at
room temperature. After washing with 1% phosphate-buffered
saline/tween (PBST), the slides were treated with ABC Reagent
(Vector Laboratories, Cat #PK-7100) for 10 min, and then with
3,3′-diaminobenzidine solution (DAB) (Vector Laboratories,
Cat #SK-4100) for 1 min. The slides were washed and
counterstained with Mayer’s hematoxylin for 1 min, dehydrated,
and cleared. The slides were then mounted and visualized using a
bright-field microscope. β-amyloid quantification was performed
using ImageJ program. The images collected from bright-field
microscope were converted into 8-bit images and then threshold
was adjusted to select the stained areas of β-amyloid. Once

the threshold is applied, the mean area was measured under
“analyze” tab.

Immunofluorescence Assay
The sample slides were washed with 1 × tris-buffered
saline/tween (TBST) and quenched using 1 × citrate buffer.
Subsequently, the sectioned samples were permeabilized using
TBS 0.1% Triton X-100 and blocked with 0.1% Triton X-100
(Biosesang, Seongnam, Republic of Korea Cat #TR1020-500-00)
mixed with 10% normal horse serum. The slides were treated
overnight with primary antibodies at 4◦C (refer to Table 2 for
the list of antibodies used). Next, the samples were washed using
1 × TBST and then treated with Alexa Fluor 594-(1/400; Life
Technologies, Carlsbad, CA, United States) and 488-(1/400; Life
Technologies) conjugated secondary antibodies diluted in PBA
and incubated for 1 h at RT avoiding light. 4′,6-diamidino-
2-phenylindole (DAPI) was used for nuclear staining. After
DAPI staining, samples were mounted and stored at 4◦C until
the immunofluorescence assay was conducted. The thickness of
cerebral organoid samples was 10 um and the thickness of mouse
brain samples was 20 um. Images were obtained using confocal
microscopy. Pinhole size of 69 um was used when gathering data.

Western Blotting
Proteins were extracted from the samples using a protein
extraction buffer (Thermo Scientific, Cat #78510) mixed with
100 × phenylmethylsulfonyl fluoride (PMSF) and a single
cOmplete Mini, EDTA-free protease inhibitor cocktail tablet
(Roche Diagnostics, Basel, Switzerland, Cat #22836170001). The
homogenized samples were centrifuged, and the supernatants
were collected. The protein concentration was measured using
the Bradford assay (Bio-Rad, Cat #5000205). Equal quantities
of proteins were loaded onto an SDS-polyacrylamide gel and
electrophoretically transferred onto a nitrocellulose membrane
(Bio-Rad Laboratories, Hercules, CA, United States, Cat
#1704158). The membranes were treated overnight at 4◦C with
primary antibodies (refer to Table 3 for the list of antibodies
used) and then for 1 h with a horse radish peroxidase-conjugated
secondary antibody. The membranes were developed using
Amersham Imager 600. The bands were measured using ImageJ
program. The bands were selected by drawing a frame around
them using the “rectangle” tool. The area was assigned and then
profile plot of the lane was acquired using “plot lanes” tool. Each
peak in the profile plot represents the relative intensity of the
bands in the selected lane. Straight line selection tool was used

TABLE 2 | List of primary antibodies used for the immunofluorescence assay.

Antibody Brand Catalog Number Dilution

SOX2 Abcam (Cambridge, United Kingdom) Abcam Cat# ab92484, RRID:AB_10585428 1:500

TUJ1 GeneTex (Irvine, CA, United States) GeneTex Cat# GTX631836, RRID:AB_2814952 1:500

MAP2 Santa Cruz Biotechnology, Inc. (Dallas, TX, United States) Santa Cruz Biotechnology Cat# sc-74421, RRID:AB_1126215 1:500

TBR1 Abcam Abcam Cat# ab31940, AB_2200219 1:500

FOXG1 Abcam Abcam Cat# ab18259, RRID:AB_732415 1:500

PROX1 Millipore (Burlington, MA, United States) Millipore Cat# MAB5654, RRID:AB_2170714 1:500

B-amyloid Santa Cruz Biotechnology, Inc. Santa Cruz Biotechnology Cat# sc-374527, RRID:AB_10988723 1:100
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TABLE 3 | List of antibodies used for Western blotting.

Antibody Brand Catalog Number

APP Sigma Aldrich (St. Louis, MO,
United States)

Sigma-Aldrich Cat# A8717,
RRID:AB_258409

pTAU Cell Signaling Technology
(Danvers, MA, United States)

Cell Signaling Technology Cat#
39357, RRID:AB_2799152

ADAM10 Santa Cruz Biotechnology, Inc. Santa Cruz Biotechnology Cat#
sc-48400, RRID:AB_626635

GAPDH Santa Cruz Biotechnology, Inc. Santa Cruz Biotechnology Cat#
sc-32233, RRID:AB_627679

in order to enclose each peak, then the wand tool was used to
quantify the intensity.

Statistical Analysis
Statistical analyses were performed using GraphPad Prism
version 9. Data are presented as mean and standard error of the
mean (represented by the error bars). Student’s t-tests were used
to compare the differences between the groups and to determine
statistical significance. Two-tailed P-values were calculated using
the t-test. Differences with P < 0.05, P < 0.01, and P < 0.001 were
considered statistically significant.

RESULTS

Estrogen Improved the Behavioral
Performance of Ovariectomized Mice
With Alzheimer’s Disease
To confirm the effect of estrogen in AD, ovariectomy was
performed on 5xFAD mice, a transgenic mouse model of
AD (Figure 1A). To determine whether the ovariectomy was
successful, the body weight of each mouse was measured
weekly. The body weights of ovariectomized 5xFAD mice were
higher than those of mice from the other groups, which
indicated successful menopause induction (Sasayama et al., 2017;
Figure 1B). The uteri of mice from each group were examined to
confirm the success of estrogen delivery. The uterine thickness
of ovariectomized control mice (OVX) was considerably lesser
than that of OVX mice treated with estrogen (OVX + E2)
(Figure 1C). Additionally, the uteri of OVX + E2 mice and
healthy control mice were of similar thickness. H&E staining
of coronal dissections of the uteri showed the thinned uterine
walls of OVX mice and the thicker uterine walls of OVX + E2
mice (Figure 1D). These results suggested that ovariectomy
was successfully performed in AD mice and menopause was
effectively induced.

Following estrogen treatment for 6 weeks, the Barnes maze
test was performed to examine the spatial learning and memory
capacities of the mice (Rosenfeld and Ferguson, 2014). The mice
were digitally monitored for 3 min (Figure 1E). 5xFAD mice
treated with estrogen (OVX + E2) took less time to initiate their
first entrance (latency of first entry to target), but the difference
was not statistically significant (Figure 1F). Additionally, mice
with AD spent significantly lesser time in the target compared

to mice treated with E2, for longer distance the mice walked
within the target signifies longer time the mice spent within the
target (Figure 1G). The time spent in the error zone was also
analyzed. As observed previously, mice with AD spent more
time outside the target than mice treated with E2 (Figure 1H).
Hence, the results showed that estrogen was effectively delivered
in the mice and suggested the beneficial effects of estrogen on
ovariectomized mice.

Protein Expression of Alzheimer’s
Disease -Specific Markers in Mice Brain
Tissues Decreased in Estrogen-Treated
Ovariectomized Mice
To confirm the effect of estrogen on mice with AD, we measured
the expression of AD-specific markers in the brain tissues of
sacrificed mice. The APP levels were significantly higher in the
AD mice than in the control mice (t(2) = 4.675, p = 0.02).
Conversely, the APP levels were significantly lower in the
ovariectomized, estrogen-treated mice (E2 group) than in the
AD mice (t(2) = 6.156, p = 0.01). Similarly, the E2-treated
mice showed lower Aβ protein expression than the AD mice.
Additionally, the phosphorylated tau protein (pTAU) levels in
the E2 group was significantly lower than that in the AD group
(t(2) = 16.35, p = 0.002), indicating the potential suppressive
effect of estrogen on tau phosphorylation. We also measured
the protein expression of ADAM10, which is the primary gene
encoding alpha secretase. Soluble APPs, which do not form
plaques and are thus non-neurotoxic, were found to be activated
to a greater extent upon treatment with estrogen (Amtul et al.,
2010). The ADAM10 protein levels were higher in the E2 group
than in the AD group (Figure 2A). The measured protein
level from each analysis normalized to the GAPDH level is
shown in Figure 2B. The presence and location of Aβ plaques
were confirmed in the brain tissue samples. Compared to the
control mice, the AD mice showed the apparent accumulation
of Aβ plaques, and the accumulation was particularly high
in the hippocampal region. Meanwhile, the accumulation was
lower in the E2 mice than in the AD mice (Figure 2C). The
measurement of Aβ-positive areas is shown in Figure 2D. The
findings suggested the role of estrogen in suppressing Aβ peptide-
induced neurotoxicity.

Generation of Cerebral Organoids Using
Induced Pluripotent Stem Cells
A schematic representation of the iCO differentiation process is
provided in Figure 3A. The morphological characteristics of the
iCOs were confirmed at each step of the protocol (Figure 3B).
Robust cell expansion was confirmed on days 13 and 19 of
differentiation. The gene expression levels were measured in the
generated iCOs (Figure 3C). The expression of the pluripotency
marker OCT4 was significantly lower in iCOs than in iPSCs. The
iCOs expressed various markers that are expressed in different
regions of the brain, such as the hippocampal marker PROX1
and the forebrain marker FOXG1. The iCOs also expressed
various neural markers (including MAP2, NeuN, and TUJ1),
the deep-layer neuron marker TBR1, the neural progenitor cell
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FIGURE 1 | Estrogen treatment of an Alzheimer’s disease model developed using ovariectomized mice improves behavioral performance. (A) Schematic
representation of the animal experiment, involving the induction of the postmenopausal state in the Alzheimer’s disease model of mice and treatment with estrogen.
(B) Growth curves of control mice and ovariectomized (OVX) mice treated with estrogen. Arrows indicate the time of OVX operation and the starting point of estrogen
injection. (C) Uteri of control (C57BL/6), OVX, and OVX + E2 mice. Scale bar, 1 cm. (D) Hematoxylin and eosin staining of mice uterine tissues. Scale bar, 500 µm for
50 × ; 100 µm for 200 ×. (E) Monitoring of mice from each group for 3 min (180 s). (F) Graph showing the average latency of first entry to target in seconds.
(G) Graph showing the average distance traveled in the target relatively. (H) Graph showing the average time spent by the mice outside the target zone in seconds.
t-tests were used for data analysis (∗∗P < 0.01). Values are presented as mean ± standard error of the mean.

marker Nestin, and the glutamate transport marker vGLUT1
(Figure 3C). The protein expression of different neuronal and
brain region-specific markers in the differentiated iCOs was
confirmed. The co-localization of SOX2 and TUJ1 led to rosette
formation within the organoid (Figure 4D). The co-localization
of TBR1 and MAP2 mostly occurred near the edge of the iCOs,
indicating the differentiation of the multiple layers of neurons
(Figure 4E). FOXG1 and PROX1 represented the forebrain and
hippocampal markers in the iCOs, respectively (Figure 4F).
Collectively, these findings suggested that differentiated cerebral
organoids recapitulate the protein expression patterns typically

observed in different regions of the brain as well as in different
types of neurons.

Dose-Dependent Treatment With
Estrogen Increased the Expression of
Neuronal Markers in Induced Pluripotent
Stem Cells-Derived Cerebral Organoids
To develop a model of the brain of patients with AD, we
treated the iCOs with Aβ peptides and investigated whether
estrogen protects neurons in Aβ peptide-treated iCOs (Aβ group)
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FIGURE 2 | Histological analyses of brain tissues from control, 5xFAD, and ovariectomized 5xFAD model mice treated with estrogen. (A) Western blotting for the
measurement of amyloid precursor protein (APP), amyloid-beta (Aβ) protein, phosphorylated tau (TAU) protein, and ADAM10 protein levels in each group.
(B) Quantification in western blotting assay with protein levels normalized to that of GAPDH. (C) Immunohistochemical assay showed Aβ plaque accumulation in
mouse brains, with significant clustering in the cortical and hippocampal regions. Scale bar, 2000 µm for 10x, 1000 µm for 40x. (D) Quantification of Aβ-positive
areas, measured using ImageJ. t-tests were used for data analysis (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001).

(Figure 4A; three iCOs used per experiment). The concentrations
of estrogen used were determined from past research (Shum
et al., 2015; Guo et al., 2018). The expression of the pluripotency
marker OCT4 was significantly low in the iCOs in all groups
(Figure 4B). The expression level of the neuronal marker
TUJ1 was significantly higher in iCOs treated with Aβ and
1 nM estrogen (EL group) than in those in the Aβ group
(t(4) = 3.239, p = 0.02). The difference was more significant
when the iCOs were treated with Aβ and 10 nM estrogen
(EH group) (t(4) = 17.86, P < 0.001) (Figure 4C). Therefore,
estrogen treatment enhanced the expression of neuronal markers.
Conversely, APP expression increased significantly in both EL
(t(4) = 3.325, p = 0.01) and EH (t(4) = 2.909, p = 0.02) groups
compared to that in the Aβ group (Figure 3D). This indicates that
estrogen may attenuate the effects of Aβ neurotoxicity. ADAM10

expression was significantly high in the EL group (t(4) = 16.85,
P < 0.001) and EH group (t(4) = 7.603, P < 0.001) (Figure 3E).
These results indicated the potential protective effect of estrogen
against neurotoxic Aβ peptides as well as its ability to enhance
protein expression in neurons. To confirm that estrogen exerts
protective effects on neurons in Aβ peptide-treated iCOs, we
measured the expression of the early neuronal marker SOX2 and
the neuronal marker TUJ1 (Figure 3F). The areas that stained
for SOX2, TUJ1, and DAPI were measured. The expression of
SOX2, TUJ1, and DAPI was significantly high in iCOs treated
with Aβ and 1 nM estrogen, but it was higher in iCOs treated
with 10 nM estrogen (Figures 4G,H). The results indicated that
Aβ peptides are neurotoxic, and therefore, induce neuronal death
in iCOs, and estrogen may alleviate the effects of Aβ peptides in a
dose-dependent manner.
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FIGURE 3 | Successful differentiation of cerebral organoids from induced pluripotent stem cells obtained from healthy patient. (A) Differentiation of cerebral
organoids derived from induced pluripotent stem cells. (B) Images of cerebral organoids in each step of the experiment. (C) Gene expression normalized to that of
GAPDH: pluripotency marker OCT4, hippocampal marker PROX1, forebrain marker FOXG1, neuronal markers MAP2, NeuN, and TUJ1, deep-layer neuron marker
TBR1, neural progenitor cell marker Nestin, and glutamate transporter marker vGLUT1. Immunofluorescence assay showing the co-localization of (D) early-stage
neuronal marker SOX2 and neuronal cell-body marker TUJ1, (E) deep-layer neuron marker TBR1 and neuronal dendrite marker MAP2, and (F) forebrain marker
FOXG1 and hippocampal marker PROX1, in the cerebral organoids. t-tests were performed for data analysis (***P < 0.001). Values are presented as
mean ± standard error of mean. Scale bars, 200 µm.

DISCUSSION

In this study, we evaluated the potential of cerebral organoids
treated with specific concentrations of Aβ peptide as a model
of AD. The organoids were treated to determine whether
they could serve as an effective drug screening platform and
yield results similar to those obtained in in vivo experiments.
Estrogen reduced the degree of neurotoxicity in the iCOs,
which indicated the potential of this model as an in vitro drug
screening platform. Estrogen-treated AD mice performed better
in the Barnes maze test than untreated AD mice (Figure 1).
Furthermore, histological analyses of brain samples showed the
significant suppression of AD-related pathological proteins, such
as APP, Aβ peptide, and pTAU (Figure 2), in response to
estrogen treatment. Given that estrogen attenuates the neurotoxic
effects of Aβ peptides, we attempted to develop an in vitro
model using cerebral organoids. After confirming the successful
generation of iCOs differentiated from iPSCs (Figure 3), we
treated the AD-recapitulating iCOs with estrogen and confirmed

the enhancement of neuronal marker expression at both gene and
protein levels (Figure 4).

While several studies have conducted in vitro and in vivo
analyses on AD models and demonstrated the efficacies of
therapeutic strategies in experimental models, the strategies
have failed to yield effective results in clinical trials (Zahs and
Ashe, 2010). Most cases of AD are sporadic (sporadic AD,
SAD), although familial cases, which are usually associated
with accelerated amyloidopathy, are considerably more
aggressive, with earlier disease onset (Walsh and Selkoe,
2007). Hence, animal models of AD are genetically engineered
to induce the overexpression of genes that are implicated
most commonly in FAD, such as APP and PS1 (encoding
presenilin 1, which is the catalytic component of the Aβ peptide-
producing complex gamma secretase) (Sasaguri et al., 2017;
Gerakis and Hetz, 2019).

For sporadic AD is not only caused by genetic factors but
also is caused by other risk factors, such as diabetes and
hypertension, there is no established mouse models for sporadic
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FIGURE 4 | Estrogen treatment of cerebral organoids co-stimulated with amyloid-beta (Aβ) enhances the expression of neuronal markers. (A) Schematic
representation of the cerebral organoid generation process and treatment with Aβ peptide and estrogen. Gene expression normalized to that of GAPDH: (B)
neuronal markers TUJ1, (C) amyloid precursor protein marker APP, and (D) alpha-secretase marker ADAM10. (E) Immunofluorescence assay showing the
co-localization of early-stage neuronal marker SOX2 and neuronal markers TUJ1 in samples obtained from experimental and control mice. (F-H) Areas that stained
positive for DAPI, SOX2, and TUJ1 were measured using ImageJ. CTRL, control; Aβ, cerebral organoids treated only with 100 nM Aβ; EL, cerebral organoids treated
with 100 nM Aβ and 1 nM estrogen; EH, cerebral organoids treated with 100 nM Aβ and 10 nM estrogen. t-tests were performed for data analysis (∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001). Values are presented as mean ± standard error of mean. Scale bars, 200 µm.

AD (Foidl and Humpel, 2020). Hence, in the present study, we
used a 5xFAD mouse model, which is a commonly used mouse
model of AD, to study the effect of estrogen treatment on AD in
menopausal patients (Ohno et al., 2007; Jawhar et al., 2012; Eimer
and Vassar, 2013). Reportedly, the body weights of mice increase
after ovariectomy, which is characteristic of the post-menopausal
state (Blaustein et al., 1976; Gambacciani et al., 1997; Jeong and
Yoon, 2012; Nishio et al., 2019). Similar results were reported
in this study, since the body weights of ovariectomized mice
were significantly higher than that of control mice (Figure 1B).
Owing to the inhibition of estrogen release after ovariectomy,

the thickness of the uterine wall is reduced; however, the
thickness was shown to be restored partially with estrogen
treatment (Kang et al., 2017). To confirm the successful delivery
of estrogen, we stained the coronally dissected uterine horns of
mice (Figure 1D). Compared to mice that were ovariectomized
but untreated, mice treated with estrogen showed a significantly
greater uterine wall thickness.

Although the transgenic mice model is invaluable for studying
AD, it has certain limitations. The most important limitation
is the inability of the model to mimic tau protein pathology,
since only Aβ peptide generation cannot completely induce
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the formation of the central lesion observed in AD (Andorfer
et al., 2003; Sasaguri et al., 2017). Additionally, while AD is
a neurodegenerative disorder and occurs in aging brains, the
histopathological characteristics of AD are observed early in
transgenic mice, which significantly limits investigations on the
pathogenesis of aging in these mice (Kitazawa et al., 2012).
Therefore, an alternative disease modeling platform is necessary
to study the pathological mechanisms underlying AD that
involves central lesions.

To overcome the abovementioned limitations, we used iPSCs
to develop cerebral organoids, which are self-organizing and
self-developing three-dimensional structures that recapitulate
certain characteristics of the brain (Lancaster et al., 2013).
Cerebral organoids have been used to study neurodevelopmental
disorders such as microcephaly (Lancaster et al., 2013) and
autism spectrum disorder (Mariani et al., 2015; Birey et al.,
2017). Cerebral organoids were first used as a model for
late-onset AD recently. Before iCOs were used, neurons
developed from iPSCs isolated from patients with FAD and
SAD were used to demonstrate high Aβ peptide accumulation,
tau phosphorylation, and endosomal alterations, all of which
are early characteristics of AD (Cataldo et al., 2000; Israel
et al., 2012; Muratore et al., 2014). Subsequently, human
neuronal progenitor cells that were genetically engineered to
overexpress mutant APP and PS1 were differentiated into
cerebral organoids to develop a three-dimensional in vitro model
of AD (Choi et al., 2014). This approach led to increased
Aβ peptide accumulation in extracellular environments and
tau phosphorylation with subsequent insoluble fibril formation.
The field of utilizing cerebral organoids to study Alzheimer’s
disease is expected to expand as the tissue engineering and
bioengineering technologies advance (Ranjan et al., 2018).
For example, microfluidics and spinning bioreactors are
implemented in culturing cerebral organoid, which would allow
more controlled neural patterning and support the delivery
of oxygen and nutrient into the interior of the organoid
(Kadoshima et al., 2013; Qian et al., 2016; Lancaster et al., 2017;
Yan et al., 2019).

Despite technological advancements, there remain several
limitations in the use of iCOs in investigations on AD. An
important limitation is related to aging. Aging is a major risk
factor in the pathogenesis of AD, as the process of aging is
accompanied by different types of genetic alterations (Lopez-
Otin et al., 2013; Gerakis and Hetz, 2019). However, as cerebral
organoids derived from iPSCs mimic the prenatal brain, it is
challenging to replicate the aging-related phenotypes of AD
using cerebral organoids (Camp et al., 2015). Additionally,
the cerebral organoid-based models currently in use do not
show complete vascularization, owing to which the blood-brain
barrier is not completely mimicked (Huch et al., 2017), and
certain types of neuronal cells, such as oligodendrocytes, are not
formed. Therefore, in this study, we attempted to study a single
characteristic of AD—Aβ-related pathogenesis. We considered
that if we treat healthy organoids with Aβ peptides, we could
focus on the interplay between the neuronal cells of iCOs and Aβ

peptides, which would mimic the interaction between neurons
and Aβ plaques that occurs in the brains of patients with AD.

Another limitation is the low reproducibility and homogeneity
of the model, because the generation of iCOs is heavily dependent
on the self-organization potential of iPSCs (Papaspyropoulos
et al., 2020). Accurate disease modeling is necessary to provide a
stable platform; however, some cerebral organoids may produce
higher concentrations of Aβ peptides than other organoids,
leading to variability. We attempted to limit the variability in
Aβ peptide production by manually treating the organoids with
Aβ peptides. As shown in Figure 3, we successfully generated
iCOs that recapitulated different parts of the brain as well as
neuronal cell types.

In conclusion, we confirmed that estrogen exerts a protective
effect against the toxicity induced by Aβ peptides and pTAU.
We also supported this finding by modeling an in vitro
platform that recapitulates Aβ plaque accumulation, one of the
primary characteristics of AD. Previous studies have shown
the toxic effects of Aβ peptides on neurons (Mamada et al.,
2015; Tanokashira et al., 2017) and mouse brains (Kwakowsky
et al., 2016), although no study has confirmed this in a three-
dimensional platform based on stem cells. We treated iCOs
obtained from healthy individuals with equal concentrations
of Aβ peptide to mimic Aβ-induced neurotoxicity commonly
observed in the brains of patients with AD (Figure 4).
The organoids were then treated with estrogen in a dose-
dependent manner to evaluate whether estrogen alleviated
Aβ-induced neurotoxicity.

In our study, we focused on an estrogen receptor that is known
to be affecting Alzheimer’s disease—α-secretase, specifically
ADAM10. There are β- and γ-secretase, which are drug targets
for AD, though it has been challenging to develop clinically
appropriate drugs that target these proteases (Fahrenholz,
2007). Hence, we have decided to focus on α-secretase, for
α-secretase has been a new therapeutic approach to targeting
AD (Lichtenthaler, 2011). Current studies, as well as our
own research, confirm that the treatment of estrogen may
be therapeutically targeted as it promotes higher expression
of alpha-secretase (Nord et al., 2010) and binds to estrogen
receptors, though the exact mechanism is unclear to this day
(Lan et al., 2015). There has been a study that focused on the
regulatory effect of estrogen receptor alpha on ADAM9 (one
of the candidates for alpha-secretase (Asai et al., 2003) that
showed that activation of estrogen receptor alpha increased the
expression of ADAM9 (Shen et al., 2016).

ADAM10 is known to be the main alpha-secretase that cleaves
amyloid precursor protein (APP) into soluble forms of β-amyloid
peptide, hence inhibiting the formation of β-amyloid peptide
aggregation (Yuan et al., 2017; Peron et al., 2018; Sogorb-
Esteve et al., 2018; Manzine et al., 2019). ADAM10, which is
likely to activate alpha-secretase, may be regulated by protein
kinase C (PKC) (Allinson et al., 2003). While estrogen binds to
estrogen receptors, it also binds to PKCα and PKCδ (Alzamora
et al., 2007). PKCα encourages alpha-secretase to undergo APP
processing instead of BACE, yielding decreased amyloid-beta
levels (Anastasio, 2013). Hence, higher expression of ADAM10
indicates lower probability of AD. In our study, we showed that
treatment of estrogen induced higher expression of ADAM10 in
both in vivo and in vitro settings (Figures 2B, 4D), as well as
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lowered level of amyloid-beta plaques and APP in in vivo setting
(Figures 2B–D). Additionally, neuronal marker expression was
enhanced at both the RNA and protein levels in response to
estrogen treatment. Our findings suggest that iCOs can be used
to study specific phenotypes of AD; the findings also suggest the
potential of iCOs in the development of drug screening platforms.
Future studies could involve the usage of different devices, such
as atomic force microscopy, to accurately measure the sizes of
the cerebral organoids in order to provide more accurate and
stabilized experimental set-up.
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